Bộ môn Giải tích


2011 in review

Filed under: Không toán học, Vui chơi — doanchi @ 06:16

The WordPress.com stats helper monkeys prepared a 2011 annual report for this blog.

Here’s an excerpt:

The concert hall at the Syndey Opera House holds 2,700 people. This blog was viewed about 8 800 times in 2011. If it were a concert at Sydney Opera House, it would take about 3 sold-out performances for that many people to see it.

Click here to see the complete report.


e*Calendar 4.0: Quyển lịch Bloc bỏ túi dành cho người Việt

Filed under: Không toán học, Tra cứu, Trao đổi, Vui chơi — Ngô Quốc Anh @ 14:52

Mùa Xuân sắp đến, đây cũng là lúc mọi người trang hoàng nhà cửa và mua cho mình một quyển lịch Bloc mới. Tuy nhiên, có một quyển lịch Bloc bạn có thể đem về dùng mà không cần phải trả bất cứ chi phí nào, đó là e*Calendar 4.0, một quyển lịch treo trên desktop với giao diện tiếng Việt thân thiện.

Những tính năng hấp dẫn của e*Calendar 4.0:

  • Tra cứu âm dương lịch từ năm 1901 đến 3001 (1100 năm).
  • Tờ lịch ngày (Bloc) thiết kế theo hình dáng của bloc treo tường thông dụng, có đủ tháng, ngày, giờ âm lịch theo can chi. Cửa sổ xem trăng cho biết chính xác mức độ tròn của mặt trăng hiện hành.
  • Cho phép chọn một ngày bất kỳ trong khoảng thời gian 1100 năm bằng vài thao tác chuột hoặc phím bấm.
  • Hiển thị các ngày lễ, tết, kỷ niệm, sinh nhật… Cho phép người sử dụng tự định nghĩa và sửa đổi những ngày đặc biệt.
  • Cài đặt hệ thống lịch hẹn với tính năng tự động báo giờ.
  • Sổ tay ghi chép.
  • Tùy biến ảnh nền của cuốn lịch.
  • Tùy biến các câu thơ, thành ngữ, tục ngữ… theo định dạng HTML để hiển thị trên Bloc…


Có 2 bản

Bản full (~70 MB): Đầy đủ các tính năng

Bản mini (~10 MB): Không có hình nền, cách ngôn…

→ Sau đó, tải về tính năng cộng thêm nào mình thích:
I. Các bước cài thêm hình nền cho bloc:

1. Download 1 hoặc nhiều bộ hình theo sở thích:

2. Thi hành file vừa download về (Ví dụ “Art.exe”)
3. Nhấp nút BROWSE, chỉ đến thư mục …\imgBloc (mặc định là C:\Program Files\Enter PVH\eCalendar 4.0\imgBloc)
4. Nhấp chuột phải lên biểu tượng “Calendar” trên Taskbar, chọn “Thiết lập cấu hình…”II. Các bước tùy biến dòng chữ (Cách ngôn, ngạn ngữ…) trên bloc:1. Download Text on bloc: RS / UL / FF
2. Xả nén vào thư mục …\HTML (mặc định là C:\Program Files\Enter PVH\eCalendar 4.0\HTML)
3. Dùng các phần mềm chuyên dụng (như FrontPage…) để chỉnh sửa các file *.htm theo ý thích.
(*) Do sơ suất trong đóng gói, khi gọi trợ giúp CT sẽ báo lỗi không tìm thấy file: eCalendar.chm
→ Cách khắc phục:
Sau khi cài đặt xong, vào thư mục trợ giúp (mặc định là: “C:\Program Files\Enter PVH\eCalendar 4.0\Help\“) đổi tên file Calendar.chm thành ECalendar.chm.
Theo Echip và PVH’s Weblog


When is next Thursday?

Filed under: Không toán học, Trao đổi, Vui chơi — Ngô Quốc Anh @ 22:21

Yesterday one of my colleagues circulated an email about a future event, specifying the time as “just before the lab meeting next Thursday”. It set off a whole bundle of confusion (does she mean “The next Thursday we will experience”, or “Thursday of next week”?) and got me thinking about this kind of reference to time.

