Bộ môn Giải tích

28/02/2009

Hội nghị tổng kết hoạt động KHCN ĐHQGHN năm 2008

Filed under: Giải tích toán học, Tra cứu, Trao đổi — bmgt @ 07:00

hoinghitongkethoatdongkhoahoccongnghedhqghn2008

Hội nghị đã diễn ra ngày 27/2/2009 với sự tham dự của GS.TSKH Vũ Minh Giang – Phó giám đốc cùng lãnh đạo văn phòng, các ban chức năng, thủ trưởng các đơn vị trực thuộc, lãnh đạo các khoa, các trung tâm, các giáo sư, đại diện các nhà khoa học trong ĐHQGHN.

GS.TS Nguyễn Cao Huần – Trưởng ban Khoa học – Công nghệ ĐHQGHN đã trình bày báo cáo tổng kết hoạt động khoa học – công nghệ năm 2008 và các nhiệm vụ, giải pháp trọng tâm của hoạt động khoa học – công nghệ năm 2009.

Năm 2008, hoạt động khoa học – công nghệ của ĐHQGHN đã tập trung triển khai theo 3 mục tiêu, nhiệm vụ trọng tâm là: Tiếp tục phấn đấu để ĐHQGHN có nhiều công trình, sản phẩm KHCN tầm cỡ quốc gia, quốc tế; thông qua hoạt động NCKH nhanh chóng đào tạo, xây dựng, bổ sung đội ngũ cán bộ khoa học đầu ngành, đầu đàn; xây dựng và phát triển các công nghệ cao ở ĐHQGHN.

Các giải pháp quan trọng đã được triển khai rộng rãi là đầu tư xây dựng các nhóm nghiên cứu mạnh, gắn với việc tập trung tham gia giải quyết các nhiệm vụ khoa học công nghệ lớn, quan trọng, nằm trong chiến lược phát triển khoa học – công nghệ của quốc gia, trên cơ sở thế mạnh và định hướng ưu tiên phát triển của ĐHQGHN.

Đề án xây dựng 16 chuyên ngành đào tạo đại học, 23 chuyên ngành đào tạo thạc sĩ, 23 chuyên ngành đào tạo tiến sĩ (16 – 23) đạt trình độ chuẩn khu vực và quốc tế đã được triển khai thí điểm tại một số đơn vị đào tạo.

Bên cạnh việc tiếp tục hoàn thành thực hiện các dự án đầu tư chiều sâu của Trường ĐHKHTN và Trường ĐH Công nghệ, ĐHQGHN đã ưu tiên đầu tư chiều sâu cho Viện Vi sinh vật – Công nghệ sinh học, Trung tâm Thông tin thư viện và Khoa Sư phạm. Vấn đề phát triển, khai thác mạnh mẽ các quan hệ quốc tế để ưu tiên cho phát triển công nghệ cao và đào tạo cán bộ, chú trọng hợp tác với thành phố Hà Nội, ĐHQG TP.HCM và tỉnh Hòa Bình cũng đã được lãnh đạo ĐHQGHN quan tâm đúng mức. Năm vừa qua, ĐHQGHN đã triển khai thực hiện được 30 đề tài cấp nhà nước thuộc các chương trình KC, KX… trong đó có 17 đề tài cấp nhà nước thuộc các lĩnh vực khoa học xã hội và nhân văn.

Bên cạnh đó, ĐHQGHN cũng đã hoàn thiện Đề án và Điều lệ hoạt động của Quỹ phát triển khoa học công nghệ, hoàn thành Kế hoạch chiến lược phát triển công nghệ thông tin của ĐHQGHN đến năm 2010, tầm nhìn đến năm 2020.

Năm 2009, trên cơ sở “Chiến lược phát triển khoa học công nghệ đến năm 2010” của Chính phủ, Nghị quyết của BCH Đảng bộ ĐHQGHN khóa III, hoạt động khoa học – công nghệ của ĐHQGHN sẽ đi theo phương hướng: Phát huy mọi nguồn lực, tạo bước đột phá về chất lượng đào tạo và nghiên cứu khoa học, tiếp tục phát triển ĐHQGHN theo định hướng đại học nghiên cứu tiên tiến đa ngành, đa lĩnh vực, cung cấp nguồn nhân lực chất lượng cao cho xã hội, khẳng định thế mạnh hàng đầu cả nước về khoa học cơ bản, tập trung có trọng tâm, trọng điểm cho nghiên cứu khoa học đỉnh cao để tạo ra sản phẩm khoa học có tầm cỡ quốc tế, có phát minh sáng chế quan trọng phục vụ phát triển kinh tế xã hội, an ninh quốc phòng, góp phần giải quyết các nhiệm vụ khoa học – công nghệ quan trọng của quốc gia.

