Bộ môn Giải tích

Publications

Các công trình gần đây của các cán bộ trẻ của BMGT (sắp xếp theo năm công bố trên bài báo, những bài nhận đăng năm nay có thể được chuyển vào năm sau nếu bài ra ở năm sau).

2017

  1. P.T. Tien, Translation operators on weighted spaces of entire functions, Proceedings of the American Mathematical Society 145 (2017), pp. 805-815.
  2. N.T. Dung, p-harmonic \ell-forms on Riemannian manifolds with a weighted Poincare inequality, Nonlinear Analysis: Theory, Methods and Applications 150 (2017), pp. 138-150.

2016

  1. H.H. Bang, V.N. Huy, A Bohr-Nikol’skii inequalityIntegral Transforms and Special Functions 27 (2016), pp. 55-63.
  2. Q.A. Ngo, Einstein constraint equations on Riemannian manifolds, Analysis around scalar curvatures, 119-210. Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 31, World Sci. Publ., Hackensack, NJ, 2016.
    http://dx.doi.org/10.1142/9789813100558_0003
  3. H.H. Bang, V.N. Huy, A study of the sequence of norm of derivatives (or primitives) of functions depending on their Beurling spectrum, Vietnam Journal of Mathematics 44 (2016), pp. 419-429.
  4. A. Hayashimoto, N.V. Thu, Infinitesimal CR automorphisms and stability groups of infinite type models in \mathbb C^2, Kyoto Journal of Mathematics 56 (2016), pp. 441-464.
  5. N.T. Huy, T.V. Duoc, D.X. Khanh, Attraction property of admissible integral manifolds and applications to Fisher-Kolmogorov model, Taiwanese Journal of Mathematics 20 (2016), pp. 365–385.
  6. N.V. Thu, M.A. Duc, On the automorphism groups of models in \mathbb C^2, Acta Mathematica Vietnamica 41 (2016), no. 3, pp. 457-470.
  7. N.T. Dung, N.D. Dat, Local and global sharp gradient estimates for weighted p-harmonic functions, Journal of Mathematical Analysis and Applications 443 (2016), pp. 959–980.
  8. T.V. Khanh, N.V. Thu, Iterates of holomorphic self-maps on pseudoconvex domains of finite and infinite type in \mathbb C^n, Proceedings of the American Mathematical Society 144 (2016), pp. 5197–5206.
  9. N.T. Dung, Rigidity of immersed submanifolds in a hyperbolic space, Bulletin of the Korean Mathematical Society 53 (2016), pp. 1795-1804.
    _________________________________________________
  10. Q.A. Ngo, V.H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on the half space \mathbb R_+^n, to appear in International Mathematics Research Notices (IMRN).
  11. N.T. Dung, Rigidity properties of smooth metric measure spaces via the weighted p-Laplacian, to appear in Proceedings of the American Mathematical Society, 2016.
  12. Q.A. Ngo, V.H. Nguyen, Sharp reversed Hardy-Littlewood-Sobolev inequality on \mathbb R^n, to appear in Israel Journal of Mathematics.
  13. N.V. Thu, N.N. Khanh, A note on uniqueness boundary of holomorphic mappings, to appear in Complex Variables and Elliptic Equations.
  14. T.V. Duoc, Q.A. Ngo, On radial solutions of \Delta^2 u + u^{-q} = 0 in \mathbb R^3 with exactly quadratic growth at infinity, to appear in Differential and Integral Equations.
  15. B.V. Binh, N.T. Dung, N.T.L. Hai, p-harmonic functions on complete manifolds with weighted Poincare inequality, to appear in Kodai Mathematical Journal.
  16. N.V. Thu, to appear in JMAA.
  17. N.T. Dung, Keomkyo Seo, p-harmonic functions and connectedness at infinity of complete Riemannian manifolds, to appear in Annali Matematica Pura ed Applicata.
  18. P.T. Tien, to appear.