There are quite a few ways to express a future day of the week: my own variant of English makes a strong distinction between “This Thursday” and “Next Thursday”. The former refers to the next Thursday that will be experienced, while “Next Thursday” is the Thursday that follows “This Thursday”. This is in addition to the simple “Thursday” which is essentially synonymous with “This Thursday”. “This” and “Next” when used with days don’t seem to work the same as “This” and “Next” in other contexts (I would use “This bus” only if it can be seen, otherwise “The next bus” to refer to the bus-equivalent of “This Thursday”), and there are additional constraints. For example, if today is Wednesday (which it is not), it doesn’t sound correct to say “This Thursday” when “Tomorrow” is a possibility (unless I have lost track of which day it is [sadly this is a fairly common occurrence]). So in this circumstance “This Thursday” has been replaced by “Tomorrow” while “Next Thursday” remains “Thursday of next week”. And it also gets awkward once Thursday of a particular week has passed; if today is Friday, “this Thursday” used in a future tense then means “Thursday of next week” (“this Thursday” may also be used in the past tense in order to mean “The previous Thursday”; fortunately English verbs allow this ambiguity to be avoided), but “next Thursday” is much more ambiguous (it could mean “Thursday of next week”, although I still typically use it to mean “the second Thursday in the future”. But the use of “next” for a day 13 days in the future may be a bit much). My distinction between “This” and “Next” does not depend on the boundary between weeks; I would still use “This Monday” to refer to the upcoming Monday even if today is Thursday (which it is not), and “Next Monday” to refer to the following one.

However, other English speakers do not typically use “This Thursday” as I do (I also occasionally use “This coming Thursday” or “This past Thursday”, but this kind of disambiguation is not really necessary). Hence the confusion arising from my cow-orker’s email (She meant “Next Thursday” in the sense in which I use it, but other colleagues misinterpreted it as meaning “This Thursday”). This may be because British English uses “next” differently, thanks to the “week” expression. UK “Thursday week” apparently has the same meaning as my “Next Thursday”, and UK “Next Thursday” has the same meaning as my “This Thursday” (one of OED’s definitions of “week” is “Seven days after the day specified”). Here’s an instance of someone who ran into the next/week problem (The blogger’s user info suggests that this is also a US/UK translation difference); and here is a discussion related to learning English as a second language. It’s unclear to me whether such expressions also apply for a day that has just passed (if today is Wednesday [which it is not], is “Tuesday week” six or 13 days in the future?). Or expressions like “Next Tuesday week” which just make my head spin.

Source: http://newpics.org/david/WhenIsNextThursday.aspx


Birds and Frogs, part 1

Filed under: Giải tích toán học, Trao đổi, Vui chơi — Ngô Quốc Anh @ 00:35

Some mathematicians are birds, others are frogs. Birds fly high in the air and survey broad vistas of mathematics out to the far horizon. They delight in concepts that unify our thinking and bring together diverse problems from different parts of the landscape. Frogs live in the mud below and see only the flowers that grow nearby. They delight in the details of particular objects, and they solve problems one at a time. I happen to be a frog, but many of my best friends are birds. The main theme of my talk tonight is this. Mathematics needs both birds and frogs. Mathematics is rich and beautiful because birds give it broad visions and frogs give it intricate details. Mathematics is both great art and important science, because it combines generality of concepts with depth of structures. It is stupid to claim that birds are better than frogs because they see farther, or that frogs are better than birds because they see deeper. The world of mathematics is both broad and deep, and we need birds and frogs working together to explore it.

This talk is called the Einstein lecture, and I am grateful to the American Mathematical Society for inviting me to do honor to Albert Einstein. Einstein was not a mathematician, but a physicist who had mixed feelings about mathematics. On the one hand, he had enormous respect for the power of mathematics to describe the workings of nature, and he had an instinct for mathematical beauty which led him onto the right track to find nature’s laws. On the other hand, he had no interest in pure mathematics, and he had no technical skill as a mathematician. In his later years he hired younger colleagues with the title of assistants to do mathematical calculations for him. His way of thinking was physical rather than mathematical. He was supreme among physicists as a bird who saw further than others. I will not talk about Einstein skill as a mathematician. In his later years he hired younger colleagues with the title of assistants to do mathematical calculations for him. His way of thinking was physical rather than mathematical. He was supreme among physicists as a bird who saw further than others. I will not talk about Einstein since I have nothing new to say.