Một số chỉ tiêu phấn đấu trong giai đoạn 2009-2010 là: 100% các dự án đấu thầu và nhiệm vụ khoa học cấp nhà nước được triển khai đúng tiến độ; 100% đề tài, đề án cấp bộ/ ngành nghiệm thu đúng thời hạn; Thu hút vốn từ bên ngoài gấp 2 lần kinh phí được đầu tư từ ngân sách; Có trên 100 bài báo được in trong các tạp chí quốc tế; Có hơn 10 giải thưởng khoa học công nghệ từ cấp ĐHQGHN trở lên…

Phát biểu chỉ đạo tại hội nghị, GS.TSKH Vũ Minh Giang đã đánh giá cao những đổi mới, những kết quả toàn diện, sâu sắc và đột phá của hoạt động khoa học – công nghệ trong năm qua, biểu dương sự nỗ lực của các đơn vị và các nhà khoa học. Phó giám đốc cũng nhấn mạnh cần đặc biệt chú trọng tới chất lượng, hiệu quả của các hoạt động khoa học – công nghệ của ĐHQGHN, chú trọng tới tính liên thông, liên kết, liên ngành – thế mạnh của đại học đa ngành, đa lĩnh vực. Nhân dịp này, GS.TSKH Vũ Minh Giang đã thay mặt Giám đốc ĐHQGHN trao Giải thưởng công trình khoa học tiêu biểuGiải thưởng nhà khoa học trẻ năm 2008 cho các tác giả của các công trình/ cụm công trình.

Danh sách các công trình/ cụm công trình khoa học tiêu biểu năm 2008 của ĐHQGHN

1/ “Nghiên cứu sự tồn tại nghiệm yếu của các bài toán biên không đều đối với phương trình và hệ phương trình Elliptic không tuyến tính”; các tác giả: PGS.TS Hoàng Quốc Toàn, ThS. Ngô Quốc Anh; Trường ĐHKHTN

2/ “Hệ nano dây spin Ca2CuO3”; tập thể tác giả: PGS.TS Hoàng Nam Nhật, GS.TSKH Nguyễn Châu, TS. Huỳnh Đăng Chính, CN. Nguyễn Thùy Trang; Trường ĐHKHTN

3/ “Giải pháp tổng quát để phân tích và thiết kế các anten mạch dải siêu cao tần tích hợp trên bề mặt bán cầu nhiều lớp và ứng dụng”; tác giả: TS. Trương Vũ Bằng Giang; Trường ĐH Công nghệ

4/ “Nghiên cứu quy trình chiết tách Ent-Kauran Ditecpenoit có tác dụng chống ung thư và chống viêm từ cây khổ sâm bắc bộ”; tập thể tác giả đề tài độc lập cấp nhà nước, mã số ĐTĐL-2005/05 do GS.TSKH Phan Tống Sơn chủ nhiệm; Trường ĐHKHTN

5/ “Việt Nam 1919 – 1930: Thời kỳ tìm tòi và định hướng”; tác giả: GS.TS Nguyễn Văn Khánh; Trường ĐHKHXH&NV

6/ “Văn học trung đại Việt Nam dưới góc nhìn văn hóa”; tác giả: PGS.TS Trần Nho Thìn; Trường ĐHKHXH&NV

7/ “Văn học Việt Nam thế kỷ X – XIX (những vấn đề lý luận và lịch sử)”; tập thể tác giả do PGS.TS Trần Ngọc Vương chủ biên; Trường ĐHKHXH&NV

Danh sách các công trình/ cụm công trình được tặng Giải thưởng nhà khoa học trẻ năm 2008 của ĐHQGHN

1/ “Nghiên cứu và xây dựng các phương thức hiện đại cho tương tác người máy”; tác giả: TS. Bùi Thế Duy; Trường ĐH Công nghệ

2/ “Chế tạo và nghiên cứu một số vật liệu nano và bước đầu thử nghiệm khả năng ứng dụng hạt nano từ tính trong sinh học”; tác giả: TS. Nguyễn Hoàng Hải; Trường ĐHKHTN

3/ “Cảm biến gia tốc ba bậc tự do kiểu áp trở”; tác giả: ThS. Trần Đức Tân; Trường ĐH Công nghệ

Văn Trương Minh [Trang Tin tức Sự kiện]
Nguồn:VNU

21/02/2009

Birds and Frogs, part 2

Filed under: Không toán học, Trao đổi — Ngô Quốc Anh @ 22:12

Abram Besicovitch and Hermann Weyl

Let me now introduce you to some notable frogs and birds that I knew personally. I came to Cambridge University as a student in 1941 and had the tremendous luck to be given the Russian mathematician Abram Samoilovich Besicovitch as my supervisor. Since this was in the middle of World War Two, there were very few students in Cambridge, and almost no graduate students. Although I was only seventeen years old and Besicovitch was already a famous professor, he gave me a great deal of his time and attention, and we became life-long friends. He set the style in which I began to work and think about mathematics. He gave wonderful lectures on measure-theory and integration, smiling amiably when we laughed at his glorious abuse of the English  language. I remember only one occasion when he was annoyed by our laughter. He remained silent for a while and then said, “Gentlemen. Fifty million English speak English you speak. Hundred and fifty million Russians speak English I speak.”