2015

  1. A.V. Abanina, P.T. Tien, The algebraic equalities and their topological consequences in weighted spaces, Journal of Mathematical Analysis and Applications 422 (2015), pp. 435-445.
  2. N.T. Dung, Keomkyo Seo, Vanishing theorems for L^2 harmonic 1-forms on complete submanifolds in a Riemannian manifold, Journal of Mathematical Analysis and Applications 423 (2015), pp. 1594-1609.
  3. K.-T. Kim, N.V. Thu, On the tangential holomorphic vector fields vanishing at an infinite type point, Transactions of the American Mathematical Society 367 (2015), pp. 867-885.
  4. Q.A. Ngo, X. Xu, Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the null case, Communications in Mathematical Physics 334 (2015), pp. 193-222.
  5. N.T. Huy, T.V. Duoc, Unstable manifolds for partial functional differential equations in admissible spaces on the whole line, Vietnam Journal of Mathematics 43 (2015), pp. 37-55.
  6. H.H. Bang and V.N. Huy, Some extensions of the Kolmogorov-Stein inequality, Vietnam Journal of Mathematics 43 (2015), pp. 173-179.
  7. Q.A. Ngo, H. Zhang, Prescribed Webster scalar curvature on compact CR manifolds with negative conformal invariants, Journal of Differential Equations 258 (2015), pp. 4443-4490.
  8. N.V. Thu, On the CR automorphism group of a certain hypersurface of infinite type in \mathbb C^2, Complex Variables and Elliptic Equations 60 (2015), pp. 977-991.
  9. D.D. Thai, M.A. Duc, N.V. Thu, On limit Brody curves in \mathbb C^n and (\mathbb C^\star)^2, Kyushu Journal of Mathematics 69 (2015), pp. 111-123.
  10. H.H. Bang, V.N. Huy, Estimate the sequence of norm of primitives of functions in Orlicz spaces through their spectrum, Tokyo Journal of Mathematics 38 (2015), pp. 283-308.
  11. N.T. Dung, N.N. Khanh, Gradient estimates of Hamilton-Souplet-Zhang type for a general heat equation on Riemannian manifolds, Archiv der Mathematik 105 (2015), pp. 479-490.
  12. F. Berteloot, N.V. Thu, On the existence of parabolic actions of convex domains in \mathbb C^{n+1}, Czechoslovak Mathematical Journal 65 (2015), pp. 579-585.

2014

  1. Hyeseon Kim, Van Thu Ninh, Atsushi Yamamori, The automorphism group of a certain unbounded non-hyperbolic domain, Journal of Mathematical Analysis and Applications 409 (2014), pp. 637-642.
  2. N.T. Huy, T.V. Duoc, Integral manifolds for partial functional differential equations in admissible spaces on a half-line, Journal of Mathematical Analysis and Applications 411 (2014), pp. 816-828.
  3. Keonhee Lee, Le Huy Tien, Xiao Wen, Robustly shadowable chain components of C^1 vector fields, Journal of the Korean Mathematical Society 51 (2014), pp. 17-53.
  4. T.T. Phong, Decorrelation estimates for a 1D tight binding model in the localized regime, Annales Henri Poincaré 15 (2014), pp. 469-499.
  5. N.T. Dung, Chiung-Jue Sung, Manifolds with a weighted Poincaré inequality, Proceedings of the American Mathematical Society 142 (2014), pp. 1783-1794.
  6. V.N. Huy, Q.A. Ngo, A new Ostrowski-Gruss inequality involving 3n knots, Applied Mathematics and Computation 235 (2014), pp. 272-282.
  7. N.T. Dung, N.T. Le Hai, N.T. Thanh, Eigenfunctions of the weighted Laplacian and a vanishing theorem on gradient steady Ricci soliton, Journal of Mathematical Analysis and Applications 416 (2014), 553-562.
  8. Q.A. Ngo, X. Xu, Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds in the positive case, Bull. Inst. Math. Acad. Sin. (N.S.) 9 (2014), pp. 451-485. [This is the fourth and last part of the special issue in the Bulletin dedicated to Prof. Trudinger on the occasion of his 70th birthday, edited by Sun-Yung Alice Chang, Nicola Fusco, Tai-Ping Liu, and Alan McIntosh.]
  9. R. Gicquaud, Q.A. Ngo, On the far from constant mean curvature solutions to the Einstein constraint equations, Class. Quantum Grav. 31 (2014), 195014 (20pp).