Francis Bacon and René Descartes

At the beginning of the seventeenth century, two great philosophers, Francis Bacon in England and René Descartes in France, proclaimed the birth of modern science. Descartes was a bird, and Bacon was a frog. Each of them described his vision of the future. Their visions were very different. Bacon said, “All depends on keeping the eye steadily fixed on the facts of nature.” Descartes said, “I think, therefore I am.” According to Bacon, scientists should travel over the earth collecting facts, until the accumulated facts reveal how Nature works. The scientists will then induce from the facts the laws that Nature obeys. According to Descartes, scientists should stay at home and deduce the laws of Nature by pure thought. In order to deduce the  laws correctly, the scientists will need only the rules of logic and knowledge of the existence of God. For four hundred years since Bacon and Descartes led the way, science has raced ahead by following both paths simultaneously. Neither Baconian empiricism nor Cartesian dogmatism has the power to elucidate Nature’s secrets by itself, but both together have been amazingly successful. For four hundred years English scientists have tended to be Baconian and French scientists Cartesian. Faraday and Darwin and Rutherford were Baconians; Pascal and Laplace and Poincaré were Cartesians. Science was greatly enriched by the cross-fertilization of the two contrasting cultures. Both cultures were always at work in both countries. Newton was at heart a Cartesian, using pure thought as Descartes intended, and using it to demolish the Cartesian dogma of vortices. Marie Curie was at heart a Baconian, boiling tons of crude uranium ore to demolish the dogma of the indestructibility of atoms.

In the history of twentieth century mathematics, there were two decisive events, one belonging to the Baconian tradition and the other to the Cartesian tradition. The first was the International Congress of Mathematicians in Paris in 1900, at which Hilbert gave the keynote address, charting the course of mathematics for the coming century by propounding his famous list of twenty-three outstanding unsolved problems. Hilbert himself was a bird, flying high over the whole territory of mathematics, but he addressed his problems to the frogs who would solve them one at a time. The second decisive event was the formation of the Bourbaki group of mathematical birds in France in the 1930s, dedicated to publishing a series of textbooks that would establish a unifying framework for all of mathematics. The Hilbert problems were enormously successful in guiding mathematical research into fruitful directions. Some of them were solved and some remain unsolved, but almost all of them stimulated the growth of new ideas and new fields of mathematics. The Bourbaki project was equally influential. It changed the style of mathematics for the next fifty years, imposing a logical coherence that did not exist before, and moving the emphasis from concrete examples to abstract generalities. In the Bourbaki scheme of things, mathematics is the abstract structure included in the Bourbaki textbooks. What is not in the textbooks is not mathematics. Concrete examples, since they do not appear in the textbooks, are not mathematics. The Bourbaki program was the extreme expression of the Cartesian style. It narrowed the scope of mathematics by excluding the beautiful flowers that Baconian travelers might collect by the wayside.

Jokes of Nature

For me, as a Baconian, the main thing missing in the Bourbaki program is the element of surprise. The Bourbaki program tried to make mathematics logical. When I look at the history of mathematics, I see a succession of illogical jumps, improbable coincidences, jokes of nature. One of the most profound jokes of nature is the square root of minus one that the physicist Erwin Schrödinger put into his wave equation when he invented wave mechanics in 1926. Schrödinger was a bird who started from the idea of unifying mechanics with optics. A hundred years earlier, Hamilton had unified classical mechanics with ray optics, using the same mathematics to describe optical rays and classical particle trajectories. Schrödinger’s idea was to extend this unification to wave optics and wave mechanics. Wave optics already existed, but wave mechanics did not. Schrödinger had to invent wave mechanics to complete the unification. Starting from wave optics as a model, he wrote down a differential equation for a mechanical particle, but the equation made no sense. The equation looked like the equation of conduction of heat in a continuous medium. Heat conduction has no visible relevance to particle mechanics. Schrödinger’s idea seemed to be going nowhere. But then came the surprise. Schrödinger put the square root of minus one into the equation, and suddenly it made sense. Suddenly it became a wave equation instead of a heat conduction equation. And Schrödinger found to his delight that the equation has solutions corresponding to the quantized orbits in the Bohr model of the atom.

It turns out that the Schrödinger equation describes correctly everything we know about the behavior of atoms. It is the basis of all of chemistry and most of physics. And that square root of minus one means that nature works with complex numbers and not with real numbers. This discovery came as a complete surprise, to Schrödinger as well as to everybody else. According to Schrödinger, his fourteen-year-old girl friend Itha Junger said to him at the time, “Hey, you never even thought when you began that so much sensible stuff would come out of it.” All through the nineteenth century, mathematicians from Abel to Riemann and Weierstrass had been creating a magnificent theory of functions of complex variables. They had discovered that the theory of functions became far deeper and more powerful when it was extended from real to complex numbers. But they always thought of complex numbers as an artificial construction, invented by human mathematicians as a useful and elegant abstraction from real life. It never entered their heads that this artificial number system that they had invented was in fact the ground on which atoms move. They never imagined that nature had got there first.

Another joke of nature is the precise linearity of quantum mechanics, the fact that the possible states of any physical object form a linear space. Before quantum mechanics was invented, classical physics was always nonlinear, and linear models were only approximately valid. After quantum mechanics, nature itself suddenly became linear. This had profound consequences for mathematics. During the nineteenth century Sophus Lie developed his elaborate theory of continuous groups, intended to clarify the behavior of classical dynamical systems. Lie groups were then of little interest either to mathematicians or to physicists. The nonlinear theory of Lie groups was too complicated for the mathematicians and too obscure for the physicists. Lie died a disappointed man. And then, fifty years later, it turned out that nature was precisely linear, and the theory of linear representations of Lie algebras was the natural language of particle physics. Lie groups and Lie algebras were reborn as one of the central themes of twentieth century mathematics.

A third joke of nature is the existence of quasicrystals. In the nineteenth century the study of crystals led to a complete enumeration of possible discrete symmetry groups in Euclidean space. Theorems were proved, establishing the fact that in three-dimensional space discrete symmetry groups could contain only rotations of order three, four, or six. Then in 1984 quasi-crystals were discovered, real solid objects growing out of liquid metal alloys, showing the symmetry of the icosahedral group, which includes five-fold rotations. Meanwhile, the mathematician Roger Penrose discovered the Penrose tilings of the plane. These are arrangements of parallelograms that cover a plane with pentagonal long-range order. The alloy quasi-crystals are three-dimensional analogs of the two-dimensional Penrose tilings. After these discoveries, mathematicians had to enlarge the theory of crystallographic groups to include quasicrystals. That is a major program of research which is still in progress.

A fourth joke of nature is a similarity in behavior between quasi-crystals and the zeros of the Riemann Zeta function. The zeros of the zetafunction are exciting to mathematicians because they are found to lie on a straight line and nobody understands why. The statement that with trivial exceptions they all lie on a straight line is the famous Riemann Hypothesis. To prove the Riemann Hypothesis has been the dream of young mathematicians for more than a hundred years. I am now making the outrageous suggestion that we might use quasi-crystals to prove the Riemann Hypothesis. Those of you who are mathematicians may consider the suggestion frivolous. Those who are not mathematicians may consider it uninteresting. Nevertheless I am putting it forward for your serious consideration. When the physicist Leo Szilard was young, he became dissatisfied with the ten commandments of Moses and wrote a new set of ten commandments to replace them. Szilard’s second commandment says: “Let your acts be directed towards a worthy goal, but do not ask if they can reach it: they are to be models and examples, not means to an end.” Szilard practiced what he preached. He was the first physicist to imagine nuclear weapons and the first to campaign actively against their use. His second commandment certainly applies here. The proof of the Riemann Hypothesis is a worthy goal, and it is not for us to ask whether we can reach it. I will give you some hints describing how it might be achieved. Here I will be giving voice to the mathematician that I was fifty years ago before I became a physicist. I will talk first about the Riemann Hypothesis and then about quasi-crystals.

There were until recently two supreme unsolved problems in the world of pure mathematics, the proof of Fermat’s Last Theorem and the proof of the Riemann Hypothesis. Twelve years ago, my Princeton colleague Andrew Wiles polished off Fermat’s Last Theorem, and only the Riemann Hypothesis remains. Wiles’ proof of the Fermat Theorem was not just a technical stunt. It required the discovery and exploration of a new field of mathematical ideas, far wider and more consequential than the Fermat Theorem itself. It is likely that any proof of the Riemann Hypothesis will likewise lead to a deeper understanding of many diverse areas of mathematics and perhaps of physics too. Riemann’s zeta-function, and other zeta-functions similar to it, appear ubiquitously in number theory, in the theory of dynamical systems, in geometry, in function theory, and in physics. The zeta-function stands at a junction where paths lead in many directions. A proof of the hypothesis will illuminate all the connections. Like every serious student of pure mathematics, when I was young I had dreams of proving the Riemann Hypothesis. I had some vague ideas that I thought might lead to a proof. In recent years, after the discovery of quasi-crystals, my ideas became a little less vague. I offer them here for the consideration of any young mathematician who has ambitions to win a Fields Medal. Quasi-crystals can exist in spaces of one, two, or three dimensions. From the point of view of physics, the three-dimensional quasi-crystals are the most interesting, since they inhabit our threedimensional world and can be studied experimentally. From the point of view of a mathematician, one-dimensional quasi-crystals are much more interesting than two-dimensional or threedimensional quasi-crystals because they exist in far greater variety. The mathematical definition of a quasi-crystal is as follows.

A quasi-crystal is a distribution of discrete point masses whose Fourier transform is a distribution of discrete point frequencies. Or to say it more briefly, a quasi-crystal is a pure point distribution that has a pure point spectrum. This definition includes as a special case the ordinary crystals, which are periodic distributions with periodic spectra.

Excluding the ordinary crystals, quasi-crystals in three dimensions come in very limited variety, all of them associated with the icosahedral group. The two-dimensional quasicrystals are more numerous, roughly one distinct type associated with each regular polygon in a plane. The twodimensional quasi-crystal with pentagonal symmetry is the famous Penrose tiling of the plane. Finally, the onedimensional quasi-crystals have a far richer structure since they are not tied to any rotational symmetries. So far as I know, no complete enumeration of one-dimensional quasi-crystals exists. It is known that a unique quasi-crystal exists corresponding to every Pisot-Vijayaraghavan number or PV number. A PV number is a real algebraic integer, a root of a polynomial equation with integer coefficients, such that all the other roots have absolute value less than one, [1]. The set of all PV numbers is infinite and has a remarkable topological structure. The set of all one-dimensional quasi-crystals has a structure at least as rich as the set of all PV numbers and probably much  richer. We do not know for sure, but it is likely that a huge universe of one-dimensional quasi-crystals not associated with PV numbers is waiting to be discovered.

Here comes the connection of the onedimensional quasi-crystals with the Riemann hypothesis. If the Riemann hypothesis is true, then the zeros of the zeta-function form a onedimensional quasi-crystal according to the definition. They constitute a distribution of point masses on a straight line, and their Fourier transform is likewise a distribution of point masses, one at each of the logarithms of ordinary prime numbers and prime-power numbers. My friend Andrew Odlyzko has published a beautiful computer calculation of the Fourier transform of the zeta-function zeros, [6]. The calculation shows precisely the expected structure of the Fourier transform, with a sharp discontinuity at every logarithm of a prime or prime-power number and nowhere else.

My suggestion is the following. Let us pretend that we do not know that the Riemann Hypothesis is true. Let us tackle the  problem from the other end. Let us try to obtain a complete enumeration and classification of one-dimensional quasicrystals. That is to say, we  enumerate and classify all point distributions that have a discrete point spectrum. Collecting and classifying new species of objects is a quintessentially Baconian activity. It is an appropriate activity for mathematical frogs. We shall then find the well-known quasi-crystals associated with PV numbers, and also a whole universe of other quasicrystals, known and unknown. Among the multitude of other quasi-crystals we search for one corresponding to the Riemann zeta-function and one corresponding to each of the other zeta-functions that resemble the Riemann zeta-function. Suppose that we find one of the quasi-crystals in our enumeration with properties that identify it with the zeros of the Riemann zeta-function. Then we have proved the Riemann Hypothesis and we can wait for the telephone call announcing the award of the Fields Medal.

These are of course idle dreams. The problem of classifying onedimensional quasi-crystals is horrendously difficult, probably at least as difficult as the problems that Andrew Wiles took seven years to explore. But if we take a Baconian point of view, the history of mathematics is a history of horrendously difficult problems being solved by young people too ignorant to know that they were impossible. The classification of quasi-crystals is a worthy goal, and might even turn out to be achievable. Problems of that degree of difficulty will not be solved by old men like me. I leave this problem as an exercise for the young frogs in the audience.

Adapted from NOTICES OF AMS 2/2009


Chúc mừng năm mới Kỷ Sửu 2009

Chúc mừng các thầy cô và các anh em cán bộ Bộ môn Giải tích một năm mới Kỷ Sửu tràn đầy niềm vui, dồi dào sức khỏe, đạt được nhiều và nhiều hơn nữa các thành công trong sự nghiệp và trong cuộc sống.


Chúc các bạn ghé thăm weblog này luôn vui vẻ. Chúng tôi hy vọng sang năm mới các bạn sẽ tìm thấy nhiều điều mới mẻ bổ ích từ đây.



THES – QS World University Rankings 2008

Filed under: Không toán học, Tra cứu, Trao đổi, Vui chơi — Ngô Quốc Anh @ 00:29

Khởi động năm 2009 bài entry về bảng xếp hạng các trường đại học hàng đầu thế giới do THES thống kê.

The Times Higher Education – QS World University Rankings identified these to be the world’s top 100 universities in 2008. These institutions represent 20 countries with Israel represented for the first time. Whilst North America dominates with 42 universities, Europe and Asia Pacific are well represented with 36 and 22 respectively.