Besicovitch was a frog, and he became famous when he was young by solving a problem in elementary plane geometry known as the Kakeya problem. The Kakeya problem was the following. A line segment of length one is allowed to move freely in a plane while rotating through an angle of 360 degrees. What is the smallest area of the plane that it can cover during its rotation? The problem was posed by the Japanese mathematician Kakeya in 1917 and remained a famous unsolved problem for ten years. George Birkhoff, the leading American mathematician at that time, publicly proclaimed that the Kakeya problem and the fourcolor problem were the outstanding unsolved problems of the day. It was widely believed that the minimum area was π /8, which is the area of a three-cusped hypocycloid. The three-cusped hypocycloid is a beautiful three-pointed curve. It is the curve traced out by a point on the circumference of a circle with radius one-quarter, when the circle rolls around the inside of a fixed circle with radius three-quarters. The line segment of length one can turn while always remaining tangent to the hypocycloid with its two ends also on the hypocycloid. This picture of the line turning while touching the inside of the hypocycloid at three points was so elegant that most people believed it must give the minimum area. Then Besicovitch surprised everyone by proving that the area covered by the line as it turns can be less than \varepsilon for any positive \varepsilon.

Besicovitch had actually solved the problem in 1920 before it became famous, not even knowing that Kakeya had proposed it. In 1920 he published the solution in Russian in the Journal of the Perm Physics and Mathematics Society, a journal that was not widely read. The university of Perm, a city 1,100 kilometers east of Moscow, was briefly a refuge for many distinguished mathematicians after the Russian revolution. They published two volumes of their journal before it died amid the chaos of revolution and civil war. Outside Russia the journal was not only unknown but unobtainable. Besicovitch left Russia in 1925 and arrived at Copenhagen, where he learned about the famous Kakeya problem that he had solved five years earlier. He published the solution again, this time in English in the Mathematische Zeitschrift. The Kakeya problem as Kakeya proposed it was a typical frog problem, a concrete problem without much connection with the rest of mathematics. Besicovitch gave it an elegant and deep solution, which revealed a connection with general theorems about the structure of sets of points in a plane.

The Besicovitch style is seen at its finest in his three classic papers with the title, “On the fundamental geometric properties of linearly measurable plane sets of points”, published in Mathematische Annalen in the years 1928, 1938, and 1939. In these papers he proved that every linearly measurable set in the plane is divisible into a regular and an irregular component, that the regular component has a tangent almost everywhere, and the irregular component has a projection of measure zero onto almost all directions. Roughly speaking, the regular component looks like a collection of continuous curves, while the irregular component looks nothing like a continuous curve. The existence and the properties of the irregular component are connected with the Besicovitch solution of the Kakeya problem. One of the problems that he gave me to work on was the division of measurable sets into regular and irregular components in spaces of higher dimensions. I got nowhere with the problem, but became permanently imprinted with the Besicovitch style. The Besicovitch style is architectural. He builds out of simple elements a delicate and complicated architectural structure, usually with a hierarchical plan, and then, when the building is finished, the completed structure leads by simple arguments to an unexpected conclusion. Every Besicovitch proof is a work of art, as carefully constructed as a Bach fugue.

A few years after my apprenticeship with Besicovitch, I came to Princeton and got to know Hermann Weyl. Weyl was a prototypical bird, just as Besicovitch was a prototypical frog. I was lucky to overlap with Weyl for one year at the Princeton Institute for Advanced Study before he retired from the Institute and moved back to his old home in Zürich. He liked me because during that year I published papers in the Annals of Mathematics about number theory and in the Physical Review about the quantum theory of radiation. He was one of the few people alive who was at home in both subjects. He welcomed me to the Institute, in the hope that I would be a bird like himself. He was disappointed. I remained obstinately a frog. Although I poked around in a variety of mud-holes, I always looked at them one at a time and did not look for connections between them. For me, number theory and quantum theory were separate worlds with separate beauties. I did not look at them as Weyl did, hoping to find clues to a grand design.

Weyl’s great contribution to the quantum theory of radiation was his invention of gauge fields. The idea of gauge fields had a curious history. Weyl invented them in 1918 as classical fields in his unified theory of general relativity and electromagnetism, [7]. He called them “gauge fields” because they were concerned with the non-integrability of measurements of length. His unified theory was promptly and publicly rejected by Einstein. After this thunderbolt from on high, Weyl did not abandon his theory but moved on to other things. The theory had no experimental consequences that could be tested. Then in 1929, after quantum mechanics had been invented by others, Weyl realized that his gauge fields fitted far better into the quantum world than they did into the classical world, [8]. All that he needed to do, to change a classical gauge into a quantum gauge, was to change real numbers into complex numbers. In quantum mechanics, every quantum of electric charge carries with it a complex wave function with a phase, and the gauge field is concerned with the non-integrability of measurements of phase. The gauge field could then be precisely identified with the electromagnetic potential, and the law of conservation of charge became a consequence of the local phase invariance of the theory.

Weyl died four years after he returned from Princeton to Zürich, and I wrote his obituary for the journal Nature, [3]. “Among all the mathematicians who began their working lives in the twentieth century,” I wrote, “Hermann Weyl was the one who made major contributions in the greatest number of different fields. He alone could stand comparison with the last great universal mathematicians of the nineteenth century, Hilbert and Poincaré. So long as he was alive, he embodied a living contact between the main lines of advance in pure mathematics and in theoretical physics. Now he is dead, the contact is broken, and our hopes of comprehending the physical universe by a direct use of creative mathematical imagination are for the time being ended.” I mourned his passing, but I had no desire to pursue his dream. I was happy to see pure mathematics and physics marching ahead in opposite directions.

The obituary ended with a sketch of Weyl as a human being: “Characteristic of Weyl was an aesthetic sense which dominated his thinking on all subjects. He once said to me, half joking, ‘My work always tried to unite the true with the  beautiful; but when I had to choose one or the other, I usually chose the beautiful’. This remark sums up his personality perfectly. It shows his profound faith in an ultimate harmony of Nature, in which the laws should inevitably express themselves in a mathematically beautiful form. It shows also his recognition of human frailty, and his humor, which always stopped him short of being pompous. His friends in Princeton will remember him as he was when I last saw him, at the Spring Dance of the Institute for Advanced Study last April: a big jovial man, enjoying himself splendidly, his cheerful frame and his light step giving no hint of his sixty-nine years.”

The fifty years after Weyl’s death were a golden age of experimental physics and observational astronomy, a golden age for Baconian travelers picking up facts, for frogs exploring small patches of the swamp in which we live. During these fifty years, the frogs accumulated a detailed knowledge of a large variety of cosmic structures and a large variety of particles and interactions. As the exploration of new territories continued, the universe became more complicated. Instead of a grand design displaying the simplicity and beauty of Weyl’s mathematics, the explorers found weird objects such as quarks and gamma-ray bursts, weird concepts such as supersymmetry and multiple universes. Meanwhile, mathematics was also becoming more complicated, as exploration continued into the phenomena of chaos and many other new areas opened by electronic computers. The mathematicians discovered the central mystery of computability, the conjecture represented by the statement P is not equal to NP. The conjecture asserts that there exist mathematical problems which can be quickly solved in individual cases but cannot be solved by a quick algorithm applicable to all cases. The most famous example of such a problem is the traveling salesman problem, which is to find the shortest route for a salesman visiting a set of cities, knowing the distance between each pair. All the experts believe that the conjecture is true, and that the traveling salesman problem is an example of a problem that is P but not NP. But nobody has even a glimmer of an idea how to prove it. This is a mystery that could not even have been formulated within the nineteenth-century mathematical universe of Hermann Weyl.

Frank Yang and Yuri Manin

The last fifty years have been a hard time for birds. Even in hard times, there is work for birds to do, and birds have appeared with the courage to tackle it. Soon after Weyl left Princeton, Frank Yang arrived from Chicago and moved into Weyl’s old house. Yang took Weyl’s place as the leading bird among my generation of physicists. While Weyl was still alive, Yang and his student Robert Mills discovered the Yang-Mills theory of non-Abelian gauge fields, a marvelously elegant extension of Weyl’s idea of a gauge field, [11]. Weyl’s gauge field was a classical quantity, satisfying the commutative law of multiplication. The Yang-Mills theory had a triplet of gauge fields which did not commute. They satisfied the commutation rules of the three components of a quantum mechanical spin, which are generators of the simplest non-Abelian Lie algebra A2 . The theory was later generalized so that the gauge fields could be generators of any finite-dimensional Lie algebra. With this generalization, the Yang-Mills gauge field theory provided the framework for a model of all the known particles and interactions, a model that is now known as the Standard Model of particle physics. Yang put the finishing touch to it by showing that Einstein’s theory of gravitation fits into the same framework, with the Christoffel three-index symbol taking the role of gauge field, [10].

In an appendix to his 1918 paper, added in 1955 for the volume of selected papers published to celebrate his seventieth birthday, Weyl expressed his final thoughts about gauge field theories (my translation), [12]: “The strongest argument for my theory seemed to be this, that gauge invariance was related to conservation of electric charge in the same way as coordinate invariance was related to conservation of energy and momentum.” Thirty years later Yang was in Zürich for the celebration of Weyl’s hundredth birthday. In his speech, [12], Yang quoted this remark as evidence of Weyl’s devotion to the idea of gauge invariance as a unifying principle for physics. Yang then went on, “Symmetry, Lie groups, and gauge invariance are now recognized, through theoretical and experimental developments, to play essential roles in determining the basic forces of the physical universe. I have called this the principle that symmetry dictates interaction.” This idea, that symmetry dictates interaction, is Yang’s generalization of Weyl’s remark. Weyl observed that gauge invariance is intimately connected with physical conservation laws. Weyl could not go further than this, because he knew only the gauge invariance of commuting Abelian fields. Yang made the connection much stronger by introducing non-Abelian gauge fields. With non-Abelian gauge fields generating nontrivial Lie algebras, the possible forms of interaction between fields become unique, so that symmetry dictates interaction. This idea is Yang’s greatest contribution to physics. It is the contribution of a bird, flying high over the rain forest of little problems in which most of us spend our lives.

Another bird for whom I have a deep respect is the Russian mathematician Yuri Manin, who recently published a delightful book of essays with the title Mathematics as Metaphor [5]. The book was published in Moscow in Russian, and by the American Mathematical Society in English. I wrote a preface for the English version, and I give you here a short quote from my preface. “Mathematics as Metaphor is a good slogan for birds. It means that the deepest concepts in mathematics are those which link one world of ideas with another. In the seventeenth century Descartes linked the disparate worlds of algebra and geometry with his concept of coordinates, and Newton linked the worlds of geometry and dynamics with his concept of fluxions, nowadays called calculus. In the nineteenth century Boole linked the worlds of logic and algebra with his concept of symbolic logic, and Riemann linked the worlds of geometry and analysis with his concept of Riemann surfaces. Coordinates, fluxions, symbolic logic, and Riemann surfaces are all metaphors, extending the meanings of words from familiar to unfamiliar contexts. Manin sees the future of mathematics as an exploration of metaphors that are already visible but not yet understood. The deepest such metaphor is the similarity in structure between number theory and physics. In both fields he sees tantalizing glimpses of parallel concepts, symmetries linking the continuous with the discrete. He looks forward to a unification which he calls the quantization of mathematics.

“Manin disagrees with the Baconian story, that Hilbert set the agenda for the mathematics of the twentieth century when he presented his famous list of twenty-three unsolved problems to the International Congress of Mathematicians in Paris in 1900. According to Manin, Hilbert’s problems were a distraction from the central themes of mathematics. Manin sees the important advances in mathematics coming from programs, not from problems. Problems are usually solved by applying old ideas in new ways. Programs of research are the nurseries where new ideas are born. He sees the Bourbaki program, rewriting the whole of mathematics in a more abstract language, as the source of many of the new ideas of the twentieth century. He sees the Langlands program, unifying number theory with geometry, as a promising source of new ideas for the twenty-first. People who solve famous unsolved problems may win big prizes, but people who start new programs are the real pioneers.”

The Russian version of Mathematics as Metaphor contains ten chapters that were omitted from the English version. The American Mathematical Society decided that these chapters would not be of interest to English language readers. The omissions are doubly unfortunate. First, readers of the English version see only a truncated view of Manin, who is perhaps unique among mathematicians in his broad range of interests extending far beyond mathematics. Second, we see a truncated view of Russian culture, which is less compartmentalized than English language culture, and brings mathematicians into closer contact with historians and artists and poets.

Adapted from NOTICES OF AMS 2/2009

12/02/2009

Birds and Frogs, part 1

Filed under: Giải tích toán học, Trao đổi, Vui chơi — Ngô Quốc Anh @ 00:35

Some mathematicians are birds, others are frogs. Birds fly high in the air and survey broad vistas of mathematics out to the far horizon. They delight in concepts that unify our thinking and bring together diverse problems from different parts of the landscape. Frogs live in the mud below and see only the flowers that grow nearby. They delight in the details of particular objects, and they solve problems one at a time. I happen to be a frog, but many of my best friends are birds. The main theme of my talk tonight is this. Mathematics needs both birds and frogs. Mathematics is rich and beautiful because birds give it broad visions and frogs give it intricate details. Mathematics is both great art and important science, because it combines generality of concepts with depth of structures. It is stupid to claim that birds are better than frogs because they see farther, or that frogs are better than birds because they see deeper. The world of mathematics is both broad and deep, and we need birds and frogs working together to explore it.

This talk is called the Einstein lecture, and I am grateful to the American Mathematical Society for inviting me to do honor to Albert Einstein. Einstein was not a mathematician, but a physicist who had mixed feelings about mathematics. On the one hand, he had enormous respect for the power of mathematics to describe the workings of nature, and he had an instinct for mathematical beauty which led him onto the right track to find nature’s laws. On the other hand, he had no interest in pure mathematics, and he had no technical skill as a mathematician. In his later years he hired younger colleagues with the title of assistants to do mathematical calculations for him. His way of thinking was physical rather than mathematical. He was supreme among physicists as a bird who saw further than others. I will not talk about Einstein skill as a mathematician. In his later years he hired younger colleagues with the title of assistants to do mathematical calculations for him. His way of thinking was physical rather than mathematical. He was supreme among physicists as a bird who saw further than others. I will not talk about Einstein since I have nothing new to say.

Francis Bacon and René Descartes

At the beginning of the seventeenth century, two great philosophers, Francis Bacon in England and René Descartes in France, proclaimed the birth of modern science. Descartes was a bird, and Bacon was a frog. Each of them described his vision of the future. Their visions were very different. Bacon said, “All depends on keeping the eye steadily fixed on the facts of nature.” Descartes said, “I think, therefore I am.” According to Bacon, scientists should travel over the earth collecting facts, until the accumulated facts reveal how Nature works. The scientists will then induce from the facts the laws that Nature obeys. According to Descartes, scientists should stay at home and deduce the laws of Nature by pure thought. In order to deduce the  laws correctly, the scientists will need only the rules of logic and knowledge of the existence of God. For four hundred years since Bacon and Descartes led the way, science has raced ahead by following both paths simultaneously. Neither Baconian empiricism nor Cartesian dogmatism has the power to elucidate Nature’s secrets by itself, but both together have been amazingly successful. For four hundred years English scientists have tended to be Baconian and French scientists Cartesian. Faraday and Darwin and Rutherford were Baconians; Pascal and Laplace and Poincaré were Cartesians. Science was greatly enriched by the cross-fertilization of the two contrasting cultures. Both cultures were always at work in both countries. Newton was at heart a Cartesian, using pure thought as Descartes intended, and using it to demolish the Cartesian dogma of vortices. Marie Curie was at heart a Baconian, boiling tons of crude uranium ore to demolish the dogma of the indestructibility of atoms.

In the history of twentieth century mathematics, there were two decisive events, one belonging to the Baconian tradition and the other to the Cartesian tradition. The first was the International Congress of Mathematicians in Paris in 1900, at which Hilbert gave the keynote address, charting the course of mathematics for the coming century by propounding his famous list of twenty-three outstanding unsolved problems. Hilbert himself was a bird, flying high over the whole territory of mathematics, but he addressed his problems to the frogs who would solve them one at a time. The second decisive event was the formation of the Bourbaki group of mathematical birds in France in the 1930s, dedicated to publishing a series of textbooks that would establish a unifying framework for all of mathematics. The Hilbert problems were enormously successful in guiding mathematical research into fruitful directions. Some of them were solved and some remain unsolved, but almost all of them stimulated the growth of new ideas and new fields of mathematics. The Bourbaki project was equally influential. It changed the style of mathematics for the next fifty years, imposing a logical coherence that did not exist before, and moving the emphasis from concrete examples to abstract generalities. In the Bourbaki scheme of things, mathematics is the abstract structure included in the Bourbaki textbooks. What is not in the textbooks is not mathematics. Concrete examples, since they do not appear in the textbooks, are not mathematics. The Bourbaki program was the extreme expression of the Cartesian style. It narrowed the scope of mathematics by excluding the beautiful flowers that Baconian travelers might collect by the wayside.

Jokes of Nature

For me, as a Baconian, the main thing missing in the Bourbaki program is the element of surprise. The Bourbaki program tried to make mathematics logical. When I look at the history of mathematics, I see a succession of illogical jumps, improbable coincidences, jokes of nature. One of the most profound jokes of nature is the square root of minus one that the physicist Erwin Schrödinger put into his wave equation when he invented wave mechanics in 1926. Schrödinger was a bird who started from the idea of unifying mechanics with optics. A hundred years earlier, Hamilton had unified classical mechanics with ray optics, using the same mathematics to describe optical rays and classical particle trajectories. Schrödinger’s idea was to extend this unification to wave optics and wave mechanics. Wave optics already existed, but wave mechanics did not. Schrödinger had to invent wave mechanics to complete the unification. Starting from wave optics as a model, he wrote down a differential equation for a mechanical particle, but the equation made no sense. The equation looked like the equation of conduction of heat in a continuous medium. Heat conduction has no visible relevance to particle mechanics. Schrödinger’s idea seemed to be going nowhere. But then came the surprise. Schrödinger put the square root of minus one into the equation, and suddenly it made sense. Suddenly it became a wave equation instead of a heat conduction equation. And Schrödinger found to his delight that the equation has solutions corresponding to the quantized orbits in the Bohr model of the atom.