2013

  1. H. Tung, H.J. Hwang, Turing instability in a general system, Nonlinear Analysis: Theory, Methods & Applications 91 (2013), pp. 93-113.
  2. N.T. Dung, Chiung Jue Anna Sung, Smooth metric measure spaces with weighted Poincaré inequality, Mathematische Zeitschrift 273 (2013), pp. 613-632.
  3. V.N. Huy, Q.A. Ngo, Some new results on the Fejér and Hermite-Hadamard inequalities, Rocky Mountain J. Math. 43 (2013), pp. 1625-1636.
  4. T.T. Dat, J. Hofrichter, J. Jost, An introduction to the mathematical structure of the Wright–Fisher model of population genetics, Theory in Biosciences 132 (2013), pp. 73-82.

2012

  1. Q.A. Ngo, X. Xu, Existence results for the Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Advances in Mathematics 230 (2012), pp. 2378-2415.
  2. N.T. Huy, T.V. Duoc, Integral manifolds and their attraction property for evolution equations in admissible function spaces, Taiwanese Journal of Mathematics 16 (2012), pp. 963-985.
  3. N.V. Thu, C.V. Tiep, On the nonexistence of parabolic boundary points of certain domains in \mathbb C^2, Journal of Mathematical Analysis and Applications 389 (2012), pp. 908–914.
  4. P.V. Hai, Two new approaches to Barbashin theorem, Dynamics of Continuous, Discrete and Impulsive Systems: Series A: Mathematical Analysis 19 (2012), pp. 773–798.

2011

  1. H. Tung, H.J. Hwang, Dynamic pattern formation in Swift-Hohenberg equations, Quarterly of Applied Mathematics 69 (2011), no. 3, pp. 603-612.
  2. V.N. Huy, Q.A. Ngo, New bounds for the Ostrowski-like type inequalities, Bulletin of the Korean Mathematical Society 48 (2011), pp. 95-104.
  3. H.H. Bang, V.N. Huy, Behavior of the sequence of norms of primitives of a function in Orlicz spaces, East Journal on Approximations 17 (2011), no. 2, 141–150.
  4. H.H. Bang, V.N. Huy, Behavior of the sequence of norm of primitives of functions depending on their spectrum, Doklady Akademii Nauk 440 (2011), pp. 456-458.
  5. H.H. Bang, N.V. Hoang, V.N. Huy, Best constants for the inequalities between equivalent norms in Orlicz spacesBulletin of the Polish Academy of Sciences Mathematics 59 (2011), no. 2, 165–174.
  6. V.N. Huy, N.T. Chung, Some generalizations of the Fejér and Hermite-Hadamard inequalities in Hölder spaces, Journal of Applied Mathematics & Informatics 29 (2011), no. 3-4, 859–868.
  7. P.V. Hai, On two theorems regarding exponential stability, Applicable Analysis and Discrete Mathematics 5 (2011), no. 2, 240–258.
  8. P.V. Hai, Discrete and continuous versions of Barbashin-type theorem of linear skew-evolution semiflows, Applicable Analysis 90 (2011), no. 12, 1897–1907.
  9. P.V. Hai, L.N. Thanh, The uniform exponential stability of linear skew-product semiflows on real Hilbert space, Mathematical Journal of Okayama University 53 (2011), pp. 173–183.
  10. Faker Ben Belgacem, Du Duc Thang, Faten Jelassi, Extended-domain-Lavrentiev’s regularization for the Cauchy problem, Inverse Problems 27 (2011), no. 4, 045005, 27 pp.
  11. D.D. Thai, N.V. Thu, The second main theorem for hypersurfaces, Kyushu Journal of Mathematics 65 (2011), no. 2, pp. 219–236.