2008 2007 School Name Country

Source: QS Quacquarelli Symonds (www.topuniversities.com)
Copyright © 2004-2008 QS Quacquarelli Symonds Ltd.
Click here for copyright and limitations on use.

1 1 HARVARD University United States
2 2= YALE University United States
3 2= University of CAMBRIDGE United Kingdom
4 2= University of OXFORD United Kingdom
5 7= CALIFORNIA Institute of Technology (Calt… United States
6 5 IMPERIAL College London United Kingdom
7 9 UCL (University College London) United Kingdom
8 7= University of CHICAGO United States
9 10 MASSACHUSETTS Institute of Technology (M… United States
10 11 COLUMBIA University United States
11 14 University of PENNSYLVANIA United States
12 6 PRINCETON University United States
13= 13 DUKE University United States
13= 15 JOHNS HOPKINS University United States
15 20= CORNELL University United States
16 16 AUSTRALIAN National University Australia
17 19 STANFORD University United States
18 38= University of MICHIGAN United States
19 17 University of TOKYO Japan
20 12 MCGILL University Canada
21 20= CARNEGIE MELLON University United States
22 24 KING’S College London United Kingdom
23 23 University of EDINBURGH United Kingdom
24 42 ETH Zurich (Swiss Federal Institute of T… Switzerland
25 25 KYOTO University Japan
26 18 University of HONG KONG Hong Kong
27 32 BROWN University United States
28 26 École Normale Supérieure, PARIS France
29 30 University of MANCHESTER United Kingdom
30= 33= National University of SINGAPORE(NUS) Singapore
30= 41 University of CALIFORNIA, Los Angeles (U… United States
32 37 University of BRISTOL United Kingdom
33 29 NORTHWESTERN University United States
34= 33= University of BRITISH COLUMBIA Canada
36 22 University of California, BERKELEY United States
37 31 The University of SYDNEY Australia
38 27 The University of MELBOURNE Australia
39 53= HONG KONG University of Science & Techno… Hong Kong
40 49 NEW YORK University (NYU) United States
41 45 University of TORONTO Canada
42 38= The CHINESE University of Hong Kong Hong Kong
43 33= University of QUEENSLAND Australia
44 46 OSAKA University Japan
45 44 University of NEW SOUTH WALES Australia
46 47 BOSTON University United States
47 43 MONASH University Australia
48 93= University of COPENHAGEN Denmark
49 53= TRINITY College Dublin Ireland
50= 117= Ecole Polytechnique Fédérale de LAUSANNE… Switzerland
50= 36 PEKING University China
50= 51= SEOUL National University Korea, South


HaPpY nEw YeAr 2oog…

Filed under: Không toán học, Trao đổi, Vui chơi — Ngô Quốc Anh @ 21:34

Đong cho đầy Hạnh phúc.
Gói cho trọn Lộc tài.
Giữ cho mãi An Khang.
Thắt cho chặt Phú quý.
Cùng chúc nhau Như ý,
Chúc năm mới Bình An.
Cả nhà đều Sung túc!

¤ø„¸¨°º¤ø„¸ ¸„ø¤º°¨¸„ø¤º


Gương mặt trẻ tiêu biểu cấp Đại học Quốc gia Hà Nội năm 2008

Filed under: Toán học, Tra cứu, Trao đổi, Vui chơi — Ngô Quốc Anh @ 04:30

Nhân dịp kỷ niệm 15 năm ngày thành lập ĐHQGHN, ngày 10/12/2008 tại hội trường Lê Văn Thiêm, 19 Lê Thánh Tông đã diễn ra Lễ tuyên Gương mặt trẻ tiêu biểu ĐHQGHN 2008. Đây là hoạt động thường niên được tổ chức hàng năm của ĐHQGHN. GS.TS. Mai Trọng Nhuận – Giám đốc ĐHQGHN và các đồng chí lãnh đạo ĐHQGHN và các đơn vị trực thuộc đã về dự buổi lễ.

Vượt qua hơn 1.300 cá nhân ưu tú đạt danh hiệu “Gương mặt trẻ tiêu biểu” cấp cơ sở, 150 gương mặt trẻ tiêu biểu đại diện cho gần 50.000 học sinh, sinh viên, học viên cao học, nghiên cứu sinh và hàng trăm cán bộ trẻ của ĐHQGHN đã vinh dự nhận danh hiệu này. Trong số đó có 23 học sinh khối phổ thông chuyên, 91 sinh viên và 36 cán bộ trẻ. Đặc biệt có 5 cá nhân được nhận danh hiệu Gương mặt trẻ tiêu biểu cấp ĐHQGHN lần thứ ba trở lên, 20 cá nhân đuợc nhận danh hiệu này lần thứ hai. Bên cạnh đó, Giám đốc ĐHQGHN cũng tặng bằng khen cho 7 gương mặt trẻ tiêu biểu đợt này.