It turns out that the Schrödinger equation describes correctly everything we know about the behavior of atoms. It is the basis of all of chemistry and most of physics. And that square root of minus one means that nature works with complex numbers and not with real numbers. This discovery came as a complete surprise, to Schrödinger as well as to everybody else. According to Schrödinger, his fourteen-year-old girl friend Itha Junger said to him at the time, “Hey, you never even thought when you began that so much sensible stuff would come out of it.” All through the nineteenth century, mathematicians from Abel to Riemann and Weierstrass had been creating a magnificent theory of functions of complex variables. They had discovered that the theory of functions became far deeper and more powerful when it was extended from real to complex numbers. But they always thought of complex numbers as an artificial construction, invented by human mathematicians as a useful and elegant abstraction from real life. It never entered their heads that this artificial number system that they had invented was in fact the ground on which atoms move. They never imagined that nature had got there first.

Another joke of nature is the precise linearity of quantum mechanics, the fact that the possible states of any physical object form a linear space. Before quantum mechanics was invented, classical physics was always nonlinear, and linear models were only approximately valid. After quantum mechanics, nature itself suddenly became linear. This had profound consequences for mathematics. During the nineteenth century Sophus Lie developed his elaborate theory of continuous groups, intended to clarify the behavior of classical dynamical systems. Lie groups were then of little interest either to mathematicians or to physicists. The nonlinear theory of Lie groups was too complicated for the mathematicians and too obscure for the physicists. Lie died a disappointed man. And then, fifty years later, it turned out that nature was precisely linear, and the theory of linear representations of Lie algebras was the natural language of particle physics. Lie groups and Lie algebras were reborn as one of the central themes of twentieth century mathematics.

A third joke of nature is the existence of quasicrystals. In the nineteenth century the study of crystals led to a complete enumeration of possible discrete symmetry groups in Euclidean space. Theorems were proved, establishing the fact that in three-dimensional space discrete symmetry groups could contain only rotations of order three, four, or six. Then in 1984 quasi-crystals were discovered, real solid objects growing out of liquid metal alloys, showing the symmetry of the icosahedral group, which includes five-fold rotations. Meanwhile, the mathematician Roger Penrose discovered the Penrose tilings of the plane. These are arrangements of parallelograms that cover a plane with pentagonal long-range order. The alloy quasi-crystals are three-dimensional analogs of the two-dimensional Penrose tilings. After these discoveries, mathematicians had to enlarge the theory of crystallographic groups to include quasicrystals. That is a major program of research which is still in progress.

A fourth joke of nature is a similarity in behavior between quasi-crystals and the zeros of the Riemann Zeta function. The zeros of the zetafunction are exciting to mathematicians because they are found to lie on a straight line and nobody understands why. The statement that with trivial exceptions they all lie on a straight line is the famous Riemann Hypothesis. To prove the Riemann Hypothesis has been the dream of young mathematicians for more than a hundred years. I am now making the outrageous suggestion that we might use quasi-crystals to prove the Riemann Hypothesis. Those of you who are mathematicians may consider the suggestion frivolous. Those who are not mathematicians may consider it uninteresting. Nevertheless I am putting it forward for your serious consideration. When the physicist Leo Szilard was young, he became dissatisfied with the ten commandments of Moses and wrote a new set of ten commandments to replace them. Szilard’s second commandment says: “Let your acts be directed towards a worthy goal, but do not ask if they can reach it: they are to be models and examples, not means to an end.” Szilard practiced what he preached. He was the first physicist to imagine nuclear weapons and the first to campaign actively against their use. His second commandment certainly applies here. The proof of the Riemann Hypothesis is a worthy goal, and it is not for us to ask whether we can reach it. I will give you some hints describing how it might be achieved. Here I will be giving voice to the mathematician that I was fifty years ago before I became a physicist. I will talk first about the Riemann Hypothesis and then about quasi-crystals.