2010

  1. W.J. Liu, Q.A. Ngo, An Ostrowski type inequality on time scales for functions whose second derivatives are bounded, Inequality Theory and Applications Vol. 6, Nova Science Pub Inc, 2010, pp. 133-141. ISBN: 978-1616686253.
  2. H.H. Bang, V.N. Huy, Behavior of the sequence of norm of primitives of a function, J. Approximation Theory 162 (2010), 1178-1186.
  3. V.N. Huy, Q.A. Ngo, On an Iyengar-type inequality involving quadratures in n knots, Applied Mathematics and Computation 217 (2010), pp. 289-294.
  4. W.J. Liu, Q.A. Ngo, Some Iyengar-type inequalities on time scales for functions whose second derivatives are bounded, Applied Mathematics and Computation 216 (2010), pp. 3244-3251.
  5. V.N. Huy, Q.A. Ngo, New inequalities of Simpson-like type involving n knots and the m-th derivativeMathematical and Computer Modelling 52 (2010), pp. 522-528.
  6. V.N. Huy, Q.A. Ngo, A new way to think about Ostrowski-like type inequalities, Computers & Mathematics with Applications 59 (2010), pp. 3045-3052.
  7. W.J. Liu, Q.A. Ngo, W.B. Chen, On new Ostrowski type inequalities for double integrals on time scalesDynamic Systems and Applications 19 (2010), pp. 189-198.
  8. P.V. Hai, Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows, Nonlinear Analysis: Theory, Methods & Applications 72 (2010), pp. 4390-4396.
  9. N.T. Chung, Q.A. Ngo, Multiple solutions for a class of quasilinear elliptic equations of p(x)-Laplacian type with nonlinear boundary conditionsProceedings of the Royal Society of Edinburgh, Section: A 140 (2010), pp. 259-272.
  10. P.V. Hai, An extension of P.Preda, A.Pogan, C.Preda, Timisoara’s theorems for the uniformly exponential stability of linear skew-product semiflows, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 53 (2010), pp. 69-83.
  11. W.J. Liu, Q.A. Ngo, W.B. Chen, Ostrowski type inequalities on time scales for double integrals, Acta Applicandae Mathematicae 110 (2010), pp. 477-497.
  12. P.V. Hai, The relation between the uniform exponential dichotomy and the uniform admissibility of the pair (l^p,l^q) on ⊝Asian-European Journal of Mathematics 3(4) (2010), pp.593-605.
  13. N.T. Huy, T.V. Duoc, Robustness of exponential dichotomy of evolution equations under admissible perturbations on a half-line, International Journal of Evolution Equations 5(3) 2010, pp.281-298.

2009

  1. Y. Egorov, N.M. Chuong, D.A. Tuan, On a semilinear boundary value problem for degenerate parabolic pseudodifferential equations, Doklady Akademii Nauk 427 (2009), no. 2, pp. 155-159.
  2. Y. Egorov, N.M. Chuong, D.A. Tuan, A semilinear elliptic boundary value problem for degenerate pseudodifferential equations, Doklady Akademii Nauk 427 (2009), no. 1, pp. 10-13.
  3. P.V. Hai, Some results about uniform exponential stability of linear skew-evolution semiflows, International Journal of Evolution Equations 4(3) (2009), pp. 27-40.
  4. N.V. Thu, A remark on the Kim’s theorem, Acta Mathematica Vietnamica 34(2) (2009), pp. 285-297.
  5. D.D. Thai, N.V. Thu, Characterization of domains in \mathbb C^n by their noncompact automorphism groupsNagoya Mathematical Journal 196 (2009), pp. 1-26.
  6. W.J. Liu, Q.A. Ngo, W.B. Chen, A new generalization of ostrowski type inequality on time scales, Analele stiintifice ale Universitatii Ovidius Constanta: Seria Mathematica 17 (2009), pp. 101-114.
  7. V.N. Huy, Some continuous properties of norm in Orlicz-Lorentz spaces, Vietnam Journal of Mathematics 37 (2009), pp. 503-514.
  8. C.T. Anh, T.T. Phong, Global attractor for a semilinear parabolic system, Vietnam Journal of Mathematics 37 (2009), pp. 49-69.
  9. H.H. Bang, V.N. Huy, On the limit of norm of consecutive primitives of a functionEast Journal on Approximations 15 (2009), pp. 111-122.
  10. W.J. Liu, Q.A. Ngo, An Ostrowski-Gruuss type inequality on time scales, Computers & Mathematics with Applications 58 (2009), pp. 1207-1210.
  11. N.T. Chung, Q.A. Ngo, A multiplicity result for a class of equations of p-Laplacian type with sign-changing nonlinearities, Glasgow Mathematical Journal 51 (2009), pp. 513-524.
  12. N.V. Thu, Characterization of linearly convex domains in \mathbb C^n by their noncompact automorphism groups, Vietnam Journal of Mathematics 37:1 (2009), pp. 67-79.
  13. Do Duc Thai and Ninh Van Thu, Geometry of domains in \mathbb C^n with noncompact automorphism groups, Vietnam Journal of Mathematics 37:2&3 (2009), pp. 1-12.
  14. H.Q. Toan, Q.A. Ngo, Existence of positive solution for system of quasilinear elliptic systems on a bounded domainWorld Journal of Modelling and Simulation 5 (2009), pp. 211-215.
  15. W.J. Liu, Q.A. Ngo, V.N. Huy, Several interesting integral inequalities, Journal of Mathematical Inequalities 3 (2009), pp. 201–212.
  16. V.N. Huy, Q.A. Ngo, New Inequalities of Ostrowski-like type involving n knots and the L^p-norm of the m-th derivative, Applied Mathematics Letters 22 (2009), pp. 1345-1350.
  17. Q.A. Ngo, Some mean value theorems for integrals on time scales, Applied Mathematics and Computation 213 (2009), pp. 322-328.
  18. Q.A. Ngo, H.Q. Toan, Some remarks on a class of nonuniformly elliptic equations of p-Laplacian type, Acta Applicandae Mathematicae 106 (2009), pp. 229–239.
  19. Q.A. Ngo, Existence results for a class of non-uniformly elliptic equations of p-Laplacian typeAnalysis and Applications 7 (2009), pp. 185-197.
  20. Q.A. Ngo, W.J. Liu, A sharp Gruss type inequality on time scales and application to the sharp Ostrowski-Gruss inequalityCommunications in Mathematical Analysis 6 (2009), pp. 33-41.
  21. L.H. Chuan, T. Tsujikawa, A. Yagi, Stationary solutions to forest equations, Glasgow Mathematical Journal 51 (2009), pp. 1-17.
  22. H.Q. Toan, Q.A. Ngo, Multiplicity of weak solutions for a class of nonuniformly elliptic equations of p-Laplacian type, Nonlinear Analysis: Theory, Methods & Applications 70 (2009), pp. 1536-1546.