Phát biểu tại buổi lễ, Giám đốc Mai Trọng Nhuận đã ghi nhận và biểu dương những thành quả mà thế hệ trẻ ĐHQGHN đã đạt được trong năm học vừa qua trong học tập, nghiên cứu khoa học, giảng dạy và rèn luyện đạo đức. Giám đốc chúc mừng những cá nhân đã vinh dự được nhận danh hiệu “Gương mặt trẻ tiêu biểu cấp ĐHQGHN năm 2008” đồng thời bày tỏ niềm tin tưởng những gương mặt trẻ tiêu biểu được vinh danh ngày hôm nay sẽ tiếp tục đóng góp trí tuệ, sức lực để cùng với toàn ĐHQGHN thực hiện thắng lợi Nghị quyết 14 của Chính phủ về đổi mới toàn diện giáo dục đại học Việt Nam; sự chỉ đạo của Thủ tướng Chính phủ Nguyễn Tấn Dũng về phát triển hai ĐHQG sớm đạt trình độ quốc tế; sự tin tưởng của Ủy viên Bộ Chính trị, Bí thư Trung ương Đảng, Trưởng ban Tổ chức Trung ương Hồ Đức Việt về sự phát triển cao hơn (Trình độ cao – Chất lượng cao – Nghiên cứu khoa học đỉnh cao – Đáp ứng cao yêu cầu của sự nghiệp đổi mới đất nước) và nhanh hơn (nhanh chóng đạt trình độ khu vực, quốc tế) để đưa ĐHQGHN nhanh chóng trở thành trung tâm đào tạo đại học, sau đại học và nghiên cứu, ứng dụng, chuyển giao khoa học – công nghệ đa ngành, đa lĩnh vực, chất lượng cao, ngang tầm các đại học tiên tiến trong khu vực, từng bước tiến tới đạt trình độ quốc tế.

Trong số 150 gương mặt trẻ tiêu biểu có 78 gương mặt là của trường ĐHKHTN, chiếm 52%.

Năm nay chi đoàn cán bộ Khoa Toán – Cơ – Tin học có các đồng chí sau được vinh dự nhận danh hiệu trong lễ tuyên dương này:

  1. TS. Lê Huy Chuẩn – tổ Giải tích.
  2. TS. Đặng Anh Tuấn – tổ Giải tích.
  3. ThS. Ninh Văn Thu – tổ Giải tích.
  4. CN. Đào Phương Bắc – tổ Đại số – Hình học – Tôpô.
  5. ThS. Vũ Tuấn Anh – tổ Văn phòng.

Nhiệt liệt chúc mừng các đồng chí L.H. Chuẩn, Đ.A. Tuấn và N.V. Thu.
Source: http://hus.edu.vn/News/NewsContent.asp?g1=NG01000300010001&g2=524&NewsPerPageG5=5&Status=1


Thầy Xoa nghỉ hưu..

Filed under: Không toán học, Phim ảnh, Trao đổi, Vui chơi — Ngô Quốc Anh @ 14:50


Đây là toàn bộ ảnh buổi liên hoan Bộ môn kỷ niệm thầy Xoa nghỉ hưu:

Chế độ Slideshow:

Chế độ bình thường:


Làm thử một cái poll xem sao.

Filed under: Không toán học, Toán học, Trao đổi, Vui chơi — doanchi @ 03:55

Vừa được WP giới thiệu tiện ích làm poll, tớ thử làm một cái xem sao. Chúc cả nhà vui vẻ và vote thử nhé.


Liên hoan chi tay NQAnh, Hà Nội 07/2008…

Filed under: Không toán học, Phim ảnh, Trao đổi, Vui chơi — Ngô Quốc Anh @ 20:01

Hôm nay mới cover được mấy tấm hình này.


Từ trái qua: N.Đ. Mạnh, C.V. Tiệp, Đ.A. Tuấn, N.V. Thu, L.H. Chuẩn V.N. Huy


Từ trái qua: N.Đ. Mạnh, C.V. Tiệp, Đ.A. Tuấn, N.V. Thu, V.N. Huy và N.Q. Anh.

Hôm đó anh H. Tùng có việc riêng nên không đến được. Anh em BMGT giờ cũng đã đông hơn, 3 thành viên mới được bổ sung từ năm học 08-09 này.

Hẹn mọi người một thời điểm nào đó thích hợp, tất cả chúng ta hãy có mặt, lúc đó chắc là vui vẻ lắm nhỉ? Ảnh cũng được phải không mọi người?


BMGT ở Nha Trang tháng 7/08…

Filed under: Phim ảnh, Vui chơi — Ngô Quốc Anh @ 00:21








Ảnh đẹp thật.. hì 🙂


Chúc mừng năm học mới

Filed under: Toán học, Trao đổi, Vui chơi — doanchi @ 20:48

Năm học mới 2008-2009 đã bắt đầu. Anh em cán bộ trẻ BMGT xin chúc các thày cô và các bạn sinh viên có một năm học thành công và luôn mạnh khỏe.

Anh em mình cũng phải chúc nhau như thế chứ nhỉ. Chúc cho bộ môn luôn phát triển.


Tốc độ mạng VNU..

Filed under: Không toán học, Trao đổi, Vui chơi — Ngô Quốc Anh @ 15:57

Đây là tốc độ nhanh nhất của mạng VNU.

Đúng là không kém ở đâu cả đúng không?



Filed under: Không toán học, Không định dạng, Phim ảnh, Vui chơi — Ngô Quốc Anh @ 13:11


Thật là thú vị 🙂


Yahoo! Mail bị sao thế nhỉ?

Filed under: Không toán học, Không định dạng, Trao đổi, Vui chơi — Ngô Quốc Anh @ 22:07


Hê hê, không hiểu vì sao nữa…


Mùng Ba

Filed under: Không toán học, Trao đổi, Vui chơi — doanchi @ 18:21

Pháo hoa năm mới

(ảnh chỉ mang tính chất minh hoạ, lấy tại đây)

Hôm nay là ngày mùng Ba Tết, ngày mà theo truyền thống là “ngày Lễ Thầy”. Năm nay anh em Bộ môn Giải tích ở Hà Nội không đông, chỉ có ba người. Chúc các thầy cô của Bộ môn Giải tích một năm mới An Khang Thịnh Vượng, dồi dào sức khoẻ, niềm vui và tận hưởng cuộc sống xung quanh mình. Chúc cho Bộ môn ngày một lớn mạnh và phát triển.


Lấy anh nào đây?

Filed under: Không toán học, Vui chơi — Ngô Quốc Anh @ 20:43

Lấy anh nào đây?

Em muốn lấy anh khí tượng thủy văn…… nhưng người đâu… toàn tính chuyện mây mưa.

Em muốn lấy anh đầu bếp……. nhưng anh ấy……… hay đòi nếm trước.

Em muốn lấy anh thuế vụ …..nhưng anh ấy ………hay đòi xuống đòi lên.

Em không chê anh bán vé số nghèo hèn…….. nhưng sợ anh ………hay cào hay bóc.

Em muốn làm vợ anh uốn tóc …….nhưng ngán bị …….đè cổ đè đầu.

Em tính chọn kho bạc làm dâu ……..nhưng sợ anh hay……….. săm soi thiệt giả….

==> Vậy em lấy anh IT đê, ảnh chỉ biết sờ, ngắm ….và cắm USB thui …


Ôi Việt Nam..!

Filed under: Không toán học, Vui chơi — Ngô Quốc Anh @ 20:42

Việt Nam đang nắm giữ một số kỷ lục thế giới:

1/ Người nghèo nhất: Chử Đồng Tử ( 2 cha con có mỗi một chiếc khố mặc chung).

2/Ca sinh sản vô tính đầu tiên : Mẹ của Thánh Gióng.

3/ Người có cái chết độc đáo nhất: Từ Hải.

4/Người đàn ông đầu tiên có sữa cho trẻ em bú ở Việt Nam: Ông Thọ.

5/Người quái thai dị dạng nhất ViệtNam: Sọ Dừa.

6/Cascader đầu tiên của Việt Nam: Lê Lai.

7/ Món hàng đặc biệt nhất mà Hàn Mặc Tử dám rao bán là : Trăng .

8/ Việt Nam là nước giàu nhất hành tinh: Vì có “Rừng vàng, biển bạc” :

9/ Việt Nam là nước đưa người lên mặt trăng đầu tiên: chú cuội <— đã đăng ký bản quyền


Bill Gates’ last day in Microsoft

Filed under: Không toán học, Phim ảnh, Vui chơi — doanchi @ 02:12

Just for fun, and to prove that WordPress can embed YouTube

Older Posts »

Blog tại WordPress.com.