There were until recently two supreme unsolved problems in the world of pure mathematics, the proof of Fermat’s Last Theorem and the proof of the Riemann Hypothesis. Twelve years ago, my Princeton colleague Andrew Wiles polished off Fermat’s Last Theorem, and only the Riemann Hypothesis remains. Wiles’ proof of the Fermat Theorem was not just a technical stunt. It required the discovery and exploration of a new field of mathematical ideas, far wider and more consequential than the Fermat Theorem itself. It is likely that any proof of the Riemann Hypothesis will likewise lead to a deeper understanding of many diverse areas of mathematics and perhaps of physics too. Riemann’s zeta-function, and other zeta-functions similar to it, appear ubiquitously in number theory, in the theory of dynamical systems, in geometry, in function theory, and in physics. The zeta-function stands at a junction where paths lead in many directions. A proof of the hypothesis will illuminate all the connections. Like every serious student of pure mathematics, when I was young I had dreams of proving the Riemann Hypothesis. I had some vague ideas that I thought might lead to a proof. In recent years, after the discovery of quasi-crystals, my ideas became a little less vague. I offer them here for the consideration of any young mathematician who has ambitions to win a Fields Medal. Quasi-crystals can exist in spaces of one, two, or three dimensions. From the point of view of physics, the three-dimensional quasi-crystals are the most interesting, since they inhabit our threedimensional world and can be studied experimentally. From the point of view of a mathematician, one-dimensional quasi-crystals are much more interesting than two-dimensional or threedimensional quasi-crystals because they exist in far greater variety. The mathematical definition of a quasi-crystal is as follows.

A quasi-crystal is a distribution of discrete point masses whose Fourier transform is a distribution of discrete point frequencies. Or to say it more briefly, a quasi-crystal is a pure point distribution that has a pure point spectrum. This definition includes as a special case the ordinary crystals, which are periodic distributions with periodic spectra.

Excluding the ordinary crystals, quasi-crystals in three dimensions come in very limited variety, all of them associated with the icosahedral group. The two-dimensional quasicrystals are more numerous, roughly one distinct type associated with each regular polygon in a plane. The twodimensional quasi-crystal with pentagonal symmetry is the famous Penrose tiling of the plane. Finally, the onedimensional quasi-crystals have a far richer structure since they are not tied to any rotational symmetries. So far as I know, no complete enumeration of one-dimensional quasi-crystals exists. It is known that a unique quasi-crystal exists corresponding to every Pisot-Vijayaraghavan number or PV number. A PV number is a real algebraic integer, a root of a polynomial equation with integer coefficients, such that all the other roots have absolute value less than one, [1]. The set of all PV numbers is infinite and has a remarkable topological structure. The set of all one-dimensional quasi-crystals has a structure at least as rich as the set of all PV numbers and probably much  richer. We do not know for sure, but it is likely that a huge universe of one-dimensional quasi-crystals not associated with PV numbers is waiting to be discovered.

Here comes the connection of the onedimensional quasi-crystals with the Riemann hypothesis. If the Riemann hypothesis is true, then the zeros of the zeta-function form a onedimensional quasi-crystal according to the definition. They constitute a distribution of point masses on a straight line, and their Fourier transform is likewise a distribution of point masses, one at each of the logarithms of ordinary prime numbers and prime-power numbers. My friend Andrew Odlyzko has published a beautiful computer calculation of the Fourier transform of the zeta-function zeros, [6]. The calculation shows precisely the expected structure of the Fourier transform, with a sharp discontinuity at every logarithm of a prime or prime-power number and nowhere else.

My suggestion is the following. Let us pretend that we do not know that the Riemann Hypothesis is true. Let us tackle the  problem from the other end. Let us try to obtain a complete enumeration and classification of one-dimensional quasicrystals. That is to say, we  enumerate and classify all point distributions that have a discrete point spectrum. Collecting and classifying new species of objects is a quintessentially Baconian activity. It is an appropriate activity for mathematical frogs. We shall then find the well-known quasi-crystals associated with PV numbers, and also a whole universe of other quasicrystals, known and unknown. Among the multitude of other quasi-crystals we search for one corresponding to the Riemann zeta-function and one corresponding to each of the other zeta-functions that resemble the Riemann zeta-function. Suppose that we find one of the quasi-crystals in our enumeration with properties that identify it with the zeros of the Riemann zeta-function. Then we have proved the Riemann Hypothesis and we can wait for the telephone call announcing the award of the Fields Medal.

These are of course idle dreams. The problem of classifying onedimensional quasi-crystals is horrendously difficult, probably at least as difficult as the problems that Andrew Wiles took seven years to explore. But if we take a Baconian point of view, the history of mathematics is a history of horrendously difficult problems being solved by young people too ignorant to know that they were impossible. The classification of quasi-crystals is a worthy goal, and might even turn out to be achievable. Problems of that degree of difficulty will not be solved by old men like me. I leave this problem as an exercise for the young frogs in the audience.

Adapted from NOTICES OF AMS 2/2009

Blog tại WordPress.com.