2008

  1. W.J. Liu, Q.A. Ngo, W.B. Chen, A perturbed Ostrowski type inequality on time scales for k points for functions whose second derivatives are bounded, Journal of Inequalities and Applications, Volume 2008, Article ID 597241, 12 pages, DOI:10.1155/2008/597241.
  2. L. Cardoulis, Q.A. Ngo, H.Q. Toan, Existence of non-negative solutions for cooperative elliptic systems involving Schrodinger operators in the whole spaceRostocker Mathematisches Kolloquium 63 (2008), pp 63-77.
  3. T. Shirai, L.H. Chuan, A. Yagi, Stationary solutions for forest kinematic model under Dirichlet conditions, Scientiae Mathematicae Japonicae 67 (3) (2008), pp. 319-328.
  4. Q.A. Ngo, H.Q. Toan, Existence of solutions for a resonant problem under Landesman-Lazer conditions, Electronic Journal of Differential Equations, Vol. 2008(2008), No. 98, pp. 1-10.
  5. C.T. Anh, P.Q. Hung, T.D. Ke, T.T. Phong, Global attractor for a semilinear parabolic equation involving Grushin operator, Electronic Journal of Differential Equations, Vol. 2008(2008), No. 32, pp. 1-11.
  6. Y.V. Egorov, N.M. Chuong, D.A. Tuan, Semilinear boundary value problems for degenerate pseudodifferential operators in spaces of Sobolev typeRussian Journal of Mathematical Physics 15 (2008), pp. 222-237.
  7. W.J. Liu, Q.A. Ngo, A generalization of Ostrowski inequality on time scales for k points, Applied Mathematics and Computation 203 (2008), pp. 754-760.
  8. L.H. Chuan, N.V. Mau, N.M. Tuan, On a class of singular integral equations with the linear fractional Carleman shift and the degenerate kernel, Complex Variables and Elliptic Equations 53 (2) (2008), pp. 117-137.

2007

  1. N.H. Du, L.H. Tien, On the Exponential Stability of Dynamic Equations on Time Scales, Journal of Mathematical Analysis and Applications 331 (2007), pp. 1159–1174.
  2. N.M. Chuong, D.A. Tuan, A semilinear nonclassical pseudodifferential boundary value problem in Sobolev spaces H\sb {l,p},1<p<\infty., Advances in deterministic and stochastic analysis, World Sci. Publ., Hackensack, NJ, p. 15-32, 2007.
  3. Q.A. Ngo and P.H. Tung, Notes on an Open Problem of F. Qi and Y. Chen and J. Kimball, Journal of Inequalities in Pure and Applied Mathematics., vol. 8, no. 2, p. 42, 2007.
  4. N.V. Minh, T.T. Dat, On the almost automorphy of bounded solutions of differential equations with piecewise constant argument, Journal of Mathematical Analysis and Applications 326 (1) (2007), pp. 165-178.
  5. T. Shirai, L.H. Chuan, A. Yagi, Dynamical system for forest kinematic model under Dirichlet conditions, Scientiae Mathematicae Japonicae 66 (2) (2007), pp. 275-288.
  6. T. Shirai, L.H. Chuan, A. Yagi, Asymptotic behavior of solutions for forest kinematic model under Dirichlet conditions, Scientiae Mathematicae Japonicae 66 (2) (2007), pp. 289-301.
  7. Q.A. Ngo, F. Qi, N.V. Thu, New generalizations of an integral inequalityReal Analysis Exchange 33 (2) (2007), pp. 471-474.

2006

  1. Q.A. Ngo, D.D. Thang, T.T. Dat, and D.A. Tuan, Notes on an Integral Inequality, Journal of Inequalities in Pure and Applied Mathematics 7, no. 4, p. 121, 2006.
  2. Y.V. Egorov, N.M. Chuong and D.A. Tuan, Nonclassical semilinear boundary value problem for parabolic pseudodifferential equations in Sobolev spaces, Doklady Akademii Nauk 411 (6) (2006), pp. 732-735.
  3. L.H. Chuan, A. Yagi, Dynamical system for forest kinematic modelAdvances in Mathematical Sciences and Applications 16 (2006), pp. 393-409.
  4. L.H. Chuan, T. Tsujikawa, and A. Yagi, Asymptotic behavior of solutions for forest kinetic equationsFunkcialaj Ekvacioj 49 (2006), pp. 427-449.

2005

  1. D.D. Thang, N.V. Minh, Invariant manifolds of fully nonlinear evolution equations, International Journal of Evolution Equations 1 (1) (2005), pp. 81-90.
  2. T.T. Dat, On the existence of almost periodic, periodic and quasi-periodic solutions of neutral differential equations with piecewise constant arguments, International Journal of Evolution Equations 1 (2) (2005), pp. 121-135.
  3. Q.A. Ngo, An application of the Lyapunov-Schmidt method to semilinear elliptic problems, Electronic Journal of Differential Equations, Vol. 2005(2005), No. 129, pp. 1-11.

2004

  1. Y.V. Egorov, N.M. Chuong, D.A. Tuan; T.T. Kiet, Non-classical pseudodifferential boundary value problems in Sobolev spaces H\sb {l,p}, $latex 1
    , Abstract and applied analysis, World Sci. Publ., River Edge, NJ, p. 95–124, 2004.

2003

  1. Y.V. Egorov, N.M. Chuong, D.A. Tuan, A semilinear non-classical pseudodifferential boundary value problem in the Sobolev spaces, Comptes Rendus Mathematique 337 (7) (2003), pp. 451-456.
  2. L.H. Chuan, N.M. Tuan, On singular integral equations with the Carleman shifts in the case of the vanishing coefficient, Acta Mathematica Vietnamica 28 (3) (2003), pp. 319-333.

1 Phản hồi »

  1. Hoành tráng nhỉ. Năm 2008 Quốc Anh và Chuẩn viết và đăng được nhiều thật. Anh em cố gắng nhé.

    Phản hồi bởi doanchi — 15/06/2008 @ 01:06


RSS feed for comments on this post. TrackBack URI

Gửi phản hồi

Mời bạn điền thông tin vào ô dưới đây hoặc kích vào một biểu tượng để đăng nhập:

WordPress.com Logo

Bạn đang bình luận bằng tài khoản WordPress.com Log Out / Thay đổi )

Twitter picture

Bạn đang bình luận bằng tài khoản Twitter Log Out / Thay đổi )

Facebook photo

Bạn đang bình luận bằng tài khoản Facebook Log Out / Thay đổi )

Google+ photo

Bạn đang bình luận bằng tài khoản Google+ Log Out / Thay đổi )

Connecting to %s

Tạo một website miễn phí hoặc 1 blog với WordPress.com.

%d bloggers like this: