
Г. С. Бараненков, Б. П Демидович. В. А Ефименко, С. М. Косан. Г Л Луни. Е Ф Поринееа, Е П. Сычева, С. В. Фролов, Р. Я. Шостак, А. Р. Янпольский

ЗАДАЧИ И УПРАЖНЕНИЯ $\Pi 0$ MATEMATИЧЕСКОМУ

 АНАЛИЗУПод редакцией
Б. П. ДемидовичА

G. Baranenkov, B. Drmidovich V. Efimenko, S. Kogan, G. Lunts, E. Porshneva, E. Stechfza, S. Frolcu, R. Shostak, A. Yanpolsky

PROBLEMS
 IN
 MATHEMATICAL
 ANALYSIS

Under the editorship
of
B. DEMIDOVICH

Translated from the Russian
c. YANKOVSKY

MIR PUBLISHERS

Moscow

TO THE READER

MIR Publishers would be glad to have your opinion of the translation and the design of this book.

Please send your suggest tons to 2, Peroy Rizhsky Pereulok, Moscow, U. S. S. R.

Second Printing

CONTENTS

Preface 9
Chapter I. INTRODUCTION TO ANALYSIS
Sec. 1. Functions 11
Sec. 2 Graphs of Elementary Functions 16
Sec. 3 Limits 22
Sec. 4 Infinitely Small and Latge Quantities 33
Sec. 5. Continuity of Functions 36
Chapter II DIFFERENTIATION OF .FUNCTIONS
Sec 1. Calculating Derivatives Directly 42
Sec 2 Tabular Differentiation 46
Sec. 3 The Derivat'ves of Functions Not Represented Explicitly 56
Sec. 4. Geometrical and Mechanical Applications of the Derıvative 60
Sec 5 Derivatives of Hig ier Orders 66
Sec 6 Differentials of First and Higher Orders 71
Sec 7 Mean Value Theorems 75
Sec. 8 Taylor's Formula 77
Sec 9 The L'Hospital-Bernoulli Rule for Evalualing Indeterminate Forms 78
Chapter III THE EXTREMA OF A FUNCTION AND THE GEOMETRIC APPLICATIONS OF A DERIVATIVE
Sec. 1. The Extrema of a Function of One Argument 83
Sec. 2 The Direction of Concavity Points of Inflection 91
Sec 3 Asymptotes 93
Sec 4. Graphing Functions by Characteristic Points 96
Sec. 5. Differential of an Arc Curvature 101
Chapter IV INDEFINITE INTEGRALS
Sec. 1 Direct Integration 107
Sec 2 Integration by Substitution 113
Sec 3 Integration by Parts 116
Sec. 4 Standard Integrals Containing a Quadratic Trinomal 118
Sec. 5. Integration of Rational Functions 121
Sec. 6. Integrating Certain Irrational Functions 125
Sec 7. Irtegrating Trigonemetric Functions 128
Sec. 8 Integration of Hyperbolic Functions 133
Sec 9. Using Irigonometric and Hyperbolic Substitutions for Finding
Integrals of the Form $\int R\left(x, \sqrt{a x^{2}+b x+c}\right) d x$. Where R is a Ra-tional Function133
Sec 10 Intefration of Various Transcendental Functions 135
Sec 11 Using Reduction Formulas 135
Sec. 12. Miscellaneous Examples on Integration 136
Chapter V DEFINITE INTEGRALS
Sec. 1. The Definite Integral as the Limit of a Sum 138
Scc 2 Evaluatirg [firite lntegrals by Neans of Indefinite Integrals 140
Sec. 3 Improper Integrals 143
Sec 4 Charge of Variable in a Definite Integral 146
Sec. 5. Integration by Parts 149
Sec 6 Mean-Value Theorem 150
Sec. 7. The Areas of Plane Figures 153
Sec 8. The Arc Length of a Curve 158
Sec 9 Volumes of Solids 161
Sec 10 The Area of a Surface of Revolution 166
Sec 11 Noments Centres of Cravity Guldin's Theorems 168
Sec 12. Applyirg Lefrite lntegrals to the Solution of Physical Prcb.
lems173
Chapter VI. FUNCTIONS OF SEVERAL VARIABLES
Sec. 1. Basic Notions 180
Sec. 2. Contınuity 184
Sec 3 Partial Derivatives 185
Sec 4 Total Diflerential of a Function 187
Sec 5 Differentiation of Composite Functions 190
Sec. 6. Derivative in a Given Direction and the Gradient of a Function 193
Sec. 7 Hıgfife,-Crder Cerıvatives and Differentials 197
Sec 8 Integration of Total Difierentials 202
Sec 9 Ditierentiation of 1 mplicit Functions 205
Sec 10 Change of Variables 211
Sec. 11. The Tangent Plane and the Normal to a Surface 217
Sec 12 Taylor's Formula for a Function of Several Variables 220
Sec. 13 The Extremum of a Function of Several Variables 222
Sec 14 Firdirg the Createst and 'rallest Values of Functions 227
Sec 15 Sincular Points of Plane Curves 230
Sec 16 Envelope 232
Sec. 17. Arc Length of a Space Curve 2347
Sec. 18. The Vector Function of a Scalar Argument 235
Sec. 19 The Natural Trihedron of a Space Curve 238
Sec. 20. Curvature and Torsion of a Space Curve 242
Chapter VII. MULTIPLE AND LINE INTEGRALS
Sec. 1 The Double Integral in Rectangular Coordinates 246
Sec. 2 Change of Variables in a Double Integral 252
Sec. 3. Computing Areas 256
Sec. 4. Computing Volumes 258
Sec. 5. Computing the Areas of Surfaces 259
Sec. 6 Applications of the Double Integral in Mechanics 230
Sec. 7. Triple Integrals 262
Sec. 8. Improper Integrals Dependent on a Parameter. Improper Multif le Integrals 269
Sec. 9 Line Integrals 273
Sec. 10. Surface Integrals 284
Sec. 11. The Ostrogradsky-Gauss Formula 286
Sec. 12. Fundamentals of Field Theory 288
Chapter VIII. SERIES
Sec. 1. Number Series 293
Sec. 2. Functional Series 304
Sec. 3. Taylor's Series 311
Sec. 4. Fourier's Series 318
Chapter IX DIFFERENTIAL EQUATIONS
Sec. 1. Verifying Solutions. Forming Differential Equations of Fami- lies of Curves. Initial Conditions 322
Sec. 2 First-Order Differential Equations 324
Sec. 3. First-Order Differential Equations with Variables Separable. Orthogonal Trajertories 327
Sec. 4 First-Order Homogeneous Differential Equations 330
Sec. 5. First-Order Linear Difterential Equations. Bernoulli's Equation 332
Sec. 6 Exact Differential Equations. Integrating Factor 335
Sec 7 First-Order Differential Equations not Solved for the Derivative 3 337Sec. 8. The Lagrange and Clairaut Equations
Sec. 9. Miscellaneous Exercises on First-Order Differential Equations 340
Sec. 10. Higher-Order Differential Equations 345
Sec. 11. Linear Differential Equations 349
Sec. 12. Linear Differential Equations of Second Order with Constant Coefficients 351
Sec. 13. Linear Differential Equations of Order Higher than Two with Constant Coefficients 356
Sec 14. Euler's Equations 357
Sec 15. Systems of Differential Equations 359
Sec. 16. Integration of Differential Equations by Means of Power Se - ries 361
Sec 17. Froblems on Fourier's Method 363
Chapter X. APPROXIMATE CALCULATIONS
Sec. 1 Operations on Approximate Numbers 367
Sec. 2. Interpolation of Functions 372
Sec. 3. Computing the Real Roots of Equations 376
Sec. 4 Numerical Integration of Functions 382
Sec. 5. Nun erical Inteqration of Crdirary Diflerential Equations 384
Sec. 6. Approsmmating Fourcr's Cceificients 393
ANSWERS 396
APPENDIX 475

1. Greck Alphabet 475
II. Some Constants 475
III. Inverse Quantities, Powers, Roots, Logarithms 476
IV Trigonometric Functions 478
V. Exporential, Ilyperbolic and Trigonometric Functions 479
VI. Some Curves 480

PREFACE

This collection of problems and exercises in mathematical analysis covers the maximum requirements of general courses in higher mathematics for higher technical schools. It contains over 3,000 problems sequentially arranged in Chapters I to X covering all branches of higher mathematics (with the exception of analytical geometry) given in college courses. Particular attention is given to the most important sections of the course that require established skills (the finding of limits, differentiation techniques, the graphing of functions, integration techniques, the applications of definite integrals, series, the solution of differential equations).

Since some institutes have extended courses of mathematics, the authors have included problems on field theory, the Fourier method, and approximate calculations. Experience shows that the number of problems given in this book not only fully satisfies the requiremen s of the student, as far as practical mas!ering of the various sections of the course goes, but also enables the instructor to supply a varied chosce of problems in each section and to select problems for tests and examinations.

Each chap.er begins with a brief theoretical introduction that covers the basic definitions and formulas of that section of the course. Here the most important typical problems are worked out in full. We belicve that this will greatly simplify the work of the student. Answers are given to all computational problems; one asterisk indicates that hints to the solution are given in the answers, two asterisks, that the solution is given. The problems are frequently illustrated by drawings.

This collection of problems is the result of many years of teaching higher mathematics in the technical schools of the Soviet Union. It includes, in addition to original problems and examples, a large number of commonly used problems.

Chapter I

INTRODUCTION TO ANALYSIS

Sec. 1. Functions

1°. Real numters. Rational and irrational numbers are collectively known as real numbers the absolutt value of a real number a is understood to be the nonnegative number $|a|$ defined by the conditions $|a|=a$ if $a \geqslant 0$, and $|a|=-a$ if $a<0$. The following incquality holds for all real numbers a and b :

$$
|a+b| \leqslant|a|+|b| .
$$

2°. Definition of a function. If to every value *) of a variable x, which belongs to some collection (set) E, there corresponds one and only one tinite value of the quantity y, then y is said to be a function (single-valued) of x or a dependent iartable defined on the set E, x is the argument or independent variable The fact that u is a furiction of x is expressed in brief form by the notation $y=f(x)$ or $y=F(x)$, and the like

If to every value of x belonging to some set E there corresponds one or several values of the variable y, then y is called a multiple-valued function of x defined on E. From now on we shall use the word "function" only in the meaning of a single-valued function, if not otherwise stated
3° The domain of dellnition of a function. The collection of values of x for which the given function is delined is called the domain of defintion (or the domain) of this function. In the simplest cases, the domarn of a function is either a closed interval $\{a, b \mid$, which is the set of real numbers x that satisfy the inequalities $a \leqslant x \leqslant b$. or anopen interial (a, b). which :s the set of real numbers that satisfy the incqualit.es $a<x<b$. Also possible is a more complex structure of the doman of delimition of a function (see, for instance, Problem 21)

Example 1. Determine the doman of defintion of the function

$$
y=\frac{1}{\sqrt{x^{2}-1}}
$$

Solution. The function is defined if

$$
x^{2}-1>0,
$$

that is, if $|x|>1$. Thus, the domain of the function is a set of two intervals: $-\infty<x<-1$ and $1<x<+\infty$
4°. Inverse functions. If the equation $y=f(x)$ may be solved uniquely for the variable x, that is, if there is a function $x=g(y)$ such that $y \equiv f[g(y)]$,

[^0]then the function $x=g(y)$, or, in standard notation, $y=g(x)$, is the inverse of $y=f(x)$. Ubviously, $g[f(x)] \equiv x$, that is, the function $f(x)$ is the inverse of $g(x)$ (and vice versa).

In tle fereral case, the equation $y=f(x)$ defines a multiple-valued in: verse function $x=f^{-1}(y)$ such that $y \equiv f\left[f^{-1}(y)\right]$ for all y that are values of the function $f(x)$

Exanple 2. Letermine the inverse of the function

$$
\begin{equation*}
y=1-2^{-x} . \tag{1}
\end{equation*}
$$

Solution. Solving equation (1) for x, we have

$$
2^{-x}=1-y
$$

and

$$
\begin{equation*}
\left.x=-\frac{\log (1-y)}{\log 2} *\right) \tag{2}
\end{equation*}
$$

Obviously, the domain of definition of the function (2) is $-\infty<y<1$.
5°. Corrosite and implicit functicns. A function y of x defined by a series of equalities $y=f(u)$, where $u=\varphi(x)$, etc., is called a composite function, or a function of a funstion.

A function defined by an equation not solved for the defendent variable is called an implicil function. For example, the equation $x^{3}+y^{3}=1$ defines y as an implicit function of x.
6°. The graph of a function. A set of points (x, y) in an $x y$-plane, whose coordinates are connected by the equation $y=f(x)$, is called the graph of the given funct:on.

1**. Prove that if a and b are real numbers then

$$
||a|-|b|| \leqslant|a-b| \leqslant|a|+|b| .
$$

2. Prove the following equalities:
a) $|a b|=|a| \cdot|b|$;
b) $|a|^{2}=a^{2}$;
c) $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}(b \neq 0)$;
d) $\sqrt{a^{2}}=|a|$.
3. Solve the inequalities:
a) $|x-1|<3$;
b) $|x+1|>2$;
c) $|2 x+1|<1$;
d) $|x-1|<|x+1|$.
4. Find $f(-1), f(0), f(1), f(2), f(3), f(4)$, if $f(x)=x^{6}-6 x^{2}+$ $+11 x-6$.
5. Find $f(0), f\left(-\frac{3}{4}\right), f(-x), f\left(\frac{1}{x}\right), \frac{1}{f(x)}$, if $f(x)=\sqrt{1+x^{2}}$.
6. $f(x)=\arccos (\log x)$. Find $f\left(\frac{1}{10}\right), f(1), f(10)$.
7. The function $f(x)$ is linear. Find this function, if $f(-1)=2$ and $f(2)=-3$.
*) Log x is the logarithm of the number x to the base 10.
8. Find the rational integral function $f(x)$ of degree two, if $f(0)=1, f(1)=0$ and $f(3)=5$.
9. Given that $f(4)=-2, f(5)=6$. Approximate the value of $f(4,3)$ if we consider the function $f(x)$ on the interval $4 \leqslant x \leqslant 5$ linear (linear interpolation of a function).
10. Write the function

$$
f(x)=\left\{\begin{array}{l}
0, \text { if } x \leqslant 0, \\
x, \text { if } x>0
\end{array}\right.
$$

as a single formula using the absolute-value sign.
Determine the domains of definition of the following functions:
11. a) $y=\sqrt{x+1}$;
b) $y=\sqrt[3]{x+1}$.
12. $y=\frac{1}{4-x^{2}}$.
13. a) $y=\sqrt{x^{2}-2}$;
b) $y=x \sqrt{x^{2}-2}$.

14**. $y=\sqrt{2+x-x^{2}}$.
15. $y=\sqrt{-x}+\frac{1}{\sqrt{2+x}}$.
16. $y=\sqrt{x-x^{3}}$.
17. $y=\log \frac{2+x}{2-x}$.
18. $y=\log \frac{x^{2}-3 x+2}{x+1}$.
19. $y=\arccos \frac{2 x}{1+x}$.
20. $y=\arcsin \left(\log \frac{x}{10}\right)$.
21. Determine the domain of definition of the function

$$
y=\sqrt{\sin 2 x}
$$

22. $f(x)=2 x^{4}-3 x^{3}-5 x^{2}+6 x-10$. Find $\varphi(x)=\frac{1}{2}[f(x)+f(-x)] \quad$ and $\quad \psi(x)=\frac{1}{2}[f(x)-f(-x)]$.
23. A function $f(x)$ defined in a symmetric region $-l<x<l$ is called even if $f(-x)=f(x)$ and odd if $f(-x)=-f(x)$.

Determine which of the following functions are even and which are odd:
a) $f(x)=\frac{1}{2}\left(a^{x}+a^{-x}\right)$;
b) $f(x)=\sqrt{1+x+x^{2}}-\sqrt{1-x+x^{2}}$;
c) $f(x)=\sqrt[3]{(x+1)^{2}}+\sqrt[3]{(x-1)^{2}}$;
d) $f(x)=\log \frac{1+x}{1-x}$;
e) $f(x)=\log \left(x+\sqrt{1+x^{2}}\right)$.
24. Prove that any function $f(x)$ defined in the interval $-l<x<l$ may be represented in the form of the sum of an even function and an odd function.
25. Prove that the product of two even functions or of two odd functions is an even function, and that the product of an even function by an odd function is an odd function.
26. A function $f(x)$ is called periodic if there exists a positive number T (the period of the function) such that $f(x+T) \equiv f(x)$ for all values of x within the domain of definition of $f(x)$.

Cetermine uhich of the follcwing functions are periodic, and for the pericdic functions find their least period T :
a) $f(x)=10 \sin 3 x$,
b) $f(x)=a \sin \lambda x+b \cos \lambda x$;
c) $f(x)=\sqrt{\tan x}$;
d) $f(x)=\sin ^{2} x$;
e) $f(x)=\sin (\sqrt{x})$.
27. Express the length of the segment $y=M N$ and the area S of the figure $A M N$ as a function of $x=A M$ (Fig 1). Construct

Fig. 1 the graphs of these functions.
28. The linear density (that is, mass per unit length) of a $\operatorname{rod} A B=l$ (Fig. 2) on the segments $A C=l_{1}$, $C D=l_{2}$ and $D B=l_{3}\left(l_{1}+l_{2}+l_{3}=l\right)$ is equal to q_{1}, q_{2} and q_{3}, respec-

Fig. 2
tively. Express the mass m of a variable segment $A M=x$ of this rod as a function of x. Construct the graph of this function.
29. Find $\varphi \mid \psi(x)$] and $\psi|\varphi(x)|$, if $\varphi(x)=x^{2}$ and $\psi(x)=2^{x}$.
30. Find $f\{f|f(x)|\}$, if $f(x)=\frac{1}{1-x}$.
31. Find $f(x+1)$, if $f(x-1)=x^{2}$.
32. Let $f(n)$ be the sum of n terms of an arithmetic progression. Show that

$$
f(n+3)-3 f(n+2)+3 f(n+1)-f(n)=0
$$

33. Show that if

$$
f(x)=k x+b
$$

and the numbers x_{1}, x_{2}, x_{3} form an arithmetic progression, then the numbers $f\left(x_{1}\right), f\left(x_{2}\right)$ and $f\left(x_{3}\right)$ likewise form such a progression.
34. Prove that if $f(x)$ is an exponential function, that is, $f(x)=a^{x}(a>0)$, and the numbers x_{1}, x_{2}, x_{1} form an arithmetic progression, then the numbers $f\left(x_{1}\right), f\left(x_{2}\right)$ and $f\left(x_{3}\right)$ form a geometric progression.
35. Let

$$
f(x)=\log \frac{1+x}{1-x}
$$

Show that

$$
f(x)+f(y)=f\left(\frac{x+y}{1+x y}\right)
$$

36. Let $\varphi(x)=\frac{1}{2}\left(a^{x}+a^{-x}\right)$ and $\psi(x)=\frac{1}{2}\left(a^{x}-a^{-x}\right)$.

Show that
and

$$
\begin{aligned}
& \varphi(x+y)=\varphi(x) \varphi(y)+\psi(x) \psi(y) \\
& \psi(x+y)=\varphi(x) \psi(y)+\varphi(y) \psi(x)
\end{aligned}
$$

37. Find $f(-1), f(0), f(1)$ if

$$
f(x)=\left\{\begin{array}{l}
\arcsin x \text { for }-1 \leqslant x \leqslant 0 \\
\arctan x \text { for } 0<x=+\infty
\end{array}\right.
$$

38. Determine the roots (zeros) of the rcgion of positivity and of the region of negativity of the function y if:
a) $y=1+x$;
b) $y=2+x-x^{2}$;
c) $y=1-x+x^{2}$;
d) $y=x^{3}-3 x$;
e) $y=\log \frac{2 x}{1+x}$.
39. Find the inverse of the function y if:
a) $y=2 x+3$;
b) $y=x^{2}-1$;
c) $y=\sqrt[3]{1-x^{3}}$;
c) $y=\arctan 3 x$.
d) $y=\log \frac{x}{2}$;

In what regions will these inverse functions be defined?
40. Find the inverse of the function

$$
y=\left\{\begin{array}{l}
x, \text { if } x \leqslant 0 \\
x^{2}, \text { if } x>0
\end{array}\right.
$$

41. Write the given functions as a series of equalities each member of which contains a simple elementary function (power, exponential, trigonometric, and the like):
a) $y=(2 x-5)^{10}$;
b) $y=2^{\cos x}$;
c) $y=\log \tan \frac{x}{2}$;
d) $y=\arcsin \left(3^{-x^{2}}\right)$.
42. Write as a single equation the composite functions represented as a series of equalities:
a) $y=u^{2}, u=\sin x$;
b) $y=\arctan u, u=\sqrt{v}, v=\log x$;
c) $y= \begin{cases}2 u, & \text { if } u \leqslant 0, \\ 0, & \text { if } u>0 ;\end{cases}$
$u=x^{2}-1$.
43. Write, explicitly, functions of y defined by the equations:
a) $x^{2}-\arccos y=\pi$;
b) $10^{x}+10^{y}=10$;
c) $x+|y|=2 y$.

Find the domains of definition of the given implicit functions.

Sec. 2. Graphs of Elementary Functions

Graphs of functions $y=f(x)$ are mainly constructed by marking a sufficiently dence net of points $M_{i}\left(x_{i}, y_{i}\right)$, where $y_{t}=f\left(x_{i}\right)(i=0,1,2, \ldots)$ and by connecting the points with a line that takes account of intermediate points. Calculations are best done by a slide rule.

Fig. 3
Graphs of the basic elementary functions (see Ap pendix VI) are readily learned through their construction. Proceeding from the graph of

$$
\begin{equation*}
y=f(x) \tag{Г}
\end{equation*}
$$

we get the graphs of the following functions by means of simple geometric
constructions:

1) $y_{1}=-f(x)$ is the mirror image of the graph Γ about the x-axis;
2) $y_{2}=f(-x)$ is the mirror image of the graph Γ about the y-axis;
3) $y_{a}=f(x-a)$ is the Γ graph displaced along the x-axis by an amount a; 4) $y_{4}=b+f(x)$ is the Γ graph displaced along the y-axis by an amount b (Fig. 3).
Example. Construct the graph of the function

$$
y=\sin \left(x-\frac{\pi}{4}\right)
$$

Solution. The desired line is a sine curve $y=\sin x$ displaced along the x-axis to the right by an amount $\frac{\pi}{4}$ (Fig. 4)

Fig. 4
Construct the graphs of the following linear functions (straight lines):
44. $y=k x$, if $k=0,1,2,1 / 2,-1,-2$.
45. $y=x+b$, if $b=0,1,2,-1,-2$.
46. $y=1.5 x+2$.

Construct the graphs of rational integral functions of degree two (parabolas)
47. $y=a x^{2}$, if $a=1,2,1 / 2,-1,-2,0$.
48. $y=x^{2}+c$, if $c=0,1,2,-1$.
49. $y=\left(x-x_{0}\right)^{2}$, if $x_{0}=0,1,2,-1$.
50. $y=y_{0}+(x-1)^{2}$, if $y_{0}=0,1,2,-1$.

51*. $y=a x^{2}+b x+c$, if: 1) $a=1, b=-2, c=3$; 2) $a=-2$, $b=6, c=0$.
52. $y=2+x-x^{2}$. Find the points of intersection of this parabola with the x-axis.

Construct the graphs of the following rational integral functions of degree above two:

53*. $y=x^{3}$ (cubic parabola).
54. $y=2+(x-1)^{3}$.
55. $y=x^{3}-3 x+2$.
56. $y=x^{4}$.
57. $y=2 x^{2}-x^{4}$.

Construct the graphs of the following linear fractional functions (hyperbolas):

58*. $y=\frac{1}{x}$.
59. $y=\frac{1}{1-x}$.
60. $y=\frac{x-2}{x+2}$.

61*. $y=y_{0}+\frac{m}{x-x_{0}}$, if $x_{0}=1, y_{0}=-1, m=6$.
62*. $y=\frac{2 x-3}{3 x+2}$.
Construct the graphs of the fractional rational functions:
63. $y=x+\frac{1}{x}$.
64. $y=\frac{x^{2}}{x+1}$.

65*. $y=\frac{1}{x^{2}}$.
66. $y=\frac{1}{x^{3}}$.

67*. $y=-\frac{10}{x^{2}+1}$ (Witch of Agnest).
68. $y=\frac{2 x}{x^{2}+1}$ (Newton's serpentine).
69. $y=x+\frac{1}{x^{2}}$.
70. $y=x^{2}+\frac{1}{x}$ (trident of Newton).

Construct the graphs of the irrational functions:
71*. $y=\sqrt{x}$
72. $y=\sqrt[3]{x}$

73*. $y=\sqrt[3]{x^{2}}$ (Niele's parabola).
74. $y= \pm x \sqrt{\bar{x}}$ (semicubical parabola).

75*. $y= \pm \frac{3}{5} \sqrt{25-x^{2}}$ (ellipse).
76. $y= \pm \sqrt{x^{2}-1}$ (hyperbola).
77. $y=\frac{1}{\sqrt{1-x^{2}}}$.

78*. $y= \pm x \sqrt{\frac{x}{4-x}}$ (cissoid of Diocles).
79. $y= \pm x \sqrt{25-x^{2}}$.

Construct the graphs of the trigonometric functions:
80* $\cdot y=\sin x$. $83^{*} \cdot y=\cot x$.
81*. $y=\cos x . \quad 84^{*} . y=\sec x$.
82*. $y=\tan x$. $\quad 85^{*} . y=\operatorname{cosec} x$.
86. $y=A \sin x$, if $A=1,10,1 / 2,-2$.

87*. $y=\sin n x$, if $n=1,2,3,1 / 2$.
88. $y=\sin (x-\varphi)$, if $\varphi=0, \frac{\pi}{2}, \frac{3 \pi}{2}, \pi,-\frac{\pi}{4}$.

89*. $y=5 \sin (2 x-3)$.

90*. $y=a \sin x+b \cos x$, if $a=6, b=-8$.
91. $y=\sin x+\cos x$.
96. $y=1-2 \cos x$.

92*. $y=\cos ^{2} x$.
97. $y=\sin x-\frac{1}{3} \sin 3 x$.

93*. $y=x+\sin x$.
98. $y=\cos x+\frac{1}{2} \cos 2 x$.

94*. $y=x \sin x$.
99*. $y=\cos \frac{\pi}{x}$.
95. $y=\tan ^{2} x$.
100. $y= \pm \sqrt{\sin x}$.

Construct the graphs of the exponential and logarithmic functions:
101. $y=a^{x}$, if $\left.a=2, \frac{1}{2}, e(e=2,718 \ldots)^{*}\right)$.

102*. $y=\log _{a} x$, if $a=10,2, \frac{1}{2}, e$.
103*. $y=\sinh x$, where $\sinh x=1 / 2\left(e^{x}-e^{-x}\right)$.
104*. $y=\cosh x$, where $\cosh x=1 / 2\left(e^{x}+e^{-x}\right)$.
105*. $y=\tanh x$, where $\tanh x=\frac{\sinh x}{\cosh x}$.
106. $y=10^{\frac{1}{x}}$

107*. $y=e^{-x^{2}}$ (probability curve).
108. $y=2^{-\frac{1}{x^{2}}}$.
113. $y=\log \frac{1}{x}$.
109. $y=\log x^{2}$.
114. $y=\log (-x)$.
110. $y=\log ^{2} x$.
115. $y=\log _{2}(1+x)$.
111. $y=\log (\log x)$.
116. $y=\log (\cos x)$.
112. $y=\frac{1}{\log x}$.
117. $y=2^{-x} \sin x$.

Construct the graphs of the inverse trigonometric functions:
118*. $y=\arcsin x$.
122. $y=\arcsin \frac{1}{x}$.

119*. $y=\arccos x$.
123. $y=\arccos \frac{1}{x}$.

120*. $y=\arctan x$.
124. $y=x+\operatorname{arccot} x$.

121*. $y=\operatorname{arccot} x$.
Construct the graphs of the functions:
125. $y=|x|$.
126. $y=\frac{1}{2}(x+|x|)$.
127. a) $y=x|x|$;
b) $y=\log _{V}-|x|$.
128. a) $y=\sin x+|\sin x|$;
b) $y=\sin x-|\sin x|$.
129. $y=\left\{\begin{array}{l}3-x^{2} \text { when }|x| \leqslant 1 . \\ \frac{2}{|x|} \text { when }|x|>1 .\end{array}\right.$
${ }^{*}$) About the number e see p. 22 for more details.
130. a) $y=[x]$, b) $y=x-[x]$, where $[x]$ is the integral part of the number x, that is, the greatest in eger less than or equal to x.

Construct the graphs of the following functions in the polar coordina.e sysiem $(r, \varphi)(r \geqslant 0)$:
131. $r=1$.

132*. $r=\frac{\varphi}{2}$ (spiral of Archimedes).
133*. $r=e^{\varphi}$ (logurithmic spiral).
134*. $r=\frac{\pi}{\varphi}$ (hyperbolic spiral).
135. $r=2 \cos \varphi$ (circle).
136. $r=\frac{1}{\sin \varphi}$ (straight line).
137. $r=\sec ^{2} \frac{\varphi}{2}$ (parabola).

138*. $r=10 \sin 3 \varphi$ (three-leafed rose)
139*. $r=a(1+\cos \varphi)(a>0)$ (cardioid).
143*. $r^{2}=a^{2} \cos 2 \varphi(a>0)$ (lemniscate).
Consiruct the graphs of the functions represented parametrically:

141*. $x=t^{3}, y=t^{2}$ (semicubical parabola).
142*. $x=10 \cos t, y=\sin t$ (ellipse).
143*. $x=10 \cos ^{8} t, y=10 \sin ^{3} t$ (astroid).
144*. $x=a(\cos t+t \sin t), \quad y=a(\sin t-t \cos t) \quad$ (involute of a circle).

145*. $x=\frac{a t}{1+t^{3}}, \quad y=\frac{a t^{2}}{1+t^{3}}$ (folium of Descartes).
146. $x=\frac{a}{\sqrt{1+t^{2}}}, y=\frac{a t}{\sqrt{1+t^{2}}}$ (semicircle).
147. $x=\varepsilon^{t}+2^{-t}, y=2^{1}-2^{-t}$ (branch of a hyperbola).
149. $x=2 \cos ^{2} t, y=2 \sin ^{2} t$ (segment of a straight line).
149. $x=t-t^{2}, \quad y=t^{2}-t^{3}$.
150. $x=a(2 \cos t-\cos 2 t), y=a(2 \sin t-\sin 2 t)$ (cardtoid).

Construct the graphs of the following functions defined implicilly:

151*. $x^{2}+y^{2}=25$ (circle).
152. $x y=12$ (hyperbcla).

153*. $y^{2}=2 x$ (parabola).
154. $\frac{x^{2}}{100}+\frac{y^{2}}{64}=1$ (ellipse).
155. $y^{2}=x^{2}\left(100-x^{2}\right)$.

156* $\cdot x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ (astroid).
157*. $x+y=10 \log y$.
158. $x^{2}=\cos y$.

159*. $\sqrt{x^{2}+y^{2}}=e^{\arctan \frac{11}{x}}$ (logarithmic spiral).
$160^{*} \cdot x^{3}+y^{3}-3 x y=0$ (folium of Descartes).
161. Derive the conversion formula lrom the Celsius scale (C) to the Fahrenheit scale (F) if it is known that $0^{\circ} \mathrm{C}$ corresponds to $32^{\circ} \mathrm{F}$ and $100^{\circ} \mathrm{C}$ corresponds to $212^{\circ} \mathrm{F}$.

Construct the graph of the function obtained.
162. Inscribed in a triangle (base $b=10$, altitude $h=6$) is a rectangle (Fig. 5). Express the area of the rectangle y as a function of the base x.

Fig. 5

Fig 6

Construct the graph of this function and find its greatest value.
163. Given a triangle $A C B$ with $B C=a, A C=b$ and a variable angle $\Varangle A C B=x$ (Fig. 6).

Express $y=$ area $\triangle A B C$ as a function of x. Plot the graph of this function and find its greaiest value.
164. Give a graphic solution of the equations:
a) $2 x^{2}-5 x+2=0$;
d) $10^{-x}=x$;
b) $x^{3}+x-1=0$;
e) $x=1+05 \sin x$;
c) $\log x=0.1 x$;
f) $\cot x=x(0<x<\pi)$.
165. Solve the systems of equations graphically:
a) $x y=10, x+y=7$;
b) $x y=6, x^{2}+y^{2}=13$;
c) $x^{2}-x+y=4, y^{2}-2 x=0$;
d) $x^{2}+y=10, x+y^{2}=6$;
e) $y=\sin x, y=\cos x \quad(0<x<2 \pi)$.

Sec. 3. Limits

1°. The limit of a sequence. The number a is the limit of a sequence $x_{1}, x_{2}, \ldots, x_{n}, \ldots$ or

$$
\lim _{n \rightarrow \infty} x_{n}=a
$$

If for any $\varepsilon>0$ there is a number $N=N$ (ε) such that $\left|x_{n}-a\right|<e$ when $n>N$.

Example 1. Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{2 n+1}{n+1}=2 \tag{1}
\end{equation*}
$$

Solution. Form the difference

$$
\frac{2 n+1}{n+1}-2=-\frac{1}{n+1}
$$

Evaluating the absolute value of this difference, we have:

$$
\begin{equation*}
\left|\frac{2 n+1}{n+1}-2\right|=\frac{1}{n+1}<\varepsilon \tag{2}
\end{equation*}
$$

if

$$
n>\frac{1}{\varepsilon}-1=N(\varepsilon)
$$

Thus, for every positive number ε there will be a number $N=\frac{1}{\varepsilon}-1$ such that for $n>N$ we will have irequality (2) Consequently, the number 2 is the limit of the sequence $x_{n}=(2 n+1) /(n+1)$. hence, formula (1) is true.
2°. The limit of a function. We say that a function $f(x) \rightarrow A$ as $x \rightarrow a$ (A and a are numbers), or

$$
\lim _{x \rightarrow a} f(x)=A
$$

if for every $\varepsilon>0$ we have $\delta=\delta(\varepsilon)>0$ such that
$|f(x)-A|<\varepsilon \quad$ for $0<|x-a|<\delta$.
Similarly;

$$
\begin{gathered}
\lim _{x \rightarrow \infty} f(x)=A \\
\text { if }|f(x)-A|<\varepsilon \text { for }|x|>N(\varepsilon) .
\end{gathered}
$$

The following conventional notation is also used:

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

which means that $|f(x)|>E$ for $0<|x-a|<\delta(E)$, where E is an arbitrary positive number
3°. One-sided limits. If $x<a$ and $x \rightarrow a$, then we write conventionally $x \rightarrow a-0$; s!milarly, il $x>a$ and $x \rightarrow a$, then we write $x \rightarrow a+0$. The numbers

$$
f(a-0)=\lim _{x \rightarrow a \rightarrow 0} f(x) \text { and } f(a+0)=\lim _{x \rightarrow a+0} f(x)
$$

are called, respectively, the limut on the left of the function $f(x)$ at the point a and the limit on the right of the function $f(x)$ at the point a (if these numbers exist).

For the exisience of the limit of a function $f(x)$ as $x \rightarrow a$, it is necessary and sufficient to have the following equality:

$$
f(a-0)=f(a+0) .
$$

If the limits $\lim _{x \rightarrow a} f_{1}(x)$ and $\lim _{x \rightarrow a} f_{2}(x)$ exist, then the following theorems. lold:

1) $\lim _{x \rightarrow a}\left[f_{1}(x)+f_{2}(x)\right]=\lim _{x \rightarrow a} f_{1}(x)+\lim _{x \rightarrow a} f_{2}(x)$;
2) $\lim _{x \rightarrow a}\left[f_{1}(x) f_{2}(x)\right]=\lim _{x \rightarrow a} f_{1}(x) \cdot \lim _{x \rightarrow a} f_{2}(x)$;
3) $\lim _{x \rightarrow a}\left[f_{1}(x) / f_{2}(x)\right]=\lim _{x \rightarrow a} f_{1}(x) / \lim _{x \rightarrow a} f_{2}(x) \quad\left(\lim _{x \rightarrow a} f_{2}(x) \neq 0\right)$.

The following two limits are frequently used:

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

and

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{\alpha \rightarrow 0}(1+\alpha)^{\frac{1}{\alpha}}=e=271828 \ldots
$$

Example 2. Find the limits on the right and left of the function

$$
f(x)=\arctan \frac{1}{x}
$$

as $x \rightarrow 0$.
Solution. We have

$$
f(+0)=\lim _{x \rightarrow+0}\left(\arctan \frac{1}{x}\right)=\frac{\pi}{2}
$$

and

$$
f(-0)=\lim _{x \rightarrow-0}\left(\arctan \frac{1}{x}\right)=-\frac{\pi}{2} .
$$

Obviously, the function $f(x)$ in this case has no limit as $x \rightarrow 0$.
166. Prove that as $n \rightarrow \infty$ the limit of the sequence

$$
1, \frac{1}{4}, \ldots, \frac{1}{n^{2}}, \ldots
$$

is equal to zero. For which values of n will we have the inequality

$$
\frac{1}{n^{2}}<\varepsilon
$$

(ε is an arbitrary positive number)?
Calcula e numerically for a) $\varepsilon=0.1$; b) $\varepsilon=0.01$; c) $\varepsilon=0.001$. 167. Prove that the limit of the sequence

$$
x_{n}=\frac{n}{n+1} \quad(n=1,2, \ldots)
$$

as $n \rightarrow \infty$ is unity. For which values of $n>N$ will we have the inequality

$$
\left|x_{n}-1\right|<e
$$

(e is an arbitrary positive number)?
Find N for a) $\varepsilon=0.1$; b) $\varepsilon=0.01$; c) $\varepsilon=0.001$.
168. Prove that

$$
\lim _{x \rightarrow 2} x^{2}=4
$$

How should one choose, for a given positive number ε, some positive number δ so that the inequality
should follow from

$$
\left|x^{2}-4\right|<\varepsilon
$$

$$
|x-2|<\delta ?
$$

Compute δ for a) $\varepsilon=0.1$; b) $\varepsilon=0.01$; c) $\varepsilon=0.001$.
169. Give the exact meaning of the following notations:
a) $\lim _{x \rightarrow+0} \log x=-\infty ;$ b) $\lim _{x \rightarrow+\infty} 2^{x}=+\infty$; c) $\lim _{x \rightarrow \infty} f(x)=\infty$.
170. Find the limits of the sequences:
a) $1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots, \frac{(-1)^{n-1}}{n}, \ldots$;
b) $\frac{2}{1}, \frac{4}{3}, \frac{6}{5}, \ldots, \frac{2 n}{2 n-1}, \ldots$;
c) $\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2,}}} \ldots$;
d) $0.2,0.23,0.233,0.2333, \ldots$

Find the limits:
171. $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+\frac{3}{n^{2}}+\ldots+\frac{n-1}{n^{2}}\right)$.
172. $\lim _{n \rightarrow \infty} \frac{(n+1)(n+2)(n+3)}{n^{3}}$.
173. $\lim _{n \rightarrow \infty}\left[\frac{1+3+5+7+\ldots+(2 n-1)}{n+1}-\frac{2 n+1}{2}\right]$.
174. $\lim _{n \rightarrow \infty} \frac{n+(-1)^{n}}{n-(-1)^{n}}$.
175. $\lim _{n \rightarrow \infty} \frac{2^{n+1}+3^{n+1}}{2^{n}+3^{n}}$.
176. $\lim _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}\right)$.
177. $\lim _{n \rightarrow \infty}\left[1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots+\frac{(-1)^{n-1}}{3^{n-1}}\right]$.

178*. $\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots+n^{2}}{n^{3}}$.
179. $\lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})$.
180. $\lim _{n \rightarrow \infty} \frac{n \sin n!}{n^{2}+1}$.

When seeking the limit of a ratio of two integral polynomials in x as $x \rightarrow \infty$, it is usciul first to divide both terms of the ratio by x^{n}, where n is the highest degree of these polynomials.

A similar procedure is also possible in many cases for fractions containing irrational terms.

Example 1.

$\lim _{x \rightarrow \infty} \frac{(2 x-3)(3 x+5)(4 x-6)}{3 x^{3}+x-1}=$

$$
=\lim _{x \rightarrow \infty} \frac{\left(2-\frac{3}{x}\right)\left(3+\frac{5}{x}\right)\left(4-\frac{6}{x}\right)}{3+\frac{1}{x^{2}}-\frac{1}{x^{3}}}=\frac{2 \cdot 3 \cdot 4}{6}=8 .
$$

Example 2.

$$
\lim _{x \rightarrow \infty} \frac{x}{\sqrt[3]{x^{3}+10}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt[3]{1+\frac{10}{x^{3}}}}=1
$$

181. $\lim _{x \rightarrow \infty} \frac{(x+1)^{2}}{x^{2}+1}$.
182. $\lim _{x \rightarrow \infty} \frac{2 x^{n}-3 x-4}{\sqrt{x^{4}+1}}$.
183. $\lim _{x \rightarrow \infty} \frac{1000 x}{x^{2}-1}$.
184. $\lim _{x \rightarrow \infty} \frac{2 x+3}{x+\sqrt[3]{x}}$.
185. $\lim _{x \rightarrow \infty} \frac{x^{2}-5 x+1}{3 x+7}$.
186. $\lim _{x \rightarrow \infty} \frac{x^{2}}{10+x \sqrt{x}}$.
187. $\lim _{x \rightarrow \infty} \frac{2 x^{2}-x+3}{x^{3}-8 x+5}$.
188. $\lim _{x \rightarrow \infty} \frac{\sqrt[3]{x^{2}+1}}{x+1}$.
189. $\lim _{x \rightarrow \infty} \frac{(2 x+3)^{9}(3 x-2)^{2}}{x^{5}+5}$.
190. $\lim _{x \rightarrow+\infty} \frac{\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{V}}}}$.

If $P(x)$ and $Q(x)$ are integral polynomials and $P(a) \neq 0$ or $Q(a) \neq 0$, then the limit of the rational fraction

$$
\lim _{x \rightarrow a} \frac{P(x)}{Q(x)}
$$

is obtained directly.
But if $P(a)=Q(a)=0$, then it is advisable to cancel the binomual $x=-a$ out of the fraction $\frac{P(x)}{Q(x)}$ once or several times.

Example 3.

$$
\lim _{x \rightarrow 2} \frac{x^{2}-4}{x^{2}-3 x+2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(x-1)}=\lim _{x \rightarrow 2} \frac{x+2}{x-1}=4
$$

191. $\lim _{x \rightarrow-1} \frac{x^{2}+1}{x^{2}+1}$.
192. $\lim _{x \rightarrow 1} \frac{x^{8}-3 x+2}{x^{4}-4 x+3}$.
193. $\lim _{x \rightarrow 5} \frac{x^{2}-5 x+10}{x^{2}-25}$.
194. $\lim _{x \rightarrow a} \frac{x^{2}-(a+1) x+a}{x^{3}-a^{3}}$.
195. $\lim _{x \rightarrow-1} \frac{x^{2}-1}{x^{2}+3 x+2}$.
196. $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{3}}{h}$.
197. $\lim _{x \rightarrow 2} \frac{x^{2}-2 x}{x^{2}-4 i+4}$.
198. $\lim _{x \rightarrow 1}\left(\frac{1}{1-x}-\frac{3}{1-x^{3}}\right)$.

The exrressions containing irrational terms are in many cases rationaljzed by introducing a new variable.

Example 4. Find

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{\sqrt[3]{1+x}-1}
$$

Solution. Putling
we have

$$
1+x=y^{6}
$$

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{\sqrt{1+x}-1}=\lim _{y \rightarrow 2} \frac{y^{3}-1}{y^{2}-1}=\lim _{y \rightarrow 1} \frac{y^{2}+y+1}{y+1}=\frac{3}{2}
$$

199. $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}$.
200. $\lim _{x \rightarrow 04} \frac{\sqrt{x}-8}{\sqrt[3]{x}-4}$. 201. $\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt[1]{x}-1}$.
201. $\lim _{x \rightarrow 1} \frac{\sqrt[3]{x^{2}}-2 \sqrt[3]{x}+1}{(x-1)^{2}}$.

Another way of finding the limit of an irrational expression is to transfer the irrational term from the numerator to the denominator, or vice versa, from the deriominator to the numerator.

Example 5.

$\lim _{x \rightarrow a} \frac{\sqrt{x}-\sqrt{\bar{a}}}{x-a}=\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x}+\sqrt{a)}}=$

$$
=\lim _{x \rightarrow a} \frac{1}{\sqrt{x}+\sqrt{a}}=\frac{1}{2 \sqrt{a}} \quad(a>0) .
$$

203. $\lim _{x \rightarrow 2} \frac{2-\sqrt{x-3}}{x^{2}-49}$.
204. $\lim _{x \rightarrow 8} \frac{x-8}{\sqrt[3]{x}-2}$.
205. $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{\sqrt{x}-1}$.
206. $\lim _{x \rightarrow 4} \frac{3-\sqrt{5+x}}{1-\sqrt{5-x}}$.
207. $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$.
208. $\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$.
209. $\lim _{h \rightarrow 0} \frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}$.
210. $\lim _{x \rightarrow 3} \frac{\sqrt{x^{2}-2 x+6}-\sqrt{x^{2}+2 x-6}}{x^{2}-4 x+3}$.
211. $\lim _{x \rightarrow+\infty}(\sqrt{x+a}-\sqrt{x})$.
212. $\lim _{x \rightarrow+\infty}[\sqrt{x(x+a)}-x]$.
213. $\lim _{x \rightarrow+\infty}\left(\sqrt{x^{2}-5 x+6}-x\right)$.
214. $\operatorname{lin} x\left(\sqrt{x^{2}+1}-x\right)$.
215. $\lim _{x \rightarrow \infty}\left(x+\sqrt[3]{1-x^{3}}\right)$.

The formula

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

is frequently used when solving the following examples. It is taken for granted that $\lim \sin x=\sin a$ and $\lim \cos x=\cos a$.

Example 6.

$$
\lim _{x \rightarrow 0} \frac{\sin 5 x}{x}=\lim _{x \rightarrow 0}\left(\frac{\sin 5 x}{5 x} \cdot 5\right)=1 \cdot 5=5
$$

216. a) $\lim _{x \rightarrow 2} \frac{\sin x}{x}$;
b) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}$.
217. $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$.
218. $\lim _{x \rightarrow 0} \frac{\sin 5 x}{\sin 2 x}$.
219. $\lim _{x \rightarrow 1} \frac{\sin \pi x}{\sin 3 \pi x}$.
220. $\lim _{n \rightarrow \infty}\left(n \sin \frac{\pi}{n}\right)$.
221. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
222. $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{x-a}$.
223. $\lim _{x \rightarrow a} \frac{\operatorname{crs} x-\cos a}{x-a}$.
224. $\lim _{x \rightarrow-2} \frac{\tan \pi x}{x+2}$.
225. $\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}$.
226. $\lim _{x \rightarrow \pi} \frac{\sin x-\cos x}{1-\tan x}$.
227. a) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$;
b) $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$.
228. $\lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}$.
229. $\lim _{x \rightarrow 0} \cot 2 x \cot \left(\frac{\pi}{2}-x\right)$.
230. $\lim _{x \rightarrow \pi} \frac{1-\sin \frac{x}{2}}{\pi-x}$.
231. $\lim \frac{1-2 \cos x}{\pi-3 x}$.
$x \rightarrow \frac{\pi}{3}$
232. $\lim _{x \rightarrow 0} \frac{\cos m x-\operatorname{crs} n x}{x^{2}}$.
233. $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{\lambda^{s}}$.
234. $\lim _{x \rightarrow 0} \frac{\arcsin x}{x}$.
235. $\lim _{x \rightarrow 0} \frac{\arctan 2 x}{\sin } \frac{1}{3 x}$.
236. $\lim _{x \rightarrow 1} \frac{1-x^{2}}{\sin \pi x}$.
$237 \lim _{x \rightarrow 0} \frac{x-\sin 2 x}{x+\sin 3 x}$.
237. $\lim _{x \rightarrow 0} \frac{1-\sqrt{\cos x}}{x^{2}}$.
238. $\lim _{x \rightarrow 1} \frac{\cos \frac{\pi x}{2}}{1-\sqrt{x}}$.
239. $\lim _{x \rightarrow 0} \frac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{x}$.

When taking limits of the form

$$
\begin{equation*}
\lim _{x \rightarrow a}[\varphi(x)]^{\psi(x)}=C \tag{3}
\end{equation*}
$$

one should bear in mind that:
I) if there are final limits

$$
\lim _{x \rightarrow a} \varphi(x)=A \text { and } \lim _{x \rightarrow a} \psi(x)=B,
$$

then $C=A^{B}$;
2) if $\lim _{x \rightarrow a} \varphi(x)=A \neq 1$ and $\lim _{x \rightarrow \infty} \psi(x)= \pm \infty$, then the problem of finding the limit of (3) is solved in straghtiforward fashion;
3) if $\lim _{x \rightarrow a} \varphi(x)=1$ and $\lim _{x \rightarrow a} \psi(x)=\infty$, then we put $\varphi(x)=1+a(x)$, where $a(x) \xrightarrow{x \rightarrow 0}$ as $x \rightarrow a$ and, hence.

$$
C=\lim _{x \rightarrow a}\left\{[1+\alpha(x)]^{\frac{1}{\alpha(x)}}\right\}^{z(x) \psi(x)}=e^{\lim _{x \rightarrow a} \alpha(x) \phi(x)}=e^{\lim _{x \rightarrow a}[\varphi(x)-1] \psi(x)},
$$

where $e=2.718$. . is Napier's number.

Example 7. Find

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)^{1+x} .
$$

Solution. Here,

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)=2 \text { and } \lim _{x \rightarrow 0}(1+x)=1 ;
$$

hence

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x}\right)^{1+x}=2^{\prime}=2
$$

Example 8. Find

$$
\lim _{x \rightarrow \infty}\left(\frac{x+1}{2 x+1}\right)^{x^{2}}
$$

Solution. We have

$$
\lim _{x \rightarrow \infty} \frac{x+1}{2 x+1}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{2+\frac{1}{x}}=\frac{1}{2}
$$

and

$$
\lim _{x \rightarrow \infty} x^{2}=+\infty .
$$

Therefore,

$$
\lim _{x \rightarrow \infty}\left(\frac{x+1}{2 x+1}\right)^{x^{2}}=0
$$

Example 9. Find

$$
\lim _{x \rightarrow \infty}\left(\frac{x-1}{x+1}\right)^{x} .
$$

Solution. We have

$$
\lim _{x \rightarrow \infty} \frac{x-1}{x+1}=\lim _{x \rightarrow \infty} \frac{1-\frac{1}{x}}{1+\frac{1}{x}}=1
$$

Transforming, as indicated above. we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\frac{x-1}{x+1}\right)^{x}=\lim _{x \rightarrow \infty} & {\left[1+\left(\frac{x-1}{x+1}-1\right)\right]^{x}=} \\
& =\lim _{x \rightarrow \infty}\left\{\left[1+\left(\frac{-2}{x+1}\right)\right]^{\frac{x+1}{-2}}\right\}^{-\frac{2 x}{1+x}}=e^{\lim _{x \rightarrow \infty} \frac{-2 x}{x+1}} \cdots e^{-2} .
\end{aligned}
$$

In this case it is easier to find the limit without resorting to the general procedure:

$$
\lim _{x \rightarrow \infty}\left(\frac{x-1}{x+1}\right)^{x}=\lim _{x \rightarrow \infty} \frac{\left(1-\frac{1}{x}\right)^{x}}{\left(1+\frac{1}{x}\right)^{x}}=\frac{\lim _{x \rightarrow \infty}\left[\left(1-\frac{1}{1}\right)^{-x}\right]^{-1}}{\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}}=\frac{e^{-1}}{e}=e^{-1}
$$

Generally, it is useful to remember that

$$
\lim _{x \rightarrow \infty}\left(1+\frac{k}{x}\right)^{x}=e^{k}
$$

241. $\lim _{x \rightarrow 0}\left(\frac{2+x}{3-x}\right)^{x}$.
242. $\lim _{x \rightarrow 1}\left(\frac{x-1}{x^{2}-1}\right)^{x+1}$.
243. $\lim _{x \rightarrow x}\left(\frac{x}{x+1}\right)^{x}$.
244. $\lim _{x \rightarrow \infty}\left(\frac{1}{x^{2}}\right)^{-\frac{2 x}{x+1}}$.
245. $\lim _{x \rightarrow 0}\left(\frac{x^{2}-2 x+3}{x^{2}-3 x+2}\right)^{\frac{\sin x}{x}}$.
246. $\lim _{x \rightarrow \infty}\left(\frac{x^{2}+2}{2 x^{2}+1}\right)^{x^{2}}$.
247. $\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}$.
$247 \lim _{x \rightarrow \infty}\left(1+\frac{2}{x}\right)^{x}$.
248. $\lim _{x \rightarrow \infty}\left(\frac{x-1}{x+3}\right)^{x+3}$.
249. $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$.
250. $\lim _{x \rightarrow 0}(1+\sin x)^{\frac{1}{x}}$.

252**. a) $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x}}$;
b) $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}$.

When solving the problems that follow, it is useful to know that if the limit $\lim _{x \rightarrow a} f(x)$ exists and is positive, then

$$
\left.\lim _{x \rightarrow a}[\ln f(x)]=\ln \lim _{x \rightarrow a} f(x)\right] .
$$

Example 10. Prove that

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1 . \tag{*}
\end{equation*}
$$

Solution. We have

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=\lim _{x \rightarrow 0}\left[\ln (1+x)^{\frac{1}{x}}\right]=\ln \left[\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}} 1=\ln e=1 .\right.
$$

Formula (*) is frequently used in the solution of problems.
253. $\lim _{x \rightarrow \infty}[\ln (2 x+1)-\ln (x+2)]$.
254. $\lim _{x \rightarrow 0} \frac{\log (1+10 x)}{x}$.
255. $\lim _{x \rightarrow 0}\left(\frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}}\right) . \quad 260^{*} . \lim _{n \rightarrow \infty} n(\sqrt[n]{a}-1) \quad(a>0)$.
256. $\lim _{x \rightarrow+\infty} x[\ln (x+1)-\ln x]$. 261. $\lim _{x \rightarrow 0} \frac{e^{a x}-e^{b x}}{x}$.
257. $\lim _{x \rightarrow 0} \frac{\ln (\operatorname{crs} x)}{x^{2}}$.
262. $\lim _{x \rightarrow 0} \frac{1-e^{-x}}{\sin x}$.

258*. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$.
263. a) $\lim _{x \rightarrow 0} \frac{\operatorname{sirh} x}{x}$;

259*. $\lim _{x \rightarrow 0} \frac{a^{x}-1}{x} \quad(a>0)$.
b) $\lim _{x \rightarrow 0} \frac{\cosh x-1}{x^{2}}$
(see Problems 103 and 104).
Find the following limits that occur on one side:
264.
a) $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{\lambda^{2}+1}}$;
b) $\lim _{x \rightarrow+\infty} \frac{x}{\sqrt{x^{2}+1}}$.
b) $\lim _{x \rightarrow+0} \frac{1}{1+e^{\frac{1}{x}}}$.
265. a) lintanh x;
b) $\lim _{x \rightarrow+\infty}^{x \rightarrow-\infty} \tanh x$,
267. a) $\lim _{x \rightarrow-\infty} \frac{\ln \left(1+e^{x}\right)}{x}$; $x \rightarrow+\infty$
b) $\lim _{x \rightarrow+\infty} \frac{\ln \left(1+e^{x}\right)}{x}$.
where $\tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.
266. a) $\lim _{x \rightarrow-4} \frac{1}{1+e^{\frac{1}{x}}}$;
268. a) $\lim _{x \rightarrow-0} \frac{|\sin x|}{x}$;
b) $\lim _{x \rightarrow+\infty} \frac{|\sin x|}{x}$.
269. a) $\lim _{x \rightarrow 1-0} \frac{x-1}{|x-1|}$;
270. a) $\lim _{x \rightarrow 2 \rightarrow 0} \frac{x}{x-2}$;
b) $\lim _{x \rightarrow 1+0} \frac{x-1}{|x-1|}$.
b) $\lim _{x \rightarrow 2+0} \frac{x}{x-2}$.

Construct the graphs of the following functions:
$271^{* *} . y=\lim _{n \rightarrow \infty}\left(\cos ^{2 n} x\right)$.
272*. $y=\lim _{n \rightarrow \infty} \frac{x}{1+x^{n}} \quad(x \geqslant 0)$.
273. $y=\lim _{\alpha \rightarrow 0} \sqrt{x^{2}+\alpha^{2}}$.
274. $y=\lim _{n \rightarrow \infty}(\arctan n x)$.
275. $y=\lim _{n \rightarrow \infty} \sqrt[n]{1+x^{n}} \quad(x \geqslant 0)$.
276. Transform the following mixed periodic fraction into a common fraction:

$$
\alpha=0.13555 \ldots
$$

Regard it as the limit of the corresponding finite fraction.
277. What will happen to the roots of the quadratic equation

$$
a x^{2}+b x+c=0,
$$

if the coefficient a approaches zero while the coefficients b and c are constant, and $b \neq 0$?
278. Find the limit of the interior angle of a regular n-gon as $n \rightarrow \infty$.
279. Find the limit of the perimeters of regular n-gons inscribed in a circle of radius R and circumscribed about it as $n \rightarrow \infty$.
$2 \varepsilon .0$. Find the limit of the sum of the lengths of the ordinates of the curve

$$
y=e^{-x} \cos \pi x
$$

drawn at the points $x=0,1,2, \ldots, n$, as $n \rightarrow \infty$.
281 . Find the limit of the sum of the areas of the squares constructed on the ordinates of the curve

$$
y=2^{1-x}
$$

as on bases, where $x=1,2,3, \ldots, n$, provided that $n \rightarrow \infty$.
282. Find the limit of the perimeter of a broken line $M_{0} M_{2} \ldots M_{n}$ inscribed in a logarithmic spiral

$$
r-e^{-\Phi}
$$

(as $n \rightarrow \infty$), if the vertices of this broken line have, respectively, the polar angles

$$
\varphi_{0}=0, \varphi_{1}=\frac{\pi}{2}, \ldots, \varphi_{n}=\frac{n \pi}{2} .
$$

283. A segment $A B=a$ (Fig. 7) is divided into n equal parts, each part serving as the base of an isosceles triangle with base angles $u==45^{\circ}$. Show that the limit of the perimeter of the broken line thus formed differs from the lencth of $A B$ despite the fact that in the limit the broken line "geometrically merges with the segment $A B^{\prime \prime}$.

Fig. 7

Fig 8
284. The point C_{1} divides a segment $A B=-l$ in half; the point C_{2} divides a segment $A C_{1}$ in half; the point C_{3} divides a segment $C_{2} C_{1}$ in half; the point C_{1} divides $C_{2} C_{3}$ in half, and so on. Determine the limuting position of the point C_{n} when $n-\cdots$.
285. The side a of a right triangle is divided into n equal parts, on each of which is constructed an inseribed rectangle (Fig. 8). Determine the limit of the area of the step-like figure thus formed if $n \rightarrow \infty$.
286. Find the constants k and b from the equation

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(k x+b-\frac{x^{2}+1}{x^{2}+1}\right)=0 \tag{1}
\end{equation*}
$$

What is the geometric meaning of (1)?
287*. A ceriain chemical process proceeds in such fashion that the increase in quantity of a substance during each interval of time τ out of the infinite sequence of intervals ($c \tau,(i+1) \tau)$ $(i=0,1,2, \ldots)$ is proportional to the quantity of the substance available at the commencement of each interval and to the length of the interval. Assuming that the quantity of substance at the initial time is Q_{0}, determine the quantity of substance $Q_{i}^{(n)}$ after the elapse of time t if the increase takes place each nth part of the time interval $\tau=\frac{t}{n}$.

Find $Q_{t}=\operatorname{lin} Q_{t}^{(n)}$.

Sec. 4. Infinitely Small and Large Quantities
1^{1}. Infinitely small quantities (Infinitesimals). If

$$
\lim _{x \rightarrow a} \alpha(x)=0,
$$

i.e., if $|\alpha(x)|<\varepsilon$ when $0<|x-a|<\delta(e)$, then the function $\alpha(x)$ is an infinitesimal as $x \rightarrow a$. In similar fashion we define the infinitessmal $\alpha(x)$ as $x \longrightarrow \infty$.

The sum and product of a limited number of infinitesimals as $x \longrightarrow a$ are also infinitesimals as $x \rightarrow a$.

If $\alpha(x)$ and $\beta(x)$ are infinitesimals as $x \longrightarrow a$ and

$$
\lim _{x \rightarrow a} \frac{\alpha(x)}{\beta(x)}=C
$$

where C is some number different from zero, then the functions $\alpha(x)$ and $\beta(x)$ are called infinitesimals of the same order; but if $C=0$, then we say that the function $\alpha(x)$ is an infintesimal of higher order than $\beta(x)$. The function $u(x)$ is called an infinitesimal of order n compared with the function $\beta(x)$ if

$$
\lim _{x \rightarrow a} \frac{a(x)}{[\beta(x)]^{n}}=C,
$$

where $0<|C|<+\infty$.
If

$$
\lim _{x \rightarrow a} \frac{\alpha(x)}{\beta(x)}=1,
$$

then the functions $\alpha(x)$ and $\beta(x)$ are called equivalent functions as $x \rightarrow a$:

$$
\alpha(x) \sim \beta(x) .
$$

For example, for $x \longrightarrow 0$ we have
and so forth.

$$
\sin x \sim x ; \quad \tan x \sim x ; \quad \ln (1+x) \sim x
$$

The sum of two infinitesimals of different orders is equivalent to the term whose order is lower.

The limit of a ratio of two infinitesimals remains unchanged if the terms of the ratio are replaced by equivalent quantities. By virtue of this theorem, when taking the limit of a fraction

$$
\lim _{x \rightarrow a} \frac{\alpha(x)}{\beta(x)},
$$

where $a(x) \longrightarrow 0$ and $\beta(x) \longrightarrow 0$ as $x \longrightarrow a$, we can subtract from (or add to) the numerator or denominator infinitesimals of higher orders chosen so that the resultant quantities should be equivalent to the original quantities.

Example 1.

$$
\lim _{x \rightarrow 0} \frac{\sqrt[3]{x^{3}+2 x^{2}}}{\ln (1+2 x)}=\lim _{x \rightarrow 0} \frac{\sqrt[3]{x^{2}}}{2 x}=\frac{1}{2} .
$$

2°. Infinltely large quantities (inflinites). If for an arbitrarily large number N there exists a $\delta(N)$ such that when $0<|x-a|<\delta(N)$ we have the inequality

$$
|f(x)|>N,
$$

then the function $f(x)$ is called an infinite as $x \longrightarrow a$.

The definition of an infinite $f(x)$ as $x \rightarrow \infty$ is analogous. As in the case of infinitesimals, we introduce the concept of infinites of difierent orders.
288. Prove that the function

$$
f(x)=\frac{\sin x}{x}
$$

is an infinitesimal as $x \rightarrow \infty$. For what values of x is the inequality

$$
|f(x)|<\varepsilon
$$

fulfilled if ε is an arbitrary number?
Calculate for: a) $\varepsilon=0.1$; b) $\varepsilon=0.01$; c) $\varepsilon=0.001$.
289. Prove that the function

$$
f(x)=1-x^{2}
$$

is an infinitesimal for $x \rightarrow 1$. For what values of x is the inequality

$$
|f(x)|<\varepsilon
$$

fuliilled if ε is an arbitrary positive number? Calculate numerically for: a) $\varepsilon=0.1$; b) $\varepsilon=0.01$; c) $\varepsilon=0.001$.
290. Prove that the function

$$
f(x)=\frac{1}{x-2}
$$

is an infinite for $x \rightarrow 2$. In what neighbourhoods of $|x-2|<\delta$ is the inequality

$$
|f(x)|>N
$$

fulfilled if N is an arbitrary positive number?
Find δ if a) $N=10 ;$ b) $N=100$;

Fig. 9
c) $N=1000$.
291. Determine the order of smallness of: a) the suriace of a sphere, b) the volume of a sphere if the radius of the sphere r is an infinitesimal of order one. What will the orders be of the radius of the sphere and the volume of the sphere with respect to its surface?
292. Let the central angle α of a circular sector $A B O$ (Fig. 9) with radius R tend to zero. Determine the orders of the infinitesimals relative to the infinitesimal α : a) of the chord $A B ;$ b) of the line $C D ;$ c) of the area of $\triangle A B D$.
293. For $x \rightarrow 0$ determine the orders of smallness relative to x of the functions:
a) $\frac{2 x}{1+x}$;
b) $\sqrt{x+\sqrt{x}}$
c) $\sqrt[3]{x^{2}}-\sqrt{x^{2}}$;
d) $1-\cos x$;
294. Prove that the length of an infinitesimal arc of a circle of constant radius is equivalent to the length of its chord.
295. Can we say that an infinitesimally small segment and an infinitesimally small semicircle constructed on this segment as a diameter are equivalent?

Using the theorem of the ratio of two infinitesimals, find
296. $\lim _{x \rightarrow 0} \frac{\sin 3 x \cdot \sin 5 x}{\left(x-x^{3}\right)^{2}}$.
298. $\lim _{x \rightarrow 1} \frac{\ln x}{1-x}$.
297. $\lim _{x \rightarrow 0} \frac{\operatorname{arc} \sin \frac{x}{\sqrt{1-x^{2}}}}{\ln (1-x)}$.
299. $\lim _{x \rightarrow 0} \frac{\cos x-\cos 2 x}{1-\cos x}$.
300. Prove that when $x \rightarrow 0$ the quantities $\frac{x}{2}$ and $\sqrt{1+x}-1$ are equivalent. Using this result, demonstrate that when $|x|$ is small we have the approximate equality

$$
\begin{equation*}
\sqrt{1+x} \approx 1+\frac{x}{2} \tag{1}
\end{equation*}
$$

Applying formula (1), approximate the following:
a) $\sqrt{1.06}$;
b) $\sqrt{0.97}$;
c) $\sqrt{10}$;
d) $\sqrt{120}$
and compare the values obtained with tabular data.
301. Prove that when $x \longrightarrow 0$ we have the following approximate equalities accurate to terms of order x^{2} :
a) $\frac{1}{1+x} \approx 1-x$;
b) $\sqrt{\overline{a^{2}+x}} \approx a+\frac{x}{2 a} \quad(a>0)$;
c) $(1+x)^{n} \approx 1+n x$ (n is a positive integer);
d) $\log (1+x)=M x$,
where $M=\log e=0.43429 \ldots$
Using these formulas, approximate:

1) $\frac{1}{1.02}$; 2) $\frac{1}{0.97}$; 3) $\frac{1}{105}$; 4) $\sqrt{\overline{15}}$; 5) 1.04^{8}; 6) 0.93^{4}; 7) $\log 1.1$.

Compare the values obtained with tabular data.
2*
302. Show that for $x \rightarrow \infty$ the rational integral function

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n} \quad\left(a_{0} \neq 0\right)
$$

is an infinitely large quantity equivalent to the term of highest degree $a_{0} x^{n}$.
303. Let $x \rightarrow \infty$. Taking x to be an infinite of the first order, determine the order of growth of the functions:
a) $x^{2}-100 x-1,000$;
b) $\frac{x^{5}}{x+2}$;
c) $\sqrt{x+\sqrt{x}}$
d) $\sqrt[3]{x-2 x^{2}}$.

Sec. 5. Continuity of Functions

1°. Deflnition of continuity. A function $f(x)$ is continuous when $x=\xi$ (or "at the point ξ "), if: 1) this function is defined at the point ξ, that is, there exists a number $f(\xi) ; 2$) there exists a finite limit $\left.\lim _{x \rightarrow \xi} f(x) ; 3\right)$ this limit is equal to the value of the function at the point ξ, i.e.,

Putting

$$
\begin{gather*}
\lim _{x \rightarrow \xi} f(x)=f(\xi) . \tag{1}\\
x=\xi+\Delta \xi
\end{gather*}
$$

where $\Delta \xi \longrightarrow 0$, condition (1) may be rewritten as

$$
\begin{equation*}
\lim _{\Delta \xi \rightarrow 0} \Delta f(\xi)=\lim _{\Delta \xi \rightarrow 0}[f(\xi+\Delta \xi)-f(\xi)]=0, \tag{2}
\end{equation*}
$$

or the function $f(x)$ is continuous at the point ξ if (and only if) at this point to an infinitesimal increment in the argument there corresponds an infinitesimal increment in the function.

If a function is continuous at every point of some region (interval, etc.), then it is said to be continuous in this region.

Example 1. Prove that the function

$$
y=\sin x
$$

Is continuous for every value of the argument x.
Solution. We have

$$
\Delta y=\sin (x+\Delta x)-\sin x=2 \sin \frac{\Delta x}{2} \cos \left(x+\frac{\Delta x}{2}\right)=\frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} \cdot \cos \left(x+\frac{\Delta x}{2}\right) \cdot \Delta x
$$

Since

$$
\lim _{\Delta x \rightarrow 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}}=1 \text { and }\left|\cos \left(x+\frac{\Delta x}{2}\right)\right| \leqslant 1,
$$

it follows that for any x we have

$$
\lim _{\Delta x \rightarrow 0} \Delta y=0 .
$$

Hence, the function $\sin x$ is continuous when $-\infty<x<+\infty$.
$2^{\text {o }}$. Points of discontinuity of a function. We say that a function $f(x)$ has a discontinuity at $x=x_{0}$ (or at the point x_{0}) within the domain of definition of the function or on the boundary of this domain if there is a break in the continuity of the function at this point.

Example 2. The function $f(x)=\frac{1}{(1-x)^{2}}$ (Fig. $10 a$) is discontinuous when $x=1$. This function is not defined at the point $x=1$, and no matter

(a)

(b)

Fig. 10
how we choose the number $f(1)$, the redefined function $f(x)$ will not be continuous for $x=1$.

If the function $f(x)$ has finite limits:

$$
\lim _{x \rightarrow x_{0}-0} f(x)=f\left(x_{0}-0\right) \quad \text { and } \lim _{x \rightarrow x_{0}+0} f(x)=f\left(x_{0}+0\right),
$$

and not all three numbers $f\left(x_{0}\right), f\left(x_{0}-0\right), f\left(x_{0}+0\right)$ are equal, then x_{0} is called a discontinuity of the first kind. In particular, if

$$
f\left(x_{0}-0\right)=f\left(x_{0}+0\right)
$$

then x_{0} is called a removable discontinuity.
For continuity of a function $f(x)$ at a point x_{0}, it is necessary and sufficient that

$$
f\left(x_{0}\right)=f\left(x_{0}-0\right)=f\left(x_{0}+0\right) .
$$

Example 3. The function $f(x)=\frac{\sin x}{|x|}$ has a discontinuity of the first kind at $x=0$. Indeed, here,

$$
f(+0)=\lim _{x \rightarrow+0} \frac{\sin x}{x}=+1
$$

and

$$
f(-0)=\lim _{x \rightarrow-0} \frac{\sin x}{-x}=-1
$$

Example 4. The function $y=E(x)$, where $E(x)$ denotes the integral part of the number x [i.e., $E(x)$ is an integer that satisfies the equality $x=E(x)+q$, where $0<q<1$, is discontinuous (Fig. 10b) at every integral point: $x=0$, $\pm 1, \pm 2, \ldots$, and all the discontinuities are of the first kind.

Indeed, if n is an integer, then $E(n-0)=n-1$ and $E(n+0)=n$. At all other points this function is, obviously, continuous.

Discontinuities of a function that are not of the first kind are called discontinuities of the second kind.

Infinite discontinuities also belong to discontinuities of the second kind. These are points x_{0} such that at least one of the one-sided limits, $f\left(x_{0}-0\right)$ or $f\left(x_{0}+0\right)$, is equal to ∞ (see Example 2).

Example 5. The function $y=\cos \frac{\pi}{x}$ (Fig. 10c) at the point $x=0$ has a discontinuity of the second kind, since both one-sided limits are nonexistent here:

$$
\lim _{x \rightarrow-0} \cos \frac{\pi}{x} \text { and } \lim _{x \rightarrow+0} \cos \frac{\pi}{x} .
$$

3°. Properties of continuous functions. When testing functions for continuity, bear in mind the following theorems:

1) the sum and product of a limited number of functions continuous in some region is a function that is continuous in this region;
2) the quotient of two functions continuous in some region is a continuous function for all values of the argument of this region that do not make the divisor zero;
3) if a function $f(x)$ is continuous in an interval (a, b), and a set of its values is contained in the interval (A, B), and a function $\varphi(x)$ is continuous in (A, B), then the composite function $\varphi[f(x)]$ is continuous in (a, b).

A function $f(x)$ continuous in an interval $[a, b]$ has the following properties:

1) $f(x)$ is bounded on $[a, b]$, i.e., there is some number M such that $|f(x)| \leqslant M$ when $a \leqslant x \leqslant b$;
2) $f(x)$ has a minimum and a maximum value on $[a, b\rceil$;
3) $E(x)$ takes on all intermediate values between the two given values; that is, if $f(\alpha)=A$ and $f(\beta)=B \quad(a \leqslant \alpha<\beta \leqslant b)$, then no matter what the number C between A and B, there will be at least one value $x=\gamma(\alpha<\gamma<\beta)$ such that $f(\gamma)=C$.

In particular, if $f(\alpha) f(\beta)<0$, then the equation

$$
f(x)=0
$$

has at least one real root in the interval (α, β).
304. Show that the function $y=x^{2}$ is continuous for any value of the argument x.
305. Prove that the rational integral function

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}
$$

is continuous for any value of x.
306. Prove that the rational fractional function

$$
R(x)=\frac{a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n}}{b_{0} x^{m}+b_{1} x^{m-1}+\ldots+b_{m}}
$$

is continuous for all values of x except those that make the denominator zero.

307*. Prove that the function $y=\sqrt{x}$ is continuous for $x \geqslant 0$.
308. Prove that if the function $f(x)$ is continuous and nonnegative in the interval (a, b), then the function

$$
F(x)=\sqrt{f(x)}
$$

is likewise continuous in this interval.
309*. Prove that the function $y=\cos x$ is continuous for any x.
310. For what values of x are the functions a) $\tan x$ and b) $\cot x$ continuous?

311*. Show that the function $y=|x|$ is continuous. Plot the graph of this function.
312. Prove that the absolute value of a continuous function is a continuous function.
313. A function is defined by the formulas

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { for } x \neq 2 \\ A & \text { for } x=2\end{cases}
$$

How should one choose the value of the furction $A=f(2)$ so that the thus redefined function $f(x)$ is continuous for $x=2$? Plot the graph of the function $y=f(x)$.
314. The right side of the equation

$$
f(x)=1-x \sin \frac{1}{x}
$$

is meaningless for $x=0$. How should one choose the value $f(0)$ so that $f(x)$ is continuous for $x=0$?
315. The function

$$
f(x)=\arctan \frac{1}{x-2}
$$

is meaningless for $x=2$. Is it possible to define the value of $f(2)$ in such a way that the redefined function should be continuous for $x=2$?
316. The function $f(x)$ is not defined for $x=0$. Define $f(0)$ so that $f(x)$ is continuous for $x=0$, if:
a) $f(x)=\frac{(1+x)^{n}-1}{x} \quad(n$ is a positive integer $)$;
b) $f(x)=\frac{1-\cos x}{x^{2}}$;
c) $f(x)=\frac{\ln (1+x)-\ln (1-x)}{x}$;
d) $f(x)=\frac{e^{x}-e^{-x}}{x}$;
e) $f(x)=x^{2} \sin \frac{1}{x}$;
f) $f(x)=x \cot x$.

Investigate the following functions for continuity:
317. $y=\frac{x^{2}}{x-2}$.
324. $y=\ln \left|\tan \frac{x}{2}\right|$.
318. $y=\frac{1+x^{3}}{1+x}$.
325. $y=\arctan \frac{1}{x}$.
319. $y=\frac{\sqrt{7+x}-3}{\lambda^{2}-4}$
326. $y=(1+x) \arctan \frac{1}{1-x^{2}}$.
320. $y=\frac{x}{|x|}$.
321. a) $y=\sin \frac{\pi}{x}$;
b) $y=x \sin \frac{\pi}{x}$.
322. $y=\frac{. x}{\sin x}$.
323. $y=\ln (\cos x)$.
330. $y=\left\{\begin{array}{ll}x^{2}, & \text { for } x \leqslant 3, \\ 2 x+1 & \text { for } x>3 .\end{array}\right.$ Plot the graph of this function.
331. Prove that the Dirichlet function $\chi(x)$, which is zero for irrational x and unity for rational x, is discontinuous for every value of x.

Investigate the following functions for continuity and construct their graphs:
332. $y=\lim _{n \rightarrow \infty} \frac{1}{1+x^{n}} \quad(x \geqslant 0)$.
333. $y=\lim _{n \rightarrow \infty}(x \arctan n x)$.
334. a) $y=\operatorname{sgn} x$, b) $y=x \operatorname{sgn} x$, c) $y=\operatorname{sgn}(\sin x)$, where the function $\operatorname{sgn} x$ is defined by the formulas:

$$
\operatorname{sgn} x=\left\{\begin{aligned}
+1, & \text { if } x>0 \\
0, & \text { if } x=0 \\
-1, & \text { if } x<0
\end{aligned}\right.
$$

335. a) $y=x-E(x)$, b) $y=x E(x)$, where $E(x)$ is the integral part of the number x.
336. Give an example to show that the sum of two discontinuous functions may be a continuous function.

337*. Let α be a regular positive fraction tending to zero $(0<\alpha<1)$. Can we put the limit of α into the equality

$$
E(1+\alpha)=E(1-\alpha)+1,
$$

which is true for all values of α ?
338. Show that the equation

$$
x^{3}-3 x+1=0
$$

has a real root in the interval (1,2). Approximate this root.
339. Prove that any polynomial $P(x)$ of odd power has at least one real root.
340. Prove that the equation
$\tan x=x$
has an infinite number of real roots.

Chapter II
 DIFFERENTIATION OF FUNCTIONS

Sec. 1. Calculating Derivatives Directly

1°. Increment of the argument and increment of the function. If x and x_{1} are values of the argument x, and $y=f(x)$ and $y_{1}=f\left(x_{1}\right)$ are corresponding values of the function $y=f(x)$, then

$$
\Delta x=x_{1}-x
$$

is called the increment of the argument x in the interval $\left(x, x_{1}\right)$, and
or

$$
\Delta y=y_{1}-y
$$

$$
\begin{equation*}
\Delta y=f\left(x_{1}\right)-f(x)=f(x+\Delta x)-f(x) \tag{1}
\end{equation*}
$$

Fig. 11
is called the increment of the function y in the same interval $\left(x, x_{1}\right)$ (Fig. 11, where $\Delta x=M A$ and $\Delta y=A N$). The ratio

$$
\frac{\Delta y}{\Delta x}=\tan \alpha
$$

is the slope of the secant $M N$ of the graph of the function $y=f(x)$ (Fig. 11) and is called the mean rate of change of the function y over the interval $(x, x+\Delta x)$.

Example 1. For the function

$$
y=x^{2}-5 x+6
$$

calculate Δx and Δy, corresponding to a change in the argument:
a) from $x=1$ to $x=1$.1;
b) from $x=3$ to $x=2$.

Solution. We have
a) $\Delta x=1.1-1=0.1$,
$\Delta x=\left(1.1^{2}-5 \cdot 1.1+6\right)-\left(1^{2}-5 \cdot 1+6\right)=-0.29 ;$
b) $\Delta x=2-3=-1$, $\Delta y=\left(2^{2}-5 \cdot 2+6\right)-\left(3^{2}-5 \cdot 3+6\right)=0$.
Example 2. In the case of the hyperbola $y=\frac{1}{x}$, find the slope of the secant passing through the points $M\left(3, \frac{1}{3}\right)$ and $N\left(10, \frac{1}{10}\right)$.

Solution. Here, $\Delta x=10-3=7$ and $\Delta y=\frac{1}{10}-\frac{1}{3}=-\frac{7}{30}$. Hence, $k=\frac{\Delta y}{\Delta x}=-\frac{1}{30}$.
2°. The derivative. The derivative $y^{\prime}=\frac{d y}{d x}$ of a function $y=f(x)$ with respect to the argument x is the limit of the ratio $\frac{\Delta y}{\Delta x}$ when Δx approaches zero; that is.

$$
y^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x} .
$$

The magnitude of the derivative yields the slope of the langent $M T$ to the graph of the function $y=f(x)$ at the point x (Fig. 11):

$$
y^{\prime}=\tan \varphi
$$

Finding the derivative y^{\prime} is usually called differentiation of the function. The derivative $y^{\prime}=f^{\prime}(x)$ is the rate of change of the function at the point x.

Example 3. Find the derivative of the function

$$
y=x^{2}
$$

Solution. From formula (1) we have

$$
\Delta y=(x+\Delta x)^{2}-x^{2}=2 x \Delta x+(\Delta x)^{2}
$$

and

Hence,

$$
\frac{\Delta y}{\Delta x}=2 x+\Delta x .
$$

,

$$
y^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0}(2 x+\Delta x)=2 x
$$

3°. One-sided derivatives. The expressions

$$
f_{-}^{\prime}(x)=\lim _{\Delta x \rightarrow-0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

and

$$
f_{+}^{\prime}(x)=\lim _{\Delta x \rightarrow+0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

are called, respectively, the left-hand or right-hand derivative of the function $f(x)$ at the point x. For $f^{\prime}(x)$ to exist, it is necessary and sufficient that

$$
f_{-}^{\prime}(x)=f_{+}^{\prime}(x)
$$

Example 4 Find $f_{-}^{\prime}(0)$ and $f_{+}^{\prime}(0)$ of the function

$$
f(x)==|x| .
$$

Solution. By the definition we have

$$
\begin{aligned}
& f_{-}^{\prime}(0)=\lim _{\Delta x \rightarrow-0} \frac{|\Delta x|}{\Delta x}=-1 \\
& f_{+}^{\prime}(0)=\lim _{\Delta x \rightarrow+0} \frac{|\Delta x|}{\Delta x}=1
\end{aligned}
$$

4°. Infinite derivative. If at some point we have

$$
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=\infty
$$

then we say that the continuous function $f(x)$ has an infinite derivative at x. In this case, the tangent to the graph of the function $y=f(x)$ is perpendicular to the x-axis.

Example 5. Find $f^{\prime}(0)$ of the function

Solution. We have

$$
y=\sqrt[3]{x}
$$

$$
f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{\sqrt[3]{\Delta x}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt[3]{\Delta x^{2}}}=\infty
$$

341. Find the increment of the function $y=x^{2}$ that corresponds to a change in argument:
a) from $x=1$ to $x_{1}=2$;
b) from $x=1$ to $x_{1}=1.1$;
c) from $x=1$ to $x_{1}=1+h$.
342. Find Δy of the function $y=\sqrt[3]{x}$ if:
a) $x=0, \Delta x=0.001$;
b) $x=8, \quad \Delta x=-9$;
c) $x=a, \Delta x=h$.
343. Why can we, for the function $y=2 x+3$, determine the increment Δy if all we know is the corresponding increment $\Delta x=5$, while for the function $y=x^{2}$ this cannot be done?
344. Find the increment Δy and the ratio $\frac{\Delta y}{\Delta x}$ for the functions:
a) $y=\frac{1}{\left(x^{2}-2\right)^{2}}$
for $x=1$
and $\Delta x=0.4 ;$
b) $y=\sqrt{x}$
for $x=0$
and $\Delta x=0.0001$;
c) $y=\log x$
for $x=100,000$
and $\Delta x=:-90,000$.
345. Find Δy and $\frac{\Delta y}{\Delta x}$ which correspond to a change in argument from x to $x+\Delta x$ for the functions:
a) $y=a x+b$;
b) $y=x^{8}$;
c) $y=\frac{1}{x^{2}}$;
d) $y=\sqrt{\bar{x}}$;
e) $y=2^{x}$;
f) $y=\ln x$.
346. Find the slope of the secant to the parabola

$$
y=2 x-x^{2},
$$

if the abscissas of the points of intersection are equal:
a) $x_{1}=1, x_{2}=2$;
b) $x_{1}=1, x_{2}=0.9$;
c) $x_{1}=1, x_{2}=1+h$.

To what limit does the slope of the secant tend in the latter case if $h \longrightarrow 0$?
347. What is the mean rate of change of the function $y=x^{3}$ in the interval $1 \leqslant x \leqslant 4$?
348. The law of motion of a point is $s=2 t^{2}+3 t+5$, where the distance s is given in centimetres and the time t is in seconds. What is the average velocity of the point over the interval of time from $t=1$ to $t=5$?
349. Find the mean rise of the curve $y=2^{x}$ in the interval $1 \leqslant x \leqslant 5$.
350. Find the mean rise of the curve $y=f(x)$ in the interval $\lceil x, x+\Delta x\rceil$.
351. What is to be understood by the rise of the curve $y=f(x)$ at a given point x ?
352. Define: a) the mean rate of rotation; b) the instantaneous rate of rotation.
353. A hot body placed in a medium of lower temperature cools off. What is to be understood by: a) the mean rate of cooling; b) the rate of cooling at a given instant?
354. What is to be understood by the rate of reaction of a substance in a chemical reaction?
355. Let $m=f(x)$ be the mass of a non-homogeneous rod over the interval $[0, x]$. What is to be understood by: a) the mean linear density of the rod on the interval $[x, x+\Delta x] ;$ b) the linear density of the rod at a point x ?
356. Find the ratio $\frac{\Delta y}{\Delta x}$ of the function $y=\frac{1}{x}$ at the point $x=2$, if: a) $\Delta x=1$; b) $\Delta x=0.1$; c) $\Delta x=0.01$. What is the derivative y^{\prime} when $x=2$?

357**. Find the derivative of the function $y=\tan x$.
358. Find $y^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}$ of the functions:
a) $y=x^{3}$;
b) $y=\frac{1}{x^{2}}$;
c) $y=\sqrt{x}$;
d) $y=\cot x$.
359. Calculate $f^{\prime}(8)$, if $f(x)=\sqrt[3]{x}$.
360. Find $f^{\prime}(0), f^{\prime}(1), f^{\prime}(2)$, if $f(x)=x(x-1)^{2}(x-2)^{3}$.
361. At what points does the derivative of the function $f(x)=x^{2}$ coincide numerically with the value of the function itself, that is, $f(x)=f^{\prime}(x)$?
362. The law of motion of a point is $s=5 t^{2}$, where the distance s is in metres and the time t is in seconds. Find the speed at $t=3$.
363. Find the slope of the tangent to the curve $y=0.1 x^{2}$ drawn at a point with abscissa $x=2$.
364. Find the slope of the tangent to the curve $y=\sin x$ at the point ($\pi, 0$).
365. Find the value of the derivative of the function $f(x)=\frac{1}{x}$ at the point $x=x_{0}\left(x_{0} \neq 0\right)$.

366*. What are the slopes of the tangents to the curves $y=\frac{1}{x}$ and $y=x^{2}$ at the point of their intersection? Find the angle between these tangents.

367**. Show that the following functions do not have finite derivatives at the indicated points:
a) $y=\sqrt[3]{x^{2}}$
at $x=0$;
b) $y=\sqrt[5]{x-1}$
at $x=1$;
c) $y=|\cos x|$
at $x=\frac{2 k+1}{2} \pi, k=0, \pm 1, \pm 2, \ldots$

Sec. 2. Tabular Differentiation

1°. Basic rules for finding a derivative. If c is a constant and $u=\varphi(x)$, $v=\psi(x)$ are functions that have derivatives, then

1) $(c)^{\prime}=0 ;$
2) $(x)^{\prime}=1$;
3) $(u \pm v)^{\prime}=u^{\prime} \pm v^{\prime}$;
4) $(c u)^{\prime}=c u^{\prime}$;
5) $(u v)^{\prime}=u^{\prime} v+v^{\prime} u$;
6) $\left(\frac{u}{v}\right)^{\prime}=\frac{v u^{\prime}-v^{\prime} u}{v^{2}} \quad(v \neq 0)$;
7) $\left(\frac{c}{v}\right)^{\prime}=\frac{-c v^{\prime}}{v^{2}} \quad(v \neq 0)$.
$\mathbf{2}^{\circ}$. Table of derivatives of basic functions
I. $\left(x^{n}\right)^{\prime}=n x^{n-1}$.
II. $(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}} \quad(x>0)$.
III. $(\sin x)^{\prime}=\cos x$.
IV. $(\cos x)^{\prime}=-\sin x$.
V. $(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}$.
VI. $(\cot x)^{\prime}=\frac{-1}{\sin ^{2} x}$.
VII. $(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \quad(|x|<1)$.
VIII. $(\arccos x)^{\prime}=\frac{-1}{\sqrt{1-x^{2}}} \quad(|x|<1)$.
IX. $(\operatorname{drc} \operatorname{la|} x)^{\prime}=\frac{1}{1+x^{2}}$.
X. $(\operatorname{arccot} x)^{\prime}=\frac{-1}{x^{2}+1}$.
XI. $\left(a^{x}\right)^{\prime}=a^{x} \ln a$.
XII. $\left(e^{x}\right)^{\prime}=e^{x}$.
XIII. $(\ln x)^{\prime}=\frac{1}{x} \quad(x>0)$.
XIV. $\left(\log _{a} x\right)^{\prime}=\frac{1}{x \ln a}=\frac{\log _{a} e}{x} \quad(x>0, a>0)$.
XV. $(\sinh x)^{\prime}=\cosh x$.
XVI. $(\cosh x)^{\prime}=\sinh x$.
XVII. $(\tanh x)^{\prime}=\frac{1}{\cosh ^{2} x}$.
XVIII. $(\operatorname{coth} x)^{\prime}=\frac{-1}{\sinh ^{2} x}$.
XIX. $(\operatorname{arcsinh} x)^{\prime}=\frac{1}{\sqrt{1+x^{2}}}$.
$X X .(\operatorname{arccosh} x)^{\prime}=\frac{1}{\sqrt{x^{2}-1}}(|x|>1)$.
XXI. $(\operatorname{arctanh} x)^{\prime}=\frac{1}{1-x^{2}} \quad(|x|<1)$.
XXII. $(\operatorname{arccoth} x)^{\prime}=\frac{-1}{x^{2}-1} \quad(|x|>1)$.
3°. Rule for differentiating a composite function. If $y=f(u)$ and $u=\varphi(x)$, that is, $y=f[\varphi(x)]$, where the functions y and u have derivatives, then

$$
\begin{equation*}
y_{x}^{\prime}=\dot{y}_{u}^{\prime} u_{x}^{\prime} \tag{1}
\end{equation*}
$$

or in other notations

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x} .
$$

This rule extends to a series of any finite number of differentiable functions.

Example 1. Find the derivative of the function

$$
y=\left(x^{2}-2 x+3\right)^{3}
$$

Solution. Putting $y=u^{5}$, where $u=\left(x^{2}-2 x+3\right)$, by formula (1) we will have

$$
y^{\prime}=\left(u^{5}\right)_{u}^{\prime}\left(x^{2}-2 x+3\right)_{x}^{\prime}=5 u^{4}(2 x-2)=10(x-1)\left(x^{2}-2 x+3\right)^{4}
$$

Example 2. Find the derivative of the function

$$
y=\sin ^{3} 4 x
$$

Solution. Putting
we find

$$
y=u^{2} ; \quad u=\sin v ; \quad v=4 x
$$

$$
y^{\prime}=3 u^{2} \cdot \cos v \cdot 4=12 \sin ^{2} 4 x \cos 4 x
$$

Find the derivatives of the following functions (the rule for differentiating a composite function is not used in problems 368-408).

A. Algebraic Functions

368. $y=x^{5}-4 x^{3}+2 x-3$. 375. $y=3 x^{\frac{2}{3}}-2 x^{\frac{5}{2}}+x^{-3}$.
369. $y=\frac{1}{4}-\frac{1}{3} x+x^{2}-0.5 x^{4}$. $\quad 376^{*} . y=x^{2} \sqrt[3]{x^{2}}$.
370. $y=a x^{2}+b x+c$.
371. $y=\frac{a}{\sqrt[3]{x^{2}}}-\frac{b}{x \sqrt[3]{x}}$.
372. $y=\frac{-5 x^{3}}{a}$.
373. $y=\frac{a+b x}{c+d x}$.
$372 y=a t^{m}+b t^{m+n}$.
374. $y=\frac{2 x+3}{x^{2}-5 x+5}$.
375. $y=\frac{a x^{6}+b}{\sqrt{a^{2}+b^{2}}}$.
376. $y=\frac{2}{2 x-1}-\frac{1}{x}$.
377. $y=\frac{\pi}{x}+\ln 2$.
378. $y=\frac{1+\sqrt{z}}{1-\sqrt{z}}$

B. Inverse Circular and Trigonometric Functions

382. $y=5 \sin x+3 \cos x$.
383. $y=\tan x-\cot x$.
384. $y=\frac{\sin x+\cos x}{\sin x-\cos x}$.
385. $y=2 t \sin t-\left(t^{2}-2\right) \cos t$.
386. $y=\arctan x+\operatorname{arccot} x$.
387. $y=x \cot x$.
388. $y=x \arcsin x$.
389. $y=\frac{\left(1+x^{2}\right) \arctan x-x}{2}$.

C. Exponential and Logarithmic Functions

390. $y=x^{7} \cdot e^{x}$.
391. $y=(x-1) e^{x}$.
392. $y=\frac{e^{x}}{x^{2}}$.
393. $y=\frac{x^{3}}{e^{x}}$.
394. $f(x)=e^{x} \cos x$.
395. $y=\left(x^{2}-2 x+2\right) e^{x}$.
396. $y=e^{x} \arcsin x$.
397. $y=\frac{x^{2}}{\ln x}$.
398. $y=x^{3} \ln x-\frac{x^{2}}{3}$.
399. $y=\frac{1}{x}+2 \ln x-\frac{\ln x}{x}$.
400. $y=\ln x \log x-\ln a \log _{a} x$.

D. Hyperbolic and Inverse Hyperbolic Functions

401. $y=x \sinh x$.
402. $y=\frac{x^{2}}{\cosh x}$.
403. $y=\tanh x-x$.
$404 y=\frac{3 \operatorname{coth} x}{\ln x}$
404. $y=\arctan x-\operatorname{arctanh} x$.
405. $y=\arcsin x \operatorname{arcsinh} x$.
406. $y=\frac{\operatorname{arccosh} x}{x}$.
407. $y=\frac{\operatorname{arccoth} x}{1-x^{2}}$.

E. Composite Functions

In problems 409 to 466 , use the rule for differentiating a composite furiction with one intermediate argument.

Find the derivatives of the following functions:
409**. $y=\left(1+3 x-5 x^{2}\right)^{30}$.
Solution. Denote $1+3 x-5 x^{2}=u$; then $y=u^{30}$. We have:

$$
y_{u}^{\prime}=30 u^{29} ; \quad u_{x}^{\prime}=3-10 x
$$

$$
u_{x}=30 u^{29} \cdot(3-10 x)=30\left(1+3 x-5 x^{2}\right)^{29} \cdot(3-10 x) .
$$

410. $y=\left(\frac{a x+b}{c}\right)^{2}$.
411. $f(y)=(2 a+3 b y)^{2}$.
412. $y=\left(3+2 x^{2}\right)^{4}$.
413. $y=\frac{3}{56(2 x-1)^{2}}-\frac{1}{24(2 x-1)^{3}}-\frac{1}{40(2 x-1)^{6}}$.
414. $y=\sqrt{1-x^{2}}$.
415. $y=\sqrt[3]{a+b x^{2}}$.
416. $y=\left(a^{2 / 2}-x^{2 / 2}\right)^{1 / 2}$.
417. $y=(3-2 \sin x)^{3}$.

Solution. $\quad y^{\prime}=5(3-2 \sin x)^{4} \cdot(3-2 \sin x)^{\prime}=5(3-2 \sin x)^{4}(-2 \cos x)=$
$-10 \cos x(3-2 \sin x)^{4}$.
418. $y=\tan x-\frac{1}{3} \tan ^{2} x+\frac{1}{5} \tan ^{8} x$.
419. $y=\sqrt{\cot x}-\sqrt{\cot \alpha}$.
423. $y=\frac{1}{3 \cos ^{3} x}-\frac{1}{\cos x}$.
420. $y=2 x+5 \cos ^{2} x$.
424. $y=\sqrt{\frac{3 \sin x-2 \cos x}{5}}$.

421*. $x=\operatorname{cosec}^{2} t+\sec ^{2} t$.
425. $y=\sqrt[3]{\sin ^{2} x}+\frac{1}{\cos ^{3} x}$.
422. $f(x)=-\frac{1}{6(1-3 \cos x)^{2}}$.
426. $y=\sqrt{1+\arcsin x}$.
427. $y=\sqrt{\arctan x}-(\arcsin x)^{2}$.
428. $y=\frac{1}{\arctan x}$.
429. $y=\sqrt{x e^{x}+x}$.
430. $y=\sqrt[3]{2 e^{x}-2^{x}+1}+\ln ^{5} x$.
431. $y=\sin 3 x+\cos \frac{x}{5}+\tan \sqrt{x}$.

Solution. $y^{\prime}=\cos 3 x \cdot(3 x)^{\prime}-\sin \frac{x}{5}\left(\frac{x}{5}\right)^{\prime}+\frac{1}{\cos ^{2} \sqrt{x}}(\sqrt{x})^{\prime}=3 \cos 3 x-$ $-\frac{1}{5} \sin \frac{x}{5}+\frac{1}{2 \sqrt{x} \cos ^{2} \sqrt{x}}$.
432. $y=\sin \left(x^{2}-5 x+1\right)+\tan \frac{a}{x}$.
433. $f(x)=\cos (\alpha x+\beta)$.
434. $f(t)=\sin t \sin (t+\varphi)$.
435. $y=\frac{1+\cos 2 x}{1-\cos 2 x}$.
436. $f(x)=a \cot \frac{x}{a}$.
437. $y=-\frac{1}{20} \cos \left(5 x^{2}\right)-\frac{1}{4} \cos x^{2}$.
438. $y=\arcsin 2 x$.

Solution. $y^{\prime}=\frac{1}{\sqrt{1-(2 x)^{2}}} \cdot(2 x)^{\prime}=\frac{2}{\sqrt{1-4 x^{2}}}$.
439. $y=\arcsin \frac{1}{x^{2}}$.
440. $f(x)=\arccos \sqrt{x}$.
441. $y=\arctan \frac{1}{x}$.
442. $y=\operatorname{arccot} \frac{1+x}{1-x}$.
443. $y=5 e^{-x^{2}}$.
444. $y=\frac{1}{5^{x^{2}}}$.
445. $y=x^{2} 10^{2 x}$.
446. $f(t)=t \sin 2^{t}$.
447. $y=\arccos e^{x}$.
448. $y=\ln (2 x+7)$.
449. $y=\log \sin x$.
450. $y=\ln \left(1-x^{2}\right)$.
452. $y=\ln \left(e^{x}+5 \sin x-4 \arcsin x\right)$
453. $y=\arctan (\ln x)+\ln (\arctan x)$.
454. $y=\sqrt{\ln x+1}+\ln (\sqrt{x}+1)$.

F. Miscellaneous Functions

485**. $y=\sin ^{2} 5 x \cos ^{2} \frac{x}{3}$.
456. $y=-\frac{11}{2(x-2)^{2}}-\frac{4}{x-2}$.
457. $y=-\frac{15}{4(x-3)^{4}}-\frac{10}{3(x-3)^{2}}-\frac{1}{2(x-3)^{2}}$.
458. $y=\frac{x^{3}}{8\left(1-x^{2}\right)^{4}}$.
459. $y=\frac{\sqrt{2 x^{2}-2 x+1}}{x}$.
460. $y=\frac{x}{a^{2} \sqrt{a^{2}+x^{2}}}$.
461. $y=\frac{x^{3}}{3 \sqrt{\left(1+x^{2}\right)^{2}}}$.
462. $y=\frac{3}{2} \sqrt[3]{x^{2}}+\frac{18}{7} x \sqrt[6]{x}+\frac{9}{-} x \sqrt[3]{x^{2}}+\frac{6}{13} x^{2} \sqrt[6]{x}$
463. $y=\frac{1}{8} \sqrt[3]{\left(1+x^{3}\right)^{3}}-\frac{1}{5} \sqrt[3]{\left(1+x^{3}\right)^{3}}$.
464. $y=\frac{4}{3} \sqrt[4]{\frac{x-1}{x+2}}$.
465. $y=x^{4}\left(a-2 x^{2}\right)^{2}$.
466. $y=\left(\frac{a+b x^{n}}{a-b x^{n}}\right)^{m}$.
467. $y=\frac{9}{5(x+2)^{3}}-\frac{3}{(x+2)^{4}}+\frac{2}{(x+2)^{2}}-\frac{1}{2(x+2)^{2}}$.
468. $y=(a+x) \sqrt{a-x}$.
469. $y=\sqrt{(x+a)(x+b)(x+c)}$.
470. $z=\sqrt[3]{y+\sqrt{y}}$.
471. $f(t)=(2 t+1)(3 t+2) \sqrt[3]{3 t+2}$.
472. $x=\frac{1}{\sqrt{2 a y-y^{2}}}$.
473. $y=\ln \left(\sqrt{1+e^{x}}-1\right)-\ln \left(\sqrt{1+e^{x}}+1\right)$.
474. $y=\frac{1}{15} \cos ^{3} x\left(3 \cos ^{2} x-5\right)$.
475. $y=\frac{\left(\tan ^{2} x-1\right)\left(\tan ^{4} x+10 \tan ^{2} x+1\right)}{3 \tan ^{8} x}$.
476. $y=\tan ^{8} 5 x$.
477. $y=\frac{1}{2} \sin \left(x^{2}\right)$.
478. $y=\sin ^{2}\left(t^{3}\right)$.
479. $y=3 \sin x \cos ^{2} x+\sin ^{3} x$.
480. $y=\frac{1}{3} \tan ^{3} x-\tan x+x$.
481. $y=-\frac{\cos x}{3 \sin ^{3} x}+\frac{4}{3} \cot x$.
489. $y=\sqrt{a^{2}-x^{2}}+a \arcsin \frac{x}{a}$.
482. $y=\sqrt{\alpha \sin ^{2} x+\beta \cos ^{2} x}$.
490. $y=x \sqrt{a^{2}-x^{2}}+a^{2} \arcsin \frac{x}{a}$.
483. $y=\arcsin x^{2}+\arccos x^{2}$.
484. $y=\frac{1}{2}(\arcsin x)^{2} \arccos x$.
492. $y=\left(x-\frac{1}{2}\right) \arcsin \sqrt{x}+\frac{1}{2} \sqrt{x-x^{2}}$.
493. $y=\ln (\arcsin 5 x)$.
494. $y=\arcsin (\ln x)$.
495. $y=\arctan \frac{x \sin \alpha}{1-x \cos \alpha}$.
496. $y=\frac{2}{3} \arctan \frac{5 \tan \frac{x}{2}+4}{3}$.
497. $y=3 b^{2} \arctan \sqrt{\frac{x}{b-x}}-(3 b+2 x) \sqrt{b x-x^{2}}$.
498. $y=-\sqrt{2} \operatorname{arccot} \frac{\tan x}{\sqrt{2}}-x$.
499. $y=\sqrt{e^{a x}}$.
500. $y=e^{\sin ^{2} x}$.
501. $F(x)=\left(2 m a^{m x}+b\right)^{p}$.
502. $F(t)=e^{a t} \cos \beta t$.
503. $y=\frac{(\alpha \sin \beta x-\beta \cos \beta x) e^{x x}}{\alpha^{2}+\beta^{2}}$.
504. $y=\frac{1}{10} e^{-x}(3 \sin 3 x-\cos 3 x)$ 507. $y=3^{\cot \frac{1}{x}}$.
505. $y=x^{n} a^{-x^{2}}$.
508. $y=\ln \left(a x^{2}+b x+c\right)$.
506. $y=\sqrt{\cos x} a^{\sqrt{\cos x}}$.
509. $y=\ln \left(x+\sqrt{a^{2}+x^{2}}\right)$.
510. $y=x-2 \sqrt{x}+2 \ln (1+\sqrt{x})$.
511. $y=\ln \left(a+x+\sqrt{2 a x+x^{2}}\right)$.

514*. $y=\ln \frac{(x-2)^{3}}{(x+1)^{3}}$.
512. $y=\frac{1}{\ln ^{2} x}$.
515. $y=\ln \frac{(x-1)^{3}(x-2)}{x-3}$.
513. $y=\ln \cos \frac{x-1}{x}$.
516. $y=-\frac{1}{2 \sin ^{2} x}+\ln \tan x$.
517. $y=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \ln \left(x+\sqrt{x^{2}-a^{2}}\right)$.
518. $y=\ln \ln \left(3-2 x^{3}\right)$.
519. $y=5 \ln ^{3}(a x+b)$.
520. $y=\ln \frac{\sqrt{x^{2}+a^{2}}+x}{\sqrt{x^{2}+a^{2}}-x}$.
521. $y=\frac{m}{2} \ln \left(x^{2}-a^{2}\right)+\frac{n}{2 a} \ln \frac{x-a}{x+a}$.
522. $y=x \cdot \sin \left(\ln x-\frac{\pi}{4}\right)$.
523. $y=\frac{1}{2} \ln \tan \frac{x}{2}-\frac{1}{2} \frac{\cos x}{\sin ^{2} x}$.
524. $f(x)=\sqrt{x^{2}+1}-\ln \frac{1+\sqrt{x^{2}+1}}{x}$.
525. $y=\frac{1}{3} \ln \frac{x^{2}-2 x+1}{x^{2}+x+1}$.
526. $y=2^{\operatorname{arcs} \sin 3 x}+(1-\arccos 3 x)^{2}$.
527. $y=3^{\frac{\sin a x}{\cos b x}}+\frac{1}{3} \frac{\sin ^{3} a x}{\cos ^{3} b x}$.
528. $y=\frac{1}{\sqrt{3}} \ln \frac{\tan \frac{x}{2}+2-\sqrt{3}}{\tan \frac{x}{2}+2+\sqrt{3}}$.
529. $y=\arctan \ln x$.
530. $y=\ln \arcsin x+\frac{1}{2} \ln ^{2} x+\arcsin \ln x$.
531. $y=\arctan \ln \frac{1}{x}$.
532. $y=\frac{\sqrt{2}}{3} \arctan \frac{x}{\sqrt{2}}+\frac{1}{6} \ln \frac{x-1}{x+1}$.
533. $y=\ln \frac{1+\sqrt{\sin x}}{1-\sqrt{\sin x}}+2 \arctan \sqrt{\sin x}$.
534. $y=\frac{3}{4} \ln \frac{x^{2}+1}{x^{2}-1}+\frac{1}{4} \ln \frac{x-1}{x+1}+\frac{1}{2} \arctan x$.
535. $f(x)=\frac{1}{2} \ln (1+x)-\frac{1}{6} \ln \left(x^{2}-x+1\right)+\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}}$.
536. $f(x)=\frac{x \arcsin x}{\sqrt{1-x^{2}}}+\ln \sqrt{1-x^{2}}$.
537. $y=\sinh ^{2} 2 x$.
542. $y=\operatorname{arccosh} \ln x$.
538. $y=e^{\alpha x} \cosh \beta x$.
543. $y=\operatorname{arctanh}(\tan x)$.
539. $y=\tanh ^{3} 2 x$.
544. $y=\operatorname{arc} \operatorname{coth}(\sec x)$.
540. $y=\ln \sinh 2 x$.
545. $y=\operatorname{arctanh} \frac{2 x}{1+x^{2}}$.
541. $y=\operatorname{arcsinh} \frac{x^{2}}{a^{2}}$.
546. $y=\frac{1}{2}\left(x^{2}-1\right) \operatorname{arctanh} x+\frac{1}{2} x$.
547. $y=\left(\frac{1}{2} x^{2}+\frac{1}{4}\right) \operatorname{arcsinh} x-\frac{1}{4} x \sqrt{1+x^{2}}$.
548. Find y^{\prime}, if:
a) $y=|x|$;
b) $y=x|x|$.

Construct the graphs of the functions y and y^{\prime}.
549. Find y^{\prime} if
550. Find $f^{\prime}(x)$ if

$$
y=\ln |x| \quad(x \neq 0)
$$

$$
f(x)= \begin{cases}1-x & \text { for } x \leq 0 \\ e^{-x} & \text { for } x>0\end{cases}
$$

551. Calculate $f^{\prime}(0)$ if

$$
f(x)=e^{-x} \cos 3 x
$$

Solution. $f^{\prime}(x)=e^{-x}(-3 \sin 3 x)-e^{-x} \cos 3 x$;

$$
f^{\prime}(0)=e^{0}(-3 \sin 0)-e^{0} \cos 0=-1
$$

552. $f(x)=\ln (1+x)+\arcsin \frac{x}{2}$. Find $f^{\prime}(1)$.
553. $y=\tan ^{2} \frac{\pi x}{6}$. Find $\left(\frac{d y}{d x}\right)_{x=2}$.
554. Find $f_{+}^{\prime}(0)$ and $f_{-}^{\prime}(0)$ of the functions:
a) $f(x)=\sqrt{\sin \left(x^{2}\right)}$;
b) $f(x)=\arcsin \frac{a^{2}-x^{2}}{a^{2}+x^{2}}$;
c) $f(x)=\frac{x}{1+e^{\frac{1}{x}}}, x \neq 0 ; f(0)=0$;
d) $f(x)=x^{2} \sin \frac{1}{x}, \quad x \neq 0 ; \quad f(0)=0 ;$
e) $f(x)=x \sin \frac{1}{x} \quad x \neq 0 ; \quad f(0)=0$
555. Find $f(0)+x f^{\prime}(0)$ of the function $f(x)=e^{-x}$.
556. Find $f(3)+(x-3) f^{\prime}(3)$ of the function $f(x)=\sqrt{1+x}$.
557. Given the functions $f(x)=\tan x$ and $\varphi(x)=\ln (1-x)$, find $\frac{f^{\prime}(0)}{\varphi^{\prime}(0)}$.
558. Given the functions $f(x)=1-x$ and $\varphi(x)=1-\sin \frac{\pi x}{2}$, find $\frac{\varphi^{\prime}(1)}{f^{\prime}(1)}$.
559. Prove that the derivative of an even function is an odd function, and the derivative of an odd function is an even function.
560. Prove that the derivative of a periodic function is also a periodic function.
561. Show that the function $y=x e^{-x}$ satisfies the equation $x y^{\prime}=(1-x) y$.
562. Show that the function $y=x e^{-\frac{x^{2}}{2}}$ satisfies the equation $x y^{\prime}=\left(1-x^{2}\right) y$.
563. Show that the function $y=\frac{1}{1+x+\ln x}$ satisfies the equation $x y^{\prime}=y(y \ln x-1)$.

G. Logarithmic Derivative

A logarithmic derivative of a function $y=f(x)$ is the derivative of the logarithm of this function; that is,

$$
(\ln y)^{\prime}=\frac{y^{\prime}}{y}=\frac{f^{\prime}(x)}{f(x)}
$$

Finding the derivative is sometimes simplified by first taking logs of the function.

Example. Find the derivative of the exponential function

$$
y=u^{v},
$$

where $u=\varphi(x)$ and $v=\psi(x)$.
Solution. Taking logarithms we get

$$
\ln y=v \ln u .
$$

Differentiate both sides of this equation with respect to x :

$$
(\ln y)^{\prime}=v^{\prime} \ln u+v(\ln u)^{\prime},
$$

or

$$
\frac{1}{y} y^{\prime}=v^{\prime} \ln u+v \frac{1}{u} u^{\prime},
$$

whence

$$
y^{\prime}=y\left(v^{\prime} \ln u+\frac{v}{u} u^{\prime}\right)
$$

or

$$
y^{\prime}=u^{v}\left(v^{\prime} \ln u+\frac{v}{u} u^{\prime}\right)
$$

564. Find y^{\prime}, if

$$
y=\sqrt[3]{x^{2}} \frac{1-x}{1+x^{2}} \sin ^{3} x \cos ^{2} x
$$

Solution. $\ln y=\frac{2}{3} \ln x+\ln (1-x)-\ln \left(1+x^{2}\right)+3 \ln \sin x+2 \ln \cos x ;$

$$
\begin{aligned}
& \frac{1}{y} y^{\prime}=\frac{2}{3} \frac{1}{x}+\frac{(-1)}{1-x}-\frac{2 x}{1+x^{2}}+3 \frac{1}{\sin x} \cos x-\frac{2 \sin x}{\cos x} \\
& \text { whence } y^{\prime}=y\left(\frac{2}{3 x}-\frac{1}{1-x}-\frac{2 x}{1+x^{2}}+3 \cot x-2 \tan x\right)
\end{aligned}
$$

565. Find y^{\prime}, if $y=(\sin x)^{x}$.

Solution. $\ln y=x \ln \sin x ; \quad \frac{1}{y} y^{\prime}=\ln \sin x+x \cot x ;$

$$
y^{\prime}=(\sin x)^{x}(\ln \sin x+x \cot x)
$$

In the following problems find y^{\prime} after first taking logs of the function $y=f(x)$:
566. $y=(x+1)(2 x+1)(3 x+1)$.
574. $y=\sqrt[x]{x}$.
567. $y=\frac{(x+2)^{2}}{(x+1)^{3}(x+3)^{4}}$.
575. $y=x^{V \bar{x}}$.
568. $y=\sqrt{\frac{x(x-1)}{x-2}}$.
576. $y=x^{x^{x}}$.
569. $y=x \sqrt[3]{\frac{x^{2}}{x^{2}+1}}$.
577. $y=x^{\sin x}$.
570. $y=\frac{(x-2)^{9}}{\sqrt{(x-1)^{3}(x-3)^{11}}}$.
578. $y=(\cos x)^{\sin x}$.
571. $y=\frac{\sqrt{x-1}}{\sqrt[3]{(x+2)^{2}} \sqrt{(x+3)^{2}}}$.
579. $y=\left(1+\frac{1}{x}\right)^{x}$.
572. $y=x^{x}$.
580. $y=(\arctan x)^{x}$.
573. $y=x^{x^{2}}$.

Sec. 3. The Derivatives of Functions Not Represented Explicitly

1°. The derivative of an inverse function. If a function $y=f(x)$ has a derivative $y_{x}^{\prime} \neq 0$, then the derivative of the inverse function $x=f^{-1}(y)$ is

$$
x_{y}=\frac{1}{y_{x}^{\prime}}
$$

or

$$
\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}} .
$$

Example 1. Find the derivative x_{y}^{\prime}, if

$$
y=x+\ln x
$$

Solution. We have $y_{x}^{\prime}=1+\frac{1}{x}=\frac{x+1}{x}$; hence, $x_{y}^{\prime}=\frac{x}{x+1}$.
2°. The derivatives of functions represented parametrically. If a function y is related to an argument x by means of a parameter t,

$$
\left\{\begin{array}{l}
x=\varphi(t) \\
y=\psi(t)
\end{array}\right.
$$

then

$$
y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{t}^{\prime}}
$$

or, in other notation,

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

Example 2. Find $\frac{d y}{d x}$, if

$$
\left.\begin{array}{l}
x=a \cos t \\
y=a \sin t
\end{array}\right\}
$$

Solution. We find $\frac{d x}{d t}=-a \sin t$ and $\frac{d y}{d x}=a \cos t$. Whence

$$
\frac{d y}{d x}=-\frac{a \cos t}{a \sin t}=-\cot t
$$

3°. The derivative of an implicit function. If the relationship between x and y is given in implicit form,

$$
\begin{equation*}
F(x, y)=0, \tag{1}
\end{equation*}
$$

then to find the derivative $y_{x}^{\prime}=y^{\prime}$ in the simplest cases it is sufficient: 1) to calculate the derivative, with respect to x, of the left side of equation (1), taking y as a function of x; 2) to equate this derivative to zero, that is, to put

$$
\begin{equation*}
\frac{d}{d x} F(x, y)=0 \tag{2}
\end{equation*}
$$

and 3) to solve the resulting equation for y^{\prime}.
Example 3. Find the derivative y_{x}^{\prime} if

$$
\begin{equation*}
x^{3}+y^{2}-3 a x y=0 \tag{3}
\end{equation*}
$$

Solution. Forming the derivative of the left side of (3) and equating it to zero, we get

$$
3 x^{2}+3 y^{2} y^{\prime}-3 a\left(y+x y^{\prime}\right)=0
$$

whence

$$
y^{\prime}=\frac{x^{2}-a y}{a x-y^{2}} .
$$

681. Find the derivative x_{y}^{\prime} if
a) $y=3 x+x^{3}$;
b) $y=x-\frac{1}{2} \sin x$;
c) $y=0.1 x+e^{\frac{x}{2}}$.

In the following problems, find the derivative $y^{\prime}=\frac{d y}{d x}$ of the functions y represented parametrically:
582. $\left\{\begin{array}{l}x=2 t-1, \\ y=t^{3} .\end{array}\right.$
589. $\left\{\begin{array}{l}x=a \cos ^{2} t, \\ y=b \sin ^{2} t .\end{array}\right.$
583. $\left\{\begin{array}{l}x=\frac{1}{t+1}, \\ y=\left(\frac{t}{t+1}\right)^{2} .\end{array}\right.$
590. $\left\{\begin{array}{l}x=a \cos ^{3} t, \\ y=b \sin ^{3} t .\end{array}\right.$
584. $\left\{\begin{array}{l}x=\frac{2 a t}{1+t^{2}}, \\ y=\frac{a\left(1-t^{2}\right)}{1+t^{2}} .\end{array}\right.$
591. $\left\{\begin{array}{l}x=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}}, \\ y=\frac{\sin ^{2} t}{\sqrt{\cos 2 t}},\end{array}\right.$
585. $\left\{\begin{array}{l}x=\frac{3 a t}{1+t^{3}}, \\ y=\frac{3 a t^{2}}{1+t^{3}} .\end{array}\right.$
592. $\left\{\begin{array}{l}x=\arccos \frac{1}{\sqrt{1+t^{2}}}, \\ y=\arcsin \frac{t}{\sqrt{1+t^{2}}},\end{array}\right.$
586. $\left\{\begin{array}{l}x=\sqrt{t}, \\ y=\sqrt[3]{t} .\end{array}\right.$
593. $\left\{\begin{array}{l}x=e^{-t} \\ y=e^{2 t}\end{array}\right.$,
587. $\left\{\begin{array}{l}x=\sqrt{t^{2}+1} \\ y=\frac{t-1}{\sqrt{t^{2}+1}} .\end{array}\right.$ 594. $\left\{\begin{array}{l}x=a\left(\ln \tan \frac{t}{2}+\cos t-\sin t\right), \\ y=a(\sin t+\cos t) .\end{array}\right.$
588. $\left\{\begin{array}{l}x=a(\cos t+t \sin t), \\ y=a(\sin t-t \cos t) .\end{array}\right.$
595. Calculate $\frac{d y}{d x}$ when $t=\frac{\pi}{2}$ if

$$
\left\{\begin{array}{l}
x=a(t-\sin t), \\
y=a(1-\cos t) .
\end{array}\right.
$$

Solution. $\frac{d y}{d x}=\frac{a \sin t}{a(1-\cos t)}=\frac{\sin t}{1-\cos t}$
and

$$
\left(\frac{d y}{d x}\right)_{t=\frac{\pi}{2}}=\frac{\sin \frac{\pi}{2}}{1-\cos \frac{\pi}{2}}=1
$$

596. Find $\frac{d y}{d x}$ when $t=1$ if $\left\{\begin{array}{l}x=t \ln t, \\ y=\frac{\ln t}{t} .\end{array}\right.$
597. Find $\frac{d y}{d x}$ when $t=\frac{\pi}{4}$ if $\left\{\begin{array}{l}x=e^{t} \cos t, \\ y=e^{t} \sin t .\end{array}\right.$
598. Prove that a function y represented parametrically by the equations

$$
\left\{\begin{array}{l}
x=2 t+3 t^{2} \\
y=t^{2}+2 t^{2}
\end{array}\right.
$$

satisfies the equation

$$
y=\left(\frac{d y}{d x}\right)^{2}+2\left(\frac{d y}{d x}\right)^{2}
$$

599. When $x=2$ the following equation is true:

$$
x^{2}=2 x
$$

Does it follow from this that
when $x=2$?

$$
\left(x^{2}\right)^{\prime}=(2 x)^{\prime}
$$

600. Let $y=\sqrt{a^{2}-x^{2}}$. Is it possible to perform term-by-term differentiation of

$$
x^{2}+y^{2}=a^{2} ?
$$

In the examples that follow it is required to find the derivative $y^{\prime}=\frac{d y}{d x}$ of the implicit functions y.
601. $2 x-5 y+10=0$.
609. $a \cos ^{2}(x+y)=b$.
602. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
610. $\tan y=x y$.
603. $x^{3}+y^{3}=a^{2}$.
604. $x^{3}+x^{2} y+y^{2}=0$.
611. $x y=\arctan \frac{x}{y}$.
605. $\sqrt{x}+\sqrt{y}=\sqrt{a}$.
612. $\arctan (x+y)=x$.
606. $\sqrt[3]{x^{2}}+\sqrt[3]{y^{2}}=\sqrt[3]{a^{2}}$.
613. $e^{y}=x+y$.
607. $y^{8}=\frac{x-y}{x+y}$.
608. $y-0.3 \sin y=x$.
614. $\ln x+e^{-\frac{y}{x}}=c$.
615. $\ln y+\frac{x}{y}=c$.
616. $\arctan \frac{y}{x}=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$.
617. $\sqrt{x^{2}+y^{2}}=c \arctan \frac{y}{x}$. 618. $x^{y}=y^{x}$.
619. Find y^{\prime} at the point $M(1,1)$, if

$$
2 y=1+x y^{3} .
$$

Solution. Differentiating, we get $2 y^{\prime}=y^{3}+3 x y^{2} y^{\prime}$. Putting $x=1$ and $y=1$, we obtain $2 y^{\prime}=1+3 y^{\prime}$, whence $y^{\prime}=-1$.
620. Find the derivatives y^{\prime} of specified functions y at the indicated points:
a) $(x+y)^{3}=27(x-y)$ for $x=2$ and $y=1$;
b) $y e^{y}=e^{x+1} \quad$ for $x=0$ and $y=1$;
c) $y^{2}=x+\ln \frac{y}{x} \quad$ for $x=1$ and $y=1$.

Sec. 4. Geometrical and Mechanical Applications of the Derivative

1°. Equations of the tangent and the normal. From the geometric significance of a derivative it follows that the equation of the tangent to a curve $y=f(x)$ or $F(x, y)=0$ at a point $M\left(x_{0}, y_{0}\right)$ will be

$$
y-y_{0}=y_{0}^{\prime}\left(x-x_{0}\right) .
$$

where y_{0}^{\prime} is the value of the derivative y^{\prime} at the point $M\left(x_{0}, y_{0}\right)$. The straight line passing through the point of tangency perpendicularly to the tangent is called the normal to the curve. For the

Fig. 12 normal we have the equation
2°. The angle between curves. The angle between the curves

$$
y=f_{1}(x)
$$

and

$$
y=f_{2}(x)
$$

at their common point $M_{0}\left(x_{0}, y_{0}\right)$ (Fig. 12) is the angle ω between the tangents $M_{0} A$ and $M_{0} B$ to these curves at the point M_{0}.
Using a familiar formula of analytic geometry, we get

$$
\tan \omega=\frac{f_{2}^{\prime}\left(x_{0}\right)-f_{1}^{\prime}\left(x_{0}\right)}{1+f_{1}^{\prime}\left(x_{0}\right) \cdot f_{2}^{\prime}\left(x_{0}\right)} .
$$

3°. Segments associated with the tangent and the normal in a rectangular coordinate system. The tangent and the normal determine the following four
segments (Fig. 13):
$t=T M$ is the so-called segment of the tangent,
$S_{t}=T K$ is the subtangent,
$n=N M$ is the segment of the normal,
$S_{n}=K N$ is the subnormal.

Fig. 13
Since $K M=\left|y_{0}\right|$ and $\tan \varphi=y_{0}^{\prime}$, it follows that

$$
\begin{aligned}
t & =T M=\left|\frac{y_{0}}{y_{0}^{\prime}} \sqrt{1+\left(y_{0}^{\prime}\right)^{2}}\right| ; \quad n=N M=\left|y_{0} \sqrt{1+\left(y_{0}^{\prime}\right)^{2}}\right| ; \\
S_{t} & =T K=\left|\frac{y_{0}}{y_{0}^{\prime}}\right| ; \quad S_{n}=\left|y_{0} y_{0}^{\prime}\right| .
\end{aligned}
$$

4°. Segments associated with the tangent and the normal in a polar system of coordinates. If a curve is given in polar coordinates by the equation $r=f(\varphi)$, then the angle μ formed by the tangent $M T$ and the radius vector $r=O M$ (Fig. 14), is defined by the following formula:

$$
\tan \mu=r \frac{d \varphi}{d r}=\frac{r}{r^{\prime}} .
$$

The tangent $M T$ and the normal $M N$ at the point M together with the radius vector of the point of tangency and with the perpendicular to the radius vector drawn through the pole 0 determine the following four seg.

Fig. 14 ments (see Fig. 14):

$$
\begin{aligned}
t & =M T \text { is the segment of the polar tangent, } \\
n & =M N \text { is the segment of the polar normal, } \\
S_{t} & =O T \text { is the polar subtangent, } \\
S_{n} & =O N \text { is the polar subnormal. }
\end{aligned}
$$

These segments are expressed by the following formulas:

$$
\begin{array}{ll}
t=M T=\frac{1}{\left|r^{\prime}\right|} \sqrt{r^{2}+\left(r^{\prime}\right)^{2}} ; & S_{t}=O T=\frac{r^{2}}{\left|r^{\prime}\right|} ; \\
n=M N=\sqrt{r^{2}+\left(r^{\prime}\right)^{2}} ; & S_{n}=O N=\left|r^{\prime}\right| .
\end{array}
$$

621. What angles φ are formed with the x-axis by the tangents to the curve $y=x-x^{2}$ at points with abscissas:
a) $x=0$;
b) $x=1 / 2$;
c) $x=1$?

Fig. 15

Solution. We have $y^{\prime}=1-2 x$. Whence a) $\tan \varphi=1, \varphi=45^{\circ} ;$ b) $\tan \varphi=0, \varphi=0^{\circ}$; c) $\tan \varphi=-1, \varphi=135^{\circ}$ (Fig. 15).
622. At what angles do the sine curves $y=\sin x$ and $y=\sin 2 x$ intersect the axis of abscissas at the origin?
623. At what angle does the tangent curve $y=\tan x$ intersect the axis of abscissas at the origin?
624. At what angle does the curve $y=e^{0.5 x}$ intersect the straight line $x=2$?
625. Find the points at which the tangents to the curve $y=3 x^{4}+4 x^{3}-12 x^{2}+20$ are parallel to the x-axis.
626. At what point is the tangent to the parabola

$$
y=x^{2}-7 x+3
$$

parallel to the straight line $5 x+y-3=0$?
627. Find the equation of the parabola $y=x^{2}+b x+c$ that is tangent to the straight line $x=y$ at the point $(1,1)$.
628. Determine the slope of the tangent to the curve $x^{3}+y^{3}-$ $-x y-7=0$ at the point $(1,2)$.
629. At what point of the curve $y^{2}=2 x^{3}$ is the tangent perpendicular to the straight line $4 x-3 y+2=0$?
630. Write the equation of the tangent and the normal to the parabola

$$
y=\sqrt{x}
$$

at the point with abscissa $x=4$.
Solution. We have $y^{\prime}=\frac{1}{2 \sqrt{x}}$; whence the slope of the tangent is $k=\left[y^{\prime}\right]_{x=4}=\frac{1}{4}$. Since the point of tangency has coordinates $x=4, y=2$, it follows that the equation of the tangent is $y-2=1 / 4(x-4)$ or $x-4 y+4=0$. Since the slope of the normal must be perpendicular,

$$
k_{1}=-4 ;
$$

whence the equation of the normal: $y-2=-4(x-4)$ or $4 x+y-18=0$.
631. Write the equations of the tangent and the normal to the curve $y=x^{2}+2 x^{2}-4 x-3$ at the point $(-2,5)$.
632. Find the equations of the tangent and the normal to the curve

$$
y=\sqrt[3]{x-1}
$$

at the point $(1,0)$.
633. Form the equations of the tangent and the normal to the curves at the indicated points:
a) $y=\tan 2 x$ at the origin;
b) $y=\arcsin \frac{x-1}{2}$ at the point of intersection with the x-axis;
c) $y=\arccos 3 x$ at the point of intersection with the y-axis;
d) $y=\ln x$ at the point of intersection with the x-axis;
e) $y=e^{1-x^{2}}$ at the points of intersection with the straight line $y=1$.
634. Write the equations of the tangent and the normal at the point $(2,2)$ to the curve

$$
\begin{gathered}
x=\frac{1+t}{t^{3}} \\
y=\frac{3}{2 t^{2}}+\frac{1}{2 t}
\end{gathered}
$$

635. Write the equations of the tangent to the curve

$$
x=t \cos t, \quad y=t \sin t
$$

at the origin and at the point $t=\frac{\pi}{4}$.
636. Write the equations of the tangent and the normal to the curve $x^{3}+y^{2}+2 x-6=0$ at the point with ordinate $y=3$.
637. Write the equation of the tangent to the curve $x^{5}+y^{3}-$ $-2 x y=0$ at the point $(1,1)$.
638. Write the equations of the tangents and the normals to the curve $y=(x-1)(x-2)(x-3)$ at the points of its intersection with the x-axis.
639. Write the equations of the tangent and the normal to the curve $y^{4}=4 x^{4}+6 x y$ at the point (1,2).

640*. Show that the segment of the tangent to the hyperbola $x y=a^{2}$ (the segment lies between the coordinate axes) is divided in two at the point of tangency.
641. Show that in the case of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ the segment of the tangent between the coordinate axes has a constant value equal to a.
642. Show that the normals to the involute of the circle

$$
x=a(\cos t+t \sin t), \quad y=a(\sin t-t \cos t)
$$

are tangents to the circle $x^{2}+y^{2}=a^{2}$.
643. Find the angle at which the parabolas $y=(x-2)^{2}$ and $y=-4+6 x-x^{2}$ intersect.
644. At what angle do the parabolas $y=x^{2}$ and $y=x^{3}$ intersect?
645. Show that the curves $y=4 x^{2}+2 x-8$ and $y=x^{3}-x+10$ are tangent to each other at the point $(3,34)$. Will we have the same thing at $(-2,4)$?
646. Show that the hyperbolas

$$
x y=a^{2} ; \quad x^{2}-y=b^{2}
$$

intersect at a right angle.
647. Given a parabola $y^{2}=4 x$. At the point $(1,2)$ evaluate the lengths of the segments of the subtangent, subnormal, tangent, and normal.
648. Find the length of the segment of the subtangent of the curve $y=2^{x}$ at any point of it.
649. Show that in the equilateral hyperbola $x^{2}-y^{2}=a^{2}$ the length of the normal at any point is equal to the radius vector of this point.
650. Show that the length of the segment of the subnormal in the hyperbola $x^{2}-y^{2}=a^{2}$ at any point is equal to the abscissa of this point.
651. Show that the segments of the sublangents of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the circle $x^{2}+y^{2}=a^{2}$ at points with the same abscissas are equal. What procedure of construction of the tangent to the ellipse follows from this?
652. Find the length of the segment ol the tangent, the normal, the subtangent, and the subnormal of the cycloid

$$
\left\{\begin{array}{l}
x=a(t-\sin t) \\
y=a(1-\cos t)
\end{array}\right.
$$

at an arbitrary point $t=t_{0}$.
653. Find the angle between the tangent and the radius vector of the point of tangency in the case of the logarithmic spiral

$$
r=a e^{k \varphi}
$$

654. Find the angle between the tangent and the radius vector of the point of tangency in the case of the lemniscate $\boldsymbol{r}^{2}=a^{2} \cos 2 \varphi$.
655. Find the lengths of the segments of the polar subtangent, subnormal, tangent and normal, and also the angle between the tangent and the radius vector of the point of tangency in the case of the spiral of Archimedes

$$
r=a \varphi
$$

at a point with polar angle $\varphi=2 \pi$.
656. Find the lengths of the segments of the polar subtangent, subnormal, tangent, and normal, and also the angle between the tangent and the radius vector in the hyperbolic spiral $r=\frac{a}{\varphi}$ at an arbitrary point $\varphi=\varphi_{0} ; r=r_{0}$.
657. The law of motion of a point on the x-axis is

$$
x=3 t-t^{2} .
$$

Find the velocity of the point at $t_{0}=0, t_{1}=1$, and $t_{2}=2(x$ is in centimetres and t is in seconds).
658. Moving along the x-axis are two points that have the following laws of motion: $x=100+5 t$ and $x=1 / 2 t^{2}$, where $t \geqslant 0$. With what speed are these points receding from each other at the time of encounter (x is in centimetres and t is in seconds)?
659. The end-points of a segment $A B=-5 \mathrm{~m}$ are sliding along the coordinate axes $O X$ and $O Y$ (Fig. 16). A is moving at $2 \mathrm{~m} / \mathrm{sec}$.

Fig. 16

Fig. 17

What is the rate of motion of B when A is at a distance $O A=3 \mathrm{~m}$ from the origin?

660*. The law of motion of a material point thrown up at an angle α to the horizon with initial velocity v_{0} (in the vertical plane $O X Y$ in Fig. 17) is given by the formulas (air resistance is
disregarded):

$$
x=v_{0} t \cos \alpha, \quad y=v_{0} t \sin \alpha-\frac{g t^{2}}{2}
$$

where t is the time and g is the acceleration of gravity. Find the trajectory of motion and the distance covered. Also determine the speed of motion and its direction.
661. A point is in motion along a hyperbola $y=\frac{10}{x}$ so that its abscissa x increases uniformly at a rate of 1 unit per second. What is the rate of change of its ordinate when the point passes through $(5,2)$?
662. At what point of the parabola $y^{2}=18 x$ does the ordinate increase at twice the rate of the abscissa?
663. One side of a rectangle, $a=10 \mathrm{~cm}$, is of constant length, while the other side, b, increases at a constant rate of 4 cm 'sec. At what rate are the diagonal of the rectangle and its area increasing when $b=30 \mathrm{~cm}$?
664. The radius of a sphere is increasing at a uniform rate of $5 \mathrm{~cm} / \mathrm{sec}$. At what rate are the area of the surface of the sphere and the volume of the sphere increasing when the radius becomes 50 cm ?
665. A point is in motion along the spiral of Archimedes

$$
r=a \varphi
$$

($a=10 \mathrm{~cm}$) so that the angular velocity of rotation of its radius vector is constant and equal to 6° per second. Determine the rate of elongation of the radius vector r when $r=25 \mathrm{~cm}$.
666. A nonhomogeneous rod $A B$ is 12 cm long. The mass of a part of it, $A M$, increases with the square of the distance of the moving point. M from the end A and is 10 gm when $A M=2 \mathrm{~cm}$. Find the mass of the entire $\operatorname{rod} A B$ and the linear density at any point M. What is the linear density of the rod at A and B ?

Sec. 5. Derivatives of Higher Orders

1°. Definition of higher derivatives. A derivative of the second order, or the second derivative, of the function $y=f(x)$ is the derivative of its derivative; that is,

$$
y^{\prime \prime}=\left(y^{\prime}\right)^{\prime}
$$

The second derivative may be denoted as

$$
y^{\prime \prime}, \text { or } \frac{d^{2} y}{d x^{2}}, \text { or } f^{\prime \prime}(x)
$$

If $x=f(t)$ is the law of rectilinear motion of a point, then $\frac{d^{2} x}{d t^{2}}$ is the acceleration of this motion.

Generally, the nth derivative of a function $y=f(x)$ is the derivative of a derivative of order $(n-1)$. For the nth derivative we use the notation

$$
y^{(n)}, \text { or } \frac{d^{n} y}{d x^{n}}, \text { or } f^{(n)}(x)
$$

Example 1. Find the second derivative of the function
Solution. $y^{\prime}=\frac{-1}{1-x} ; \quad y^{\prime \prime}=\left(\frac{-1}{1-x}\right)^{\prime}=\frac{1}{(1-x)^{2}}$.
2°. Leibniz rule. If the functions $u=\varphi(x)$ and $v=\psi(x)$ have derivatives up to the nth order inclusive, then to evaluate the nth derivative of a product of these functions we can use the Leibniz rule (or formula):

$$
(u v)^{(n)}=u^{(n)} v+n \cdot u^{(n-1)} v^{\prime}+\frac{n(n-1)}{1 \cdot 2} u^{(-2)} v^{\prime \prime}+\ldots+u v^{(n)}
$$

3°. Higher-order derivatives of functions represented parametricaliy. If

$$
\left\{\begin{array}{l}
x=\varphi(t), \\
y=\psi(t),
\end{array}\right.
$$

then the derivatives $y_{x}^{\prime}=\frac{d y}{d x}, y_{x x}^{\prime \prime}=\frac{d^{2} y}{d x^{2}}, \ldots$ can successively be calculated by the formulas

$$
y_{x}^{\prime}=\frac{y_{t}^{\prime}}{x_{i}^{\prime}}, \quad y_{x x}^{\prime \prime}=\left(y_{x}^{\prime}\right)_{x}^{\prime}=\frac{\left(y_{x}^{\prime}\right)_{t}^{\prime}}{x_{t}^{\prime}}, \quad y_{x x x}^{\prime \prime \prime}=\frac{\left(y_{x x}^{\prime \prime}\right)_{t}^{\prime}}{x_{t}^{\prime}} \text { and so iorth. }
$$

For a second derivative we have the formula

$$
y_{x x}^{\prime \prime}=\frac{x_{i}^{\prime} y_{t t}^{\prime \prime}-x_{1 t} y_{i}^{\prime}}{\left(x_{t}^{\prime}\right)^{3}}
$$

Example 2. Find $y^{\prime \prime}$, if

$$
\left\{\begin{array}{l}
x=a \cos t \\
y=b \sin t
\end{array}\right.
$$

Solution. We have

$$
y^{\prime}=\frac{(b \sin t)_{t}^{\prime}}{(a \cos t)_{t}^{\prime}}=\frac{b \cdot \cos t}{-a \sin t}=-\frac{b}{a} \cot t
$$

and

$$
y^{\prime \prime}=\frac{\left(-\frac{b}{a} \cot t\right)_{t}^{\prime}}{(a \cos t)_{t}^{\prime}}=\frac{-\frac{b}{a} \cdot \frac{-1}{\sin ^{2} t}}{-a \sin t}=-\frac{b}{a^{2} \sin ^{3} t}
$$

3^{*}

A. Higher-Order Derivatives of Explicit Functions

In the examples that follow, find the second derivative of thi given function.
667. $y=x^{8}+7 x^{6}-5 x+4$.
668. $y=e^{x^{2}}$.
669. $y=\sin ^{2} x$.
670. $y=\ln \sqrt[3]{1+x^{2}}$.
671. $y=\ln \left(x+\sqrt{a^{2}+x^{2}}\right)$.
672. $f(x)=\left(1+x^{2}\right) \cdot \arctan x$.
673. $y=(\arcsin x)^{2}$.
674. $y=a \cosh \frac{x}{a}$.
675. Show that the function $y=\frac{x^{2}+2 x+2}{2}$ satisfies the differ ential equation $1+y^{\prime 2}=2 y y^{\prime \prime}$.
676. Show that the function $y=\frac{1}{2} x^{2} e^{x}$ satisfies the differen tial equation $y^{\prime \prime}-2 y^{\prime}+y=e^{x}$.
677. Show that the function $y=C_{1} e^{-x}+C_{2} e^{-2 x}$ satisfies th equation $y^{\prime \prime}+3 y^{\prime}+2 y=0$ for all constants C_{1} and C_{2}.
678. Show that the function $y=e^{2 x} \sin 5 x$ satisfies the equa tion $y^{\prime \prime}-4 y^{\prime}+29 y=0$.
679. Find $y^{\prime \prime \prime}$, if $y=x^{3}-5 x^{2}+7 x-2$.
680. Find $f^{\prime \prime \prime}(3)$, if $f(x)=(2 x-3)^{5}$.
681. Find y^{v} of the function $y=\ln (1+x)$.
682. Find y^{Vl} of the function $y=\sin 2 x$.
683. Show that the function $y=e^{-x} \cos x$ satisfies the differ ential equation $y^{\mathrm{IV}}+4 y=0$.
684. Find $f(0), f^{\prime}(0), f^{\prime \prime}(0)$ and $f^{\prime \prime \prime}(0)$

Fig. 18 if $f(x)=e^{x} \sin x$.
685. The equation of motion of a poin along the x-axis is

$$
x=100+5 t-0.001 t^{3}
$$

Find the velocity and the acceleration c the point for times $t_{0}=0, t_{1}=1$, an $t_{2}=10$.
686. A point M is in motion around circle $x^{2}+y^{2}=a^{2}$ with constant angula velocity ω. Find the law of motion of $i 1$ projection M_{1} on the x-axis if at time $t=$ the point is at $M_{0}(a, 0)$ (Fig. 18). Find the velocity and the as celeration of motion of M_{1}.

What is the velocity and the acceleration of M_{1} at the in tial time and when it passes through the origin?

What are the maximum values of the absolute velocity and tt absolute acceleration of M_{1} ?
687. Find the nth derivative of the function $y=(a x+b)^{n}$, where n is a natural number.
688. Find the nth derivatives of the functions:
a) $y=\frac{1}{1-x} ; \quad$ and
b) $y=\sqrt{x}$.
689. Find the nth derivative of the functions:
a) $y=\sin x$;
b) $y=\cos 2 x$;
c) $y=e^{-3 x}$;
d) $y=\ln (1+x)$;
e) $y=\frac{1}{1+x}$;
f) $y=\frac{1+x}{1-x}$;
g) $y=\sin ^{2} x$;
h) $y=\ln (a x+b)$.
690. Using the Leibniz rule, find $y^{(n)}$, if:
a) $y=x \cdot e^{x}$;
b) $y=x^{2} \cdot e^{-2 x}$;
c) $y=x^{3} \ln x$.
c) $y=\left(1-x^{2}\right) \cos x$;
d) $y=\frac{1+x}{\sqrt{x}}$;
691. Find $f^{(n)}(0)$, if $f(x)=\ln \frac{1}{1-x}$
B. Ilıgher-Order Derivatives of Functions Represented Parametrically and of Implicit Functions
In the following problems find $\frac{d^{2} y}{d x^{2}}$.
692. a) $\left\{\begin{array}{l}x=\ln t, \\ y=t^{3} ;\end{array}\right.$
b) $\left\{\begin{array}{l}x=\arctan t, \\ y=\ln \left(1+t^{2}\right)\end{array}\right.$
c) $\left\{\begin{array}{l}x=\arcsin t \\ y=\sqrt{1-t^{2}} .\end{array}\right.$
693. а) $\left\{\begin{array}{l}x=a \cos t, \\ y=a \sin t ;\end{array}\right.$
c) $\left\{\begin{array}{l}x=a(t-\sin t), \\ y=a(1-\cos t) ;\end{array}\right.$
b) $\left\{\begin{array}{l}x=a \cos ^{2} t, \\ y=a \sin ^{2} t ;\end{array}\right.$
d) $\left\{\begin{array}{l}x=a(\sin t-t \cos t), \\ y=a(\cos t+t \sin t) .\end{array}\right.$
694. a) $\left\{\begin{array}{l}x=\cos 2 t, \\ y=\sin ^{2} t ;\end{array}\right.$
695. a) $\left\{\begin{array}{l}x=\arctan t, \\ y=\frac{1}{2} t^{2} ;\end{array}\right.$
b) $\left\{\begin{array}{l}x=e^{-a t}, \\ y=e^{a t} .\end{array}\right.$
b) $\left\{\begin{array}{l}x=\ln t, \\ y=\frac{1}{1-t} .\end{array}\right.$
696. Find $\frac{d^{2} x}{d y^{2}}$, if $\left\{\begin{array}{l}x=e^{t} \cos t, \\ y=e^{t} \sin t .\end{array}\right.$
697. Find $\frac{d^{2} y}{d x^{2}}$ for $t=0$, if $\left\{\begin{array}{l}x=\ln \left(1+t^{2}\right), \\ y=t^{2} .\end{array}\right.$
698. Show that y (as a function of x) defined by the equations $x=\sin t, y=a e^{t \sqrt{2}}+b e^{-t \sqrt{2}^{-}}$for any constants a and b satisfies the differential equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2 y
$$

In the following examples find $y^{\prime \prime \prime}=\frac{d^{3} y}{d x^{3}}$.
699. $\left\{\begin{array}{l}x=\sec t, \\ y=\tan t .\end{array}\right.$
701. $\left\{\begin{array}{l}x=e^{-t} \\ y=t^{3} .\end{array}\right.$
700. $\left\{\begin{array}{l}y=e^{-t} \cos t, \\ y=e^{-t} \sin t .\end{array}\right.$
702. Find $\frac{d^{n} y}{d x^{n}}$, if $\left\{\begin{array}{l}x=\ln t, \\ y=t^{m} .\end{array}\right.$
703. Knowing the function $y=f(x)$, find the derivatives $x^{\prime \prime}$, $x^{\prime \prime \prime}$ of the inverse function $x=f^{-1}(y)$.
704. Find $y^{\prime \prime}$, if $x^{2}+y^{2}=1$.

Solution. By the rule for differentiating a composite function we have $2 x+2 y y^{\prime}=0$; whence $y^{\prime}=-\frac{x}{y}$ and $y^{\prime \prime}=-\left(\frac{x}{y}\right)_{x}^{\prime}=-\frac{y-x y^{\prime}}{y^{2}}$. Substituting the value of y^{\prime}, we finally get:

$$
y^{\prime \prime}=-\frac{y^{2}+x^{2}}{u^{3}}=-\frac{1}{y^{3}}
$$

In the following examples it is required to determine the derivative $y^{\prime \prime}$ of the function $y=f(x)$ represented implicitly.
705. $y^{2}=2 p x$.
706. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
707. $y=x+\arctan y$.
708. Having the equation $y=x+\ln y$, find $\frac{d^{2} u}{d x^{2}}$ and $\frac{d^{2} x}{d y^{2}}$.
709. Find $y^{\prime \prime}$ at the point $(1,1)$ if

$$
x^{2}+5 x y+y^{2}-2 x+y-6=0
$$

710. Find $y^{\prime \prime}$ at $(0,1)$ if

$$
x^{4}-x y+y^{4}=1
$$

711. a) The function y is defined implicitly by the equation

$$
x^{2}+2 x y+y^{2}-4 x+2 y-2=0
$$

Find $\frac{d^{2} y}{d x^{1}}$ at the point $(1,1)$.
b)
Find $\frac{d^{8} y}{d x^{3}}$, if $x^{2}+y^{2}=a^{2}$.

Sec. 6. Differentials of First and Higher Orders

1°. First-order differential. The differential (first-order) of a function $y=f(x)$ is the principal part of its increment, which part is linear relative to the increment $\Delta x=d x$ of the independent variable x. The differential of a

Fig. 19
function is equal to the product of its derivative by the differential of the independent variable
whence

$$
d y=y^{\prime} d x,
$$

$$
y^{\prime}=\frac{d y}{d x} .
$$

If $M N$ is an arc of the graph of the function $y=f(x)$ (Fig. 19), $M T$ is the tangent at $M(x, y)$ and

$$
P Q=\Delta x=d x,
$$

then the increment in the ordinate of the tangent

$$
A T=d y
$$

and the segment $A N=\Delta y$.
Example 1. Find the increment and the differential of the function $y=3 x^{2}-x$.

Solution. First method:

Hence,

$$
\begin{gathered}
\Delta y=3(x+\Delta x)^{2}-(x+\Delta x)-3 x^{2}+x \\
\Delta y=(6 x-1) \Delta x+3(\Delta x)^{2}
\end{gathered}
$$

Second method:

$$
d y=(6 x-1) \Delta x=(6 x-1) d x
$$

$$
y^{\prime}=6 x-1 ; d y=y^{\prime} d x=(6 x-1) d x
$$

Example 2. Calculate Δy and $d y$ of the function $y=3 x^{2}-x$ for $x=1$ and $\Delta x=0.01$.

Solution. $\Delta y=(6 x-1) \cdot \Delta x+3(\Delta x)^{2}=5 \cdot 0.01+3 \cdot(0.01)^{2}=0.0503$
and

$$
d y=(6 x-1) \Delta x=5 \cdot 0.01=0.0500
$$

$\mathbf{2}^{\circ}$. Principal properties of differentials.

1) $d c=0$, where $c=$ const.
2) $d x=\Delta x$, where x is an independent variable.
3) $d(c u)=c d u$.
4) $d(u \pm v)=d u \pm d v$.
5) $d(u v)=u d v+v d u$.
6) $d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}} \quad(v \neq 0)$.
7) $d f(u)=f^{\prime}(u) d u$.
3°. Applying the differential to approximate calculations. If the increment Δx of the argument x is small in absolute value, then the differential $d y$ of the function $y=f(x)$ and the increment Δy of the function are approximately equal:
that is,

$$
f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x
$$

whence

$$
f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x
$$

Example 3. By how much (approximately) does the side of a square change if its area increases from $9 \mathrm{~m}^{2}$ to $9.1 \mathrm{~m}^{2}$?

Solution. If x is the area of the square and y is its side, then

$$
y=\sqrt{\bar{x}}
$$

It is given that $x=9$ and $\Delta x=0.1$.
The increment Δy in the side of the square may be calculated approximately as follows:

$$
\Delta y \approx d y=y^{\prime} \Delta x=\frac{1}{2 \sqrt{9}} \cdot 0.1=0.016 \mathrm{~m}
$$

4°. Higher-order differentials. A second-order differential is the differential of a first-order differential:

$$
d^{2} y=d(d y)
$$

We similarly define the differentials of the third and higher orders.
If $y=f(x)$ and x is an independent variable, then

$$
\begin{gathered}
d^{2} y=y^{\prime \prime}(d x)^{2}, \\
d^{3} y=y^{\prime \prime \prime}(d x)^{4}, \\
\cdots \cdots \cdot \\
d^{n} y=y^{(n)}(d x)^{n} .
\end{gathered}
$$

But if $y=f(u)$, where $u=\varphi(x)$, then

$$
\begin{gathered}
d^{2} y=y^{\prime \prime}(d u)^{2}+y^{\prime} d^{2} u \\
d^{3} y=y^{\prime \prime \prime}(d u)^{2}+3 y^{\prime \prime} d u \cdot d^{2} u+y^{\prime} d^{3} u
\end{gathered}
$$

and so forth. (Here the primes denote derivatives with respect fo u).
712. Find the increment Δy and the differential $d y$ of the function $y=5 x+x^{2}$ for $x=2$ and $\Delta x=0.001$.
713. Without calculating the derivative, find

$$
d\left(1-x^{3}\right)
$$

for $x=1$ and $\Delta x=-\frac{1}{3}$.
714. The area of a square S with side x is given by $S=x^{2}$. Find the increment and the differential of this function and explain the geometric significance of the latter.
715. Give a geometric interpretation of the increment and differential of the following functions:
a) the area of a circle, $S=\pi x^{2}$;
b) the volume of a cube, $v=x^{3}$.
716. Show that when $\Delta x \rightarrow 0$, the increment in the function $y=2^{x}$, corresponding to an increment Δx in x, is, for any x, equivalent to the expression $2^{x} \ln 2 \Delta x$.
717. For what value of x is the differential of the function $y=x^{2}$ not equivalent to the increment in this function as $\Delta x \rightarrow 0$?
718. Has the function $y=|x|$ a differential for $x=0$?
719. Using the derivative, find the differential of the function $y=\cos x$ for $x=\frac{\pi}{6}$ and $\Delta x=\frac{\pi}{36}$.
720. Find the differential of the function

$$
y=\frac{2}{\sqrt{x}}
$$

for $x=9$ and $\Delta x=-0.01$.
721. Calculate the differential of the function

$$
y=\tan x
$$

for $x=\frac{\pi}{3}$ and $\Delta x=\frac{\pi}{180}$.
In the following problems find the differentials of the given functions for arbitrary values of the argument and its increment.
722. $y=\frac{1}{x^{m}}$.
727. $y=x \ln x-x$.
723. $y=\frac{x}{1-x}$.
728. $y=\ln \frac{1-x}{1+x}$.
724. $y=\arcsin \frac{x}{a}$.
729. $r=\cot \varphi+\operatorname{cosec} \varphi$.
725. $y=\arctan \frac{x}{a}$.
730. $s=\arctan e^{t}$.
726. $y=e^{-x^{2}}$.

731 Find $d y$ if $x^{2}+2 x y-y^{2}=a^{2}$.
Solution. Taking advantage of the invariancy of the form of a differential, we obtain $2 x d x+2(y d x+x d y)-2 y d y=0$ Whence

$$
d y=-\frac{x+y}{x-y} d x
$$

In the following examples find the differentials of the functions defined implicitly.
732. $(x+y)^{2} \cdot(2 x+y)^{2}=1$.
733. $y=e^{-\frac{x}{y}}$.
734. $\ln \sqrt{x^{2}+y^{2}}=\arctan \frac{y}{x}$.
735. Find $d y$ at the point $(1,2)$, if $y^{3}-y=6 x^{2}$.
736. Find the approximate value of $\sin 31^{\circ}$.

Solution. Putting $x=\operatorname{arc} 30^{\circ}=\frac{\pi}{6}$ and $\Delta x=\operatorname{arc} 1^{\circ}=\frac{\pi}{180}$, from formula (1) (see 3°) we have $\sin 31^{\circ} \approx \sin 30^{\circ}+\frac{\pi}{180} \cos 30^{\circ}=0.500+0.017 \cdot \frac{\sqrt{3}}{2}=0.515$.
737. Replacing the increment of the function by the differential, calculate approximately:
a) $\cos 61^{\circ}$;
b) $\tan 44^{\circ}$;
c) $e^{0.2}$;
d) $\ln 0.9$;
e) $\arctan 1.05$.
738. What will be the approximate increase in the volume of a sphere if its radius $R=15 \mathrm{~cm}$ increases by 2 mm ?
739. Derive the approximate formula (for $|\Delta x|$ that are small compared to x)

$$
\sqrt{x+\Delta x} \approx \sqrt{x}+\frac{\Delta x}{2 \sqrt{x}}
$$

Using it, approximate $\sqrt{5}, \sqrt{17}, \sqrt{70}, \sqrt{640}$.
740. Derive the approximate formula

$$
\sqrt[3]{x+\Delta x} \approx \sqrt[3]{x}+\frac{\Delta x}{3 \sqrt[3]{x^{2}}}
$$

and find approximate values for $\sqrt[3]{10}, \sqrt[3]{70}, \sqrt[3]{200}$.
741. Approximate the functions:
a) $y=x^{3}-4 x^{2}+5 x+3$ for $x=1.03$;
b) $f(x)=\sqrt{1+x} \quad$ for $x=0.2$;
c) $f(x)=\sqrt[3]{\frac{1-x}{1+x}} \quad$ for $x=0.1$;
d) $y=e^{1-x^{2}} \quad$ for $x=1.05$.
742. Approximate $\tan 45^{\circ} 3^{\prime} 20^{\prime \prime}$.
743. Find the approximate value of arc $\sin 0.54$.
744. Approximate $\sqrt[4]{17}$.
745. Using Ohm's law, $I=\frac{E}{R}$, show that a small change in the current, due to a small change in the resistance, may be found approximately by the formula

$$
\Delta I=-\frac{I}{R} \Delta R .
$$

746. Show that, in determining the length of the radius, a relative error of 1% results in a relative error of approximately 2% in calculating the area of a circle and the surface of a sphere.
747. Compute $d^{2} y$, if $y=\cos 5 x$.

Solution. $d^{2} y=y^{\prime \prime}\left(d x^{2}\right)=-25 \cos 5 x(d x)^{2}$.
748. $u=\sqrt{1-x^{2}}$, find $d^{2} u$.
749. $y=\arccos x$, find $d^{2} y$.
750. $y=\sin x \ln x$, find $d^{2} y$.
751. $z=\frac{\ln x}{x}$, find $d^{2} z$.
752. $z=x^{2} e^{-x}$, find $d^{3} z$.
753. $z=\frac{x^{4}}{2-x}$, find $d^{4} z$.
754. $u=3 \sin (2 x+5)$, find $d^{n} u$.
755. $y=e^{x \cos \alpha} \sin (x \sin \alpha)$, find $d^{n} y$.

Sec. 7. Mean-Value Theorems

1°. Rolle's theorem. If a function $f(x)$ is continuous on the interval $a \leqslant x \leqslant b$, has a derivative $f^{\prime}(x)$ at every interior point of this interval, and

$$
f(a)=f(b)
$$

then the argument x has at least one value ξ, where $a<\xi<b$, such that

$$
f^{\prime}(\mathrm{g})=0 .
$$

2°. Lagrange's theorem. If a function $f(x)$ is continuous on the interval $a \leqslant x \leqslant b$ and has a derivative at every interior point of this interval, then

$$
f(b)-f(a)=(b-a) f^{\prime}(\xi)
$$

where $a<\xi<b$.
3°. Cauchy's theorem. If the functions $f(x)$ and $F(x)$ are continuous on the interval $a \leqslant x \leqslant b$ and for $a<x<b$ have derivatives that do not vanish simultaneously, and $F(b) \neq F(a)$, then

$$
\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f^{\prime}(\xi)}{F^{\prime}(\xi)}, \quad \text { where } a<\xi<b
$$

756. Show that the function $f(x)=x-x^{3}$ on the intervals $-1 \leqslant x \leqslant 0$ and $0 \leqslant x \leqslant 1$ satisfies the Rolle theorem. Find the appropriate values of ξ.

Solution. The function $f(x)$ is continuous and differentiable for all values of x, and $f(-1)=f(0)=f(1)=0$. Hence, the Rolle theorem is applicable on the intervals $-1 \leqslant x \leqslant 0$ and $0 \leqslant x<1$. To find ξ we form the equation $f^{\prime}(x)=1-3 x^{2}=0$. Whence $\xi_{1}=-\sqrt{\frac{1}{3}} ; \xi_{2}=\sqrt{\frac{1}{3}}$, where $-1<\xi_{1}<0$ and $0<\xi_{2}<1$.
757. The function $f(x)=\sqrt[3]{(x-2)^{2}}$ takes on equal values $f(0)=f(4)=\sqrt[3]{4}$ at the end-points of the interval [0.4]. Does the Rolle theorem hold for this function on [0.4]?
758. Does the Rolle theorem hold for the function

$$
f(x)=\tan x
$$

on the interval $[0, \pi]$?
759. Let

$$
f(x)=x(x+1)(x+2)(x+3)
$$

Show that the equation

$$
f^{\prime}(x)=0
$$

has three reai roots.
760. The equation

$$
e^{x}=1+x
$$

obviously has a root $x=0$. Show that this equation cannot have any other real root.
761. Test whether the Lagrange theorem holds for the function

$$
f(x)=x-x^{3}
$$

on the interval $\{-2,1]$ and find the appropriate intermediate value of ξ.

Solution. The function $f(x)=x-x^{3}$ is continuous and differentiable for all values of x, and $f^{\prime}(x)=1-3 x^{2}$ Whence, by the Lagrange formula, we have $f(1)-f\left(-2 j=0-6=[1-(-2)] f^{\prime}(\xi)\right.$, that is, $f^{\prime}(\xi)=-2$ Hence, $1-3 \xi^{2}=-2$ and $\xi= \pm 1$; the only suitable value is $\xi=-1$, for which the inequality $-2<\xi<1$ holds
762. Test the validity of the Lagrange theorem and find the appropriate intermediate point ξ for the function $f(x)=x^{4 / 3}$ on the interval $[-1,1]$.
763. Given a segment of the parabola $y=x^{2}$ lying between two points $A(1,1)$ and $B(3,9)$, find a point the tangent to which is parallel to the chord $A B$.
764. Using the Lagrange theorem, prove the formula

$$
\sin (x+h)-\sin x=h \cos \xi
$$

where $x<\xi<x+h$.
765. a) For the functions $f(x)=x^{2}+2$ and $F(x)=x^{3}-1$ test whether the Cauchy theorem holds on the interval $[1,2]$ and find ξ;
b) do the same with respect to $f(x)=\sin x$ and $F(x)=\cos x$ on the interval $\left[0, \frac{\pi}{2}\right]$.

Sec. 8. Taylor's Formula

If a function $f(x)$ is continuous and has continuous derivatives up to the ($n-1$)th order inclusive on the interval $a \leqslant x \leqslant b$ (or $b \leqslant x \leqslant a$), and there is a finite derivative $f^{(n)}(x)$ at each interior point of the interval, then Taylor's formula
$f(x)=f(a)+(x-a) f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime}(a)+\ldots$

$$
\cdots+\frac{(x-a)^{n-1}}{(n-1)!} f^{(n-1)}(a)+\frac{(x-a)^{n}}{n!} f^{(n)}(\xi),
$$

where $\xi=a+\theta(x-a)$ and $0<\theta<1$, holds true on the interval.
In particular, when $a=0$ we have (Maclaurin's formula)

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots+\frac{x^{n-1}}{(n-1)!} f^{(n-1)}(0)+\frac{x^{n}}{n!} f^{(n)}(\xi),
$$

where $\xi=0 x, 0<0<1$.
766. Expand the polynomial $f(x)=x^{3}-2 x^{2}+3 x+5$ in positive integral powers of the binomial $x-2$.

Solution. $f^{\prime}(x)=3 x^{2}-4 x+3 ; f^{\prime \prime}(x)=6 x-4 ; f^{\prime \prime \prime}(x)=6 ; f^{(n)}(x)=0$
for $n \geqq 4$. Whence

$$
f(2)=11 ; f^{\prime}(2)=7 ; f^{\prime \prime}(2)=8 ; f^{\prime \prime \prime}(2)=6 .
$$

Therefore

$$
x^{2}-2 x^{2}+3 x+5=11+(x-2) \cdot 7+\frac{(x-2)^{2}}{2!} \cdot \cdot 8+\frac{(x-2)^{3}}{3!} \cdot 6
$$

or

$$
x^{3}-2 x^{2}+3 x+5=11+7(x-2)+4(x-2)^{2}+(x-2)^{3} .
$$

767. Expand the function $f(x)=e^{x}$ in powers of $x+1$ to the term containing $(x+1)^{3}$.

Solution. $f^{(n)}(x)=e^{x}$ for all $n, f^{(n)}(-1)=\frac{1}{e}$. Hence,

$$
e^{x}=\frac{1}{e}+(x+1) \frac{1}{e}+\frac{(x+1)^{2}}{2!} \frac{1}{e}+\frac{(x+1)}{3!} \frac{1}{e}+\frac{(x+1)^{4}}{4!} e^{\xi},
$$

where $\xi=-1+\theta(x+1) ; 0<\theta<1$.
768. Expand the function $f(x)=\ln x$ in powers of $x-1$ up to the term with $(x-1)^{2}$.
769. Expand $f(x)=\sin x$ in powers of x up to the term containing x^{3} and to the term containing x^{5}.
770. Expand $f(x)=e^{x}$ in powers of x up to the term containing x^{n-1}
771. Show that $\sin (a+h)$ differs from

$$
\sin a+h \cos a
$$

by not more than $1 / 2 h^{2}$.
772. Determine the origin of the approximate formulas:
a) $\sqrt{1+x} \approx 1+\frac{1}{2} x-\frac{1}{8} x^{2}, \quad|x|<1$,
b) $\sqrt[3]{1+x} \approx 1+\frac{1}{3} x-\frac{1}{9} x^{2}, \quad|x|<1$
and evaluate their errors.
773. Evaluate the error in the formula

$$
e \approx 2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}
$$

774. Due to its own weight, a heavy suspended thread lies in a catenary line $y=a \cosh \frac{x}{a}$. Show that for small $|x|$ the shape of the thread is approximately expressed by the parabola

$$
y=a+\frac{x^{2}}{2 a}
$$

775*. Show that for $|x|<a$, to within $\left(\frac{x}{a}\right)^{2}$, we have the approximate equality

$$
e^{\frac{x}{a}} \approx \sqrt{\frac{\overline{a+x}}{a-x}}
$$

Sec. 9. The L'Hospital-Bernoulli Rule for Evaluating Indeterminate Forms

1°. Evaluating the indeterminate forms $\frac{0}{0}$ and $\frac{\infty}{\infty}$. Let the single-valued functions $f(x)$ and $\varphi(x)$ be differentiable for $0<|x-a|<h$; the derivative of one of them does not vanish.

If $f(x)$ and $\varphi(x)$ are both infinitesimals or both inflnites as $x \longrightarrow a$; that is, if the quotient $\frac{f(x)}{\varphi(x)}$, at $x=a$, is one of the indeterminate forms $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{\varphi(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{\varphi^{\prime}(x)}
$$

provided that the limit of the ratio of derivatives exists.

The rule is also applicable when $a=\infty$.
If the quotient $\frac{f^{\prime}(x)}{\varphi^{\prime}(x)}$ again yields an indeterminate form, at the point $x=a$, of one of the two above-mentioned types and $f^{\prime}(x)$ and $\varphi^{\prime}(x)$ satisfy all the requirements that have been stated for $f(x)$ and $\varphi(x)$, we can then pass to the ratio of second derivatives, etc.

However, it should be borne in mind that the limit of the ratio $\frac{f(x)}{\varphi(x)}$ may exist, whereas the ratios of the derivatives do not tend to any limit (see Example 809).
2°. Other indeterminate forms. To evaluate an indeterminate form like $0 \cdot \infty$, transform the appropriate product $f_{1}(x) \cdot f_{2}(x)$, where $\lim _{x \rightarrow a} f_{1}(x)=0$ and $\lim _{x \rightarrow a} f_{2}(x)=\infty$, into the quetrent $\frac{f_{1}(x)}{\frac{1}{f_{2}(x)}}$ (the form $\frac{0}{0}$ (or $\frac{\frac{f_{2}(x)}{1}}{f_{1}(x)}$ (the form $\frac{\infty}{\infty}$).

In the case of the indeterminate form $\infty-\infty$, one should transform the appropriate difference $f_{1}(x)-f_{2}(x)$ into the product $f_{1}(x)\left[1-\frac{f_{2}(x)}{f_{1}(x)}\right]$ and first evaluate the indeterminate form $\frac{f_{2}(x)}{f_{1}(x)}$; if $\lim _{x \rightarrow a} \frac{f_{2}(x)}{f_{1}(x)}=1$, then we reduce the expression to the form

$$
\left.\frac{1-\frac{f_{2}(x)}{f_{1}(x)}}{\frac{1}{f_{1}(x)}} \text { (the form } \frac{0}{0}\right) .
$$

The indeterminate forms $1^{\infty}, 0^{0}, \infty^{0}$ are evaluated by first faking logac rithms and then finding the limit of the logarithm of the power $\left[f_{1}(x)\right]^{f_{2}(x)}$ (which requires evaluating a form like $0 . \infty$).

In certain cases it is useful to combine the L'Hospital rule with the finding of limits by elementary techniques.

Example 1. Compute

$$
\lim _{x \rightarrow 0} \frac{\ln x}{\cot x}\left(\text { form } \frac{\infty}{\infty}\right) .
$$

Solution. Applying the L'Hospital rule we have

$$
\lim _{x \rightarrow 0} \frac{\ln x}{\cot x}=\lim _{x \rightarrow 0} \frac{(\ln x)^{\prime}}{(\cot x)^{\prime}}=-\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x} .
$$

We get the indeterminate form $\frac{0}{0}$; however, we do not need to use the L'Hospital rule, since

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{x}=\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \sin x=1 \cdot 0=0 .
$$

We thus finally get

$$
\lim _{x \rightarrow 0} \frac{\ln x}{\cot x}=0
$$

Example 2. Compute

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right)(\text { form } \infty-\infty) .
$$

Reducing to a common denominator, we get

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right)=\lim _{x \rightarrow 0} \frac{x^{2}-\sin ^{2} x}{x^{2} \sin ^{2} x} \text { (form } \frac{0}{0} \text {). }
$$

Before applying the L'Hospital rule, we replace the denominator of the latter fraction by an equivalent infinitesimal (Ch. 1, Sec. 4) $x^{2} \sin ^{2} x \sim x^{4}$. We obtain

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right)=\lim _{x \rightarrow 0} \frac{x^{2}-\sin ^{2} x}{x^{4}} \text { (form } \frac{0}{0} \text {). }
$$

The L'Hospital rule gives

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right)=\lim _{x \rightarrow 0} \frac{2 x-\sin 2 x}{4 x^{3}}=\lim _{x \rightarrow 0} \frac{2-2 \cos 2 x}{12 x^{2}} .
$$

Then, in elementary fashion, we find

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin ^{2} x}-\frac{1}{x^{2}}\right)=\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{6 x^{2}}=\lim _{x \rightarrow 0} \frac{2 \sin ^{2} x}{6 x^{2}}=\frac{1}{3} .
$$

Example 3. Compute

$$
\lim _{x \rightarrow 0}(\cos 2 x)^{\frac{3}{x^{2}}}\left(\text { form } 1^{\infty}\right)
$$

Taking logarithms and applying the L'Hospital rule, we get

$$
\lim _{x \rightarrow 0} \ln (\cos 2 x)^{\frac{3}{x^{2}}}=\lim _{x \rightarrow 0} \frac{3 \ln \cos 2 x}{x^{2}}=-6 \lim _{x \rightarrow 0} \frac{\tan 2 x}{2 x}=-6 .
$$

Hence, $\lim _{x \rightarrow 0}(\cos 2 x)^{\frac{8}{x^{2}}} \rightleftharpoons e^{-8}$.
Find the indicated limits of functions in the following examples.
776. $\lim _{x \rightarrow 1} \frac{x^{3}-2 x^{2}-x+2}{x^{3}-7 x+6}$.

Solution. $\lim _{x \rightarrow 1} \frac{x^{3}-2 x^{2}-x+2}{x^{3}-7 x+6}=\lim _{x \rightarrow 1} \frac{3 x^{2}-4 x-1}{3 x^{2}-7}=\frac{1}{2}$.
777. $\lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{8}}$.
779. $\lim _{x \rightarrow 0} \frac{\cosh x-1}{1-\cos x}$.
778. $\lim _{x \rightarrow 1} \frac{1-x}{1-\sin \frac{\pi x}{2}}$.
780. $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{x-\sin x}$.
781. $\lim _{x \rightarrow-\frac{\pi}{4}} \frac{\sec ^{2} x-2 \tan x}{1+\cos 4 x}$.
782. $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan x}{\tan 5 x}$.
785. $\lim _{x \rightarrow 0} \frac{\frac{\pi}{x}}{\cot \frac{\pi x}{2}}$.
783. $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{5}}$.
784. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$.

Solution. $\lim _{x \rightarrow 0}(1-\cos x) \cot x=\lim _{x \rightarrow 0} \frac{(1-\cos x) \cos x}{\sin x}=\lim _{x \rightarrow 0} \frac{(1-\cos x) \cdot 1}{\sin \lambda}=$ $=\lim _{x \rightarrow 0} \frac{\sin x}{\cos x}=0$
788. $\lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}$.
792. $\lim _{x \rightarrow \infty} x^{n} \sin \frac{a}{x}, n>0$.
789. $\lim _{x \rightarrow 0} \operatorname{arc} \sin x \cot x$.
793. $\lim _{x \rightarrow 1} \ln x \ln (x-1)$.
790. $\lim _{x \rightarrow 0}\left(x^{n} e^{-x}\right), \quad n>0$.
794. $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{1}{\ln x}\right)$.
791. $\lim _{x \rightarrow \infty} x \sin \frac{a}{x}$.

Solution. $\lim _{x \rightarrow 1}\left(\frac{x}{x-1}-\frac{1}{1 \ln x}\right)=\lim _{x \rightarrow 1} \frac{x \ln x-x+1}{(x-1) \ln 1}=$
$=\lim _{x \rightarrow 1} \frac{x \cdot \frac{1}{x}+\ln x-1}{\ln x+\frac{1}{x}(x-1)}=\lim _{x \rightarrow 1} \frac{\ln x}{\ln x-\frac{1}{x}+1}=\lim _{x \rightarrow 1} \frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{x^{2}}}=\frac{1}{2}$.
795. $\lim _{x \rightarrow 3}\left(\frac{1}{x-3}-\frac{5}{x^{2}-x-6}\right)$.
796. $\lim _{x \rightarrow 1}\left[\frac{1}{2(1-\sqrt{x})}-\frac{1}{3(1-\sqrt[3]{x})}\right]$.
797. $\lim _{x \rightarrow-\frac{\pi}{2}}\left(\frac{x}{\cot x}-\frac{\pi}{2 \cos x}\right)$.
798. $\lim _{x \rightarrow 0} x^{x}$.

Solution. We have $x^{x}=y ; \quad \ln y=x \ln x: \quad \lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} x \ln x=$ $=\lim _{x \rightarrow 0} \frac{\ln x}{\frac{1}{x}}=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{-\frac{1}{x^{2}}}=0$, whence $\lim _{x \rightarrow 0} y=1$, that is, $\lim _{x \rightarrow 0} x^{x}=1$.
799. $\lim _{x \rightarrow+\infty} x^{\frac{1}{x}}$.
800. $\lim _{x \rightarrow 0} \frac{8}{x^{4+\ln x}}$.
801. $\lim _{x \rightarrow 0} x^{\sin x}$.
802. $\lim _{x \rightarrow 1}(1-x)^{\cos \frac{\pi x}{2}}$.
803. $\lim _{x \rightarrow 0}\left(1+x^{2}\right)^{\frac{1}{x}}$.
809. Prove that the limits of
a) $\lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{\sin x}=0$;
b) $\lim _{x \rightarrow \infty} \frac{x-\sin x}{x+\sin x}=1$
cannot be found by the L'Hospital-Bernoulli rule. Find these limits directly.

Fig. 20
810*. Show that the area of a circular segment with minor central angle a, which has a chord $A B=b$ and $C D=h$ (Fig. 20), is approximately

$$
S \approx \frac{2}{3} b h
$$

with an arbitrarily small relative error when $a \rightarrow 0$.

Chapter III

THE EXTREMA OF A FUNCTION AND THE GEOMETRIC APPLICATIONS OF A DERIVATIVE

Sec. 1. The Extrema of a Function of One Argument

1°. Increase and decrease of tunctions. This lunction $y=f(x)$ is called increasing (decreasing) on some interval if, fo. any points x_{1} and x_{2} which belong to this interval, from the inequahty $x_{1}<x_{2}$ we get the mequality $/\left(x_{1}\right)<$ $<f\left(x_{2}\right)$ (Fig 2la) [f $\left(x_{1}\right)>f\left(\lambda_{2}\right)$ (F1g. 21b)]. 1i $f(x)$ is contmuous on the interval $[a, b]$ and $f^{\prime}(x)>0 \quad\left[f^{\prime}(x)<0\right]$ for $a<,<b$, then $f(x)$ increases (decreases) on the interval $[a, b]$.

(a)

(b)

Fig. 21

Fig. 22

In the simplest cases, the domain of definition of $f(x)$ may be subdivided into a finite number of intervals of increase and decrease of the function (intervals of monotonicity). These intervals are bounded by citic ${ }^{-}$ points x [where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist].

Example 1. Test the following function for increase and decrease:

$$
y=x^{2}-2 x+5
$$

Solution. We find the derivative

$$
y^{\prime}=2 x-2=2(x-1)
$$

Whence $y^{\prime}=0$ for $x=1$. On a number scale we get two intervals of monot onicity: $(-\infty, 1)$ and ($1,+\infty$). From (1) we have: 1) if $-\infty<x<1$, then $y^{\prime}<0$, and, hence, the function $f(x)$ decreases in the interval $(-\infty, 1) ; 2$) if $1<x<+\infty$, then $y^{\prime}>0$, and, hence, the function $f(x)$ increases in the interval (1, $+\infty$) (Fig. 22).

Example 2. Determine the intervals of increase and decrease of the function

$$
y=\frac{1}{x+2} .
$$

Solution. Here, $x=-2$ is a discontinuity of the function and $y^{\prime}=$ $=-\frac{1}{(x+2)^{2}}<0$ for $x \neq-2$. Hence, the function y decreases in the intervals $-\infty<x<-2$ and $-2<x<+\infty$.

Example 3. Test the following function for increase or decrease:

$$
y=\frac{1}{5} x^{5}-\frac{1}{3} x^{3} .
$$

Solution Here,

$$
\begin{equation*}
y^{\prime}=x^{4}-x^{2} . \tag{2}
\end{equation*}
$$

Sol ving the equation $x^{4}-x^{2}=0$, we find the points $x_{1}=-1, x_{2}=0, x_{3}=1$ at which the derivative y^{\prime} vanishes. Since y^{\prime} can change sign only when passing through points at which it vanishes or becomes discontinuous (in the given case, y^{\prime} has no discontinuities), the derivative in each of the intervals $(-\infty,-1),(-1,0),(0,1)$ and $(1,+\infty)$ retains its sign; for this reason, the function under investigation is monotonic in each of these intervals. To determine in which of the indicated intervals the function increases and in which it decreases, one has to determine the sign of the derivative in each of the intervals. To determine what the sign of y^{\prime} is in the interval $(-\infty$, -1), it is sufficient to determine the sign of y^{\prime} at some point of the interval; for example, taking $x=-2$, we get from (2) $y^{\prime}=12>0$, hence, $y^{\prime}>0$ in the interval $(-\infty,-1)$ and the function in this interval increases Similarly, we find that $y^{\prime}<0$ in the interval $(-1,0)$ (as a check, we can take

Fig 23
$\left.x=-\frac{1}{2}\right), \quad y^{\prime}<0 \quad$ in the interval
(here, we can use $x=1 / 2$) and $y^{\prime}>0$ in the interval $(1,+\infty)$.

Thus, the function being tested increases in the interval $(-\infty,-1)$, decreases in the interval $(-1,1)$ and again increases in the interval $(1,+\infty)$.
2°. Extremum of a function. If there exists a two-sided neighbourhood of a point x_{0} such that for every print $x \neq x_{0}$ of this neighbourhood we have the inequality $f(x)>f\left(x_{0}\right)$, then the point x_{0} is called the minimum point of the function $y=-f(x)$, while the number $f\left(x_{0}\right)$ is called the minimum of the function $y=f(x)$. Similarly, if for any point $x \neq x_{1}$ of some neighbourhood of the point x_{1}, the inequality $f(x)<f\left(x_{1}\right)$ is fulfilled, then x_{1} is called the maximum point of the function $f(x)$, and $f\left(x_{1}\right)$ is the maximum of the function (Fig. 23). The mınimum point or maximum point of a function is its ext remal point (bending point), and the minimum or maximum of a function is called the extremum of the function. If x_{0} is an extremal point of the function $f(x)$, then $f^{\prime}\left(x_{0}\right)=0$, or $f^{\prime}\left(x_{0}\right)$ does not exist (necessary condition for the existence of an extremum). The converse is not true: points at which $f^{\prime}(x)=0$, or $f^{\prime}(x)$, does not exist (critical points) are not necessarily extremal points of the function $f(x)$.

The sufficient conditions for the existence and absence of an extremum of a continuous function $f(x)$ are given by the following rules:

1. If there exists a neighbourhood ($x_{0}-\delta, x_{0}+\delta$) of a critical point x_{0} such that $f^{\prime}(x)>0$ for $x_{0}-\delta<x<x_{0}$ and $f^{\prime}(x)<0$ for $x_{0}<x<x_{0}+\delta$, then x_{0} is the maximum point of the function $f(x)$; and if $f^{\prime}(x)<0$ for $x_{0}-8<x<x_{0}$ and $f^{\prime}(x)>0$ for $x_{0}<x<x_{0}+8$, then x_{0} is the minimum point of the function $f(x)$.

Finally, if there is some positive number δ such that $f^{\prime}(x)$ retains its sign unchanged for $0<\left|x-x_{0}\right|<\delta$, then x_{0} is not an extremal point of the function $f(x)$.
2. If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then x_{0} is the maximum point; if $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then x_{0} is the minimum point; but if $f^{\prime}\left(x_{0}\right)=0$, $f^{\prime \prime}\left(x_{0}\right)=0$, and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$, then the point x_{0} is not an extremal point.

More generally: let the first of the derivatives (not equal to zero at the point x_{0}) of the function $f(x)$ be of the order k. Then, if k is even, the point x_{0} is an extremal point, namely, the maximum point, if $f^{(k)}\left(x_{0}\right)<0$; and it is the minimum point, if $f^{(k)}\left(x_{0}\right)>0$ But if k is odd, then x_{0} is not an extremal point.

Example 4. Find the extrema of the function

$$
y=2 x+3 \sqrt[3]{x^{2}}
$$

Solution. Find the derivative

$$
\begin{equation*}
y^{\prime}=2+\frac{2}{\sqrt[3]{x}}=\frac{2}{\sqrt[3]{x}}(\sqrt[3]{x}+1) \tag{3}
\end{equation*}
$$

Equating the derivative y^{\prime} to zero, we get:

$$
\sqrt[3]{x}+1=0
$$

Whence, we find the critical point $x_{1}=-1$. From formula (3) we have: if $x=-:-h$, where h is a sufficiently small positive number, then $y^{\prime}>0$; but if $x=-1+h$, then $y^{\prime}<0^{*}$). Hence, $x_{1}=-1$ is the maximum point of the function y, and $y_{\text {max }}=-1$.

Equating the denominator of the expression of y^{\prime} in (3) to zero, we get

$$
\sqrt[3]{x}=0
$$

whence we find the second critical point of the function $x_{2}=0$, where there is no derivative y^{\prime} For $x=-h$, we obviously have $y^{\prime}<0$; for $x=h$ we have $y^{\prime}>0$. Consequently, $x_{2}=0$ is the mimmum point of the function y, and $y_{\mathrm{min}}=0$ (Fig. 24). It is also possible to test the behaviour of the function at the point $x=-1$ by means of the second derivative

$$
y^{\prime \prime}=-\frac{2}{3 x \sqrt[3]{x}}
$$

Here, $y^{\prime \prime}<0$ for $x_{1}=-1$ and, hence, $x_{1}=-1$ is the maximum point of the function.
3°. Greatest and least values. The least (greatest) value of a continuous function $f(x)$ on a given interval $[a, b]$ is attained either at the critical points of the function or at the end-points of the interval $[a, b]$.
*) If it is difficult to determine the sign of the derivative y^{\prime}, one can calculate arithmetically by taking for h a sufficiently small positive number.

Example 5. Find the greatest and least values of the function

$$
y=x^{3}-3 x+3
$$

on the interval $-1 \frac{1}{2} \leqslant x \leqslant 2 / 2$.
Solution. Since

$$
y^{\prime}=3 x^{2} \ldots 3
$$

it follows that the critical points of the function y are $x_{1}=-1$ and $x_{2}=1$.

Fig. 24

Fig. i

Comparing the values of the function at these points and the values of the function at the end-points of the given interval

$$
y(-1)=5 ; y(1)=1 ; y\left(-1 \frac{1}{2}\right)=4 \frac{1}{8} ; \quad y\left(2 \frac{1}{2}\right)=11 \frac{1}{8},
$$

we conclude (Fig. 25) that the function attains its least value, $m=1$, at the point $x=1$ (at the minimum point), and the greatest value $M=11 \frac{1}{8}$ at the point $x=2^{1 / 2}$ (at the right-hand end-point of the interval).

Determine the intervals of decrease and increase of the functions:
811. $y=1-4 x-x^{2}$.
812. $y=(x-2)^{2}$.
813. $y=(x+4)^{2}$.
814. $y=x^{2}(x-3)$.
815. $y=\frac{x}{x-2}$.
816. $y=\frac{1}{(x-1)^{2}}$.
817. $y=\frac{x}{x^{2}-6 x-16}$.
818. $y=(x-3) \sqrt{x}$.
819. $y=\frac{x}{3}-\sqrt[3]{x}$.
820. $y=x+\sin x$.
821. $y=x \ln x$.
822. $y=\arcsin (1+x)$.
823. $y=2 e^{x^{2}-4 x}$.
824. $y=2^{\frac{1}{x-a}}$.
825. $y=\frac{e^{x}}{x}$.

Test the following functions for extrema:
826. $y=x^{2}+4 x+6$.

Solution. We find the derivative of the given function, $y^{\prime}=2 x+4$. Equating y^{\prime} to zero, we get the critical value of the argument $x=-2$. Since $y^{\prime}<0$ when $x<-2$, and $y^{\prime}>0$ when $x>-2$, it follows that $x=-2$ is the minimum point of the function, and $y_{\mathrm{min}}=2$. We get the same result by utilizing the sign of the second derivative at the critical point $y^{\prime \prime}=2>0$.
827. $y=2+x-x^{2}$.
828. $y=x^{2}-3 x^{2}+3 x+2$.
829. $y=2 x^{2}+3 x^{2}-12 x+5$.

Solution. We find the derivative

$$
y^{\prime}=6 x^{2}+6 x-12=6\left(x^{2}+x-2\right) .
$$

Equating the derivative y^{\prime} to zero, we get the critical points $x_{1}=-2$ and $x_{2}=1$. To determine the nature of the extremum, we calculate the second derivative $y^{\prime \prime}=6(2 x+1)$. Sinee $y^{\prime \prime}(-2)<0$, it follows that $x_{1}=-2$ is the maximum point of the function y, and $y_{\text {max }}=25$. Similarly, we have $y^{\prime \prime}(1)>0$; therefore, $x_{2}=1$ is the minimum point of the function y and $y_{\text {min }}=-2$.
830. $y=x^{2}(x-12)^{2}$.
831. $y=x(x-1)^{2}(x-2)^{2}$.
832. $y=\frac{x^{2}}{x^{2}+3}$.
833. $y=\frac{x^{2}-2 x+2}{x-1}$.
834. $y=\frac{(x-2)(8-x)}{x^{2}}$.
835. $y=\frac{16}{x\left(4-x^{2}\right)}$.
836. $y=\frac{4}{\sqrt{x^{2}+8}}$.
837. $y=\frac{x}{\sqrt[3]{x^{2}-4}}$.
838. $y=\sqrt[3]{\left(x^{2}-1\right)^{2}}$.
839. $y=2 \sin 2 x+\sin 4 x$.
840. $y=2 \cos \frac{x}{2}+3 \cos \frac{x}{3}$.
841. $y=x-\ln (1+x)$.
842. $y=x \ln x$.
843. $y=x \ln ^{2} x$.
844. $y=\cosh x$.
845. $y=x e^{x}$.
846. $y=x^{2} e^{-x}$.
847. $y=\frac{e^{x}}{x}$.

Determine the least and greatest values of the functions on the indicated intervals (if the interval is not given, determine the
greatest and least values of the function throughout the domain of definition).
849. $y=\frac{x}{1+x^{2}}$.
850. $y=\sqrt{x(10-x)}$.
851. $y=\sin ^{4} x+\cos ^{4} x$.
853. $y=x^{3}$ on the interval $[-1,3]$.
854. $y=2 x^{3}+3 x^{2}-12 x+1$
a) on the interval $[-1,5]$;
b) on the interval $[-10,12]$.
852. $y=\arccos x$.
855. Show that for positive values of x we have the inequality

$$
x+\frac{1}{x} \geq 2
$$

856. Determine the coefficients p and q of the quadratic trinomial $y=x^{2}+p x+q$ so that this trinomial should have a minimum $y=3$ when $x=1$. Explain the result in geometrical terms.
857. Prove the inequality

$$
e^{x}>1+x \text { when } x \neq 0
$$

Solution. Consider the function

$$
f(x)=e^{x}-(1+x)
$$

In the usual way we find that this function has a single minimum $f(0)=0$. Hence,

$$
\begin{aligned}
f(x)>f(0) & \text { when } x \neq 0, \\
\text { and so } e^{x}>1+x & \text { when } x \neq 0,
\end{aligned}
$$

as we set out to prove.
Prove the inequalities:
858. $x-\frac{x^{3}}{6}<\sin x<x$
859. $\cos x>1-\frac{x^{2}}{2}$
when $x>0$.
860. $x-\frac{x^{2}}{2}<\ln (1+x)<x \quad$ when $x>0$.
861. Separate a given positive number a into two summands such that their product is the greatest possible.
862. Bend a piece of wire of length l into a rectangle so that the area of the latter is greatest.
863. What right triangle of given perimeter $2 p$ has the greatest area?
864. It is required to build a rectangular playground so that it should have a wire net on three sides and a long stone wall on the fourth. What is the optimum (in the sense of area) shape of the playground if l metres of wire netting are available?
865. It is required to make an open rectangular box of greatest capacity out of a square sheet of cardboard with side a by cutting squares at each of the angles and bending up the ends of the resulting cross-like figure.
866. An open tank with a square base must have a capacity of v litres. What size will it be if the least amount of tin is used?
867. Which cylinder of a given volume has the least overall surface?
868. In a given sphere inscribe a cylinder with the greatest volume.
869. In a given sphere inscribe a cylinder having the greatest lateral surface.
870. In a given sphere inscribe a cone with the greatest volume.
871. Inscribe in a given sphere a right circular cone with the greatest lateral surface.
872. About a given cylinder circumscribe a right cone of least volume (the planes and centres of their circular bases coincide).
873. Which of the cones circumscribed about a given sphere has the least volume?
874. A sheet of tin of width a has to be bent into an open cylindrical channel (Fig. 26). What should the central angle φ be so that the channel will have maximum capacity?

Fig. 26

Fig. 27
875. Out of a circular sheet cut a sector such that when madeinto a funnel it will have the greatest possible capacity.
876. An open vessel consists of a cylinder with a hemisphere at the bottom; the walls are of constant thickness. What will the dimensions of the vessel be if a minimum of material is used for a given capacity?
877. Determine the least height $h=O B$ of the door of a ver. tical tower $A B C D$ so that this door can pass a rigid rod $M N$ of length l, the end of which, M, slides along a horizontal straight ine $A B$. The width of the tower is $d<l$ (Fig. 27).
878. A point $M_{0}\left(x_{0}, y_{0}\right)$ lies in the first quadrant of a coordinate plane. Draw a straight line through this point so that the triangle which it forms with the positive semi-axes is of least area.
879. Inscribe in a given ellipse a rectangle of largest area with sides parallel to the axes of the ellipse.
880. Inscribe a rectangle of maximum area in a segment of the parabola $y^{2}=2 p x$ cut off by the straight line $x=2 a$.
881. On the curve $y=\frac{1}{1+x^{2}}$ find a point at which the tangent forms with the x-axis the greatest (in absolute value) angle.
882. A messenger leaving A on one side of a river has to get to B on the other side. Knowing that the velocity along the bank is k times that on the water, determine the angle at which the messenger has to cross the river so as to reach B in the shortest possible time. The width of the river is h and the distance between A and B along the bank is d.
883. On a straight line $A B=a$ connecting two sources of light A (of intensity p) and B (of intensity q), find the point M that receives least light (the intensity of illumination is inversely proportional to the square of the distance from the light source).
884. A lamp is suspended above the centre of a round table of radius r. At what distance should the lamp be above the table so that an object on the edge of the table will get the greatest illumination? (The intensity of illumination is directly proportional to the cosine of the angle of incidence of the light rays and is inversely proportional to the square of the distance from the light source.)
885. It is required to cut a beam of rectangular cross-section out of a round \log of diameter d. What should the width x and the height y be of this cross-section

Fig. 2 so that the beam will offer maximum resistance a) to compression and b) to bending?

Note. The resistance of a beam to compression is proportional to the area of its crosssection, to bending-to the product of the width of the cross-section by the square of its height.
886. A homogeneous rod $A B$, which can rotate about a point A (Fig. 28), is carrying a load Q kilograms at a distance of $a \mathrm{~cm}$ from A and is held in equilibrium by a vertical force P applied to the free end B of the rod. A linear centimetre of the rod weighs q kilograms. Determine the length of the rod x so that the force P should be least, and find $P_{\text {mln }}$.

887*. The centres of three elastic spheres $A, B ; C$ are situated on a single straight line. Sphere A of mass M moving with velocity v strikes B, which, having acquired a certain velocity, strikes C of mass m. What mass should B have so that C will have the greatest possible velocity?
888. N identical electric cells can be formed into a battery in different ways by combining n cells in series and then combining the resulting groups (the number of groups is $\frac{N}{n}$) in parallel. The current supplied by this battery is given by the formula

$$
I=\frac{N n \varepsilon}{N R+n^{2} r},
$$

where \mathscr{E} is the electromotive force of one cell, r is its internal resistance, and R is its external resistance.

For what value of n will the battery produce the greatest current?
889. Determine the diameter y of a circular opening in the body of a dam for which the discharge of water per second Q will be greatest, if $Q=c y \sqrt{\overline{h-y}}$, where h is the depth of the lowest point of the opening (h and the empirical coefficient c are constant).
890. If $x_{1}, x_{2}, \ldots, x_{n}$ are the results of measurements of equal precision of a quantity x, then its most probable value will be that for which the sum of the squares of the errors

$$
\sigma=\sum_{i=1}^{n}\left(x-x_{i}\right)^{2}
$$

is of least value (the principle of least squares).
Prove that the most probable value of x is the arithmetic mean of the measurements.

Sec. 2. The Direction of Concavity. Points of Inflection

1°. The concavity of the graph of a function. We say that the graph of a differentiable function $y=f(x)$ is concave down in the interval (a, b) [concave $u p$ in the interval $\left(a_{1}, b_{1}\right)$] if for $a<x<b$ the arc of the curve is below (or for $a_{1}<x<b_{1}$, above) the tangent drawn at any point of the interval (a, b) or of the interval (a_{1}, b_{1})] (Fig. 29). A sufficient condition for the concavity downwards (upwards) of a graph $y=f(x)$ is that the following inequality befulfilled in the appropriate interval:

$$
f^{\prime \prime}(x)<0\left[f^{\prime \prime}(x)>0\right] .
$$

2°. Points of inflection. A point $\left[x_{0}, f\left(x_{0}\right)\right]$ at which the direction of concavity of the graph of some function changes is called a point of inflection (Fig. 29).

For the abscissa of the point of inffection x_{0} of the graph of a function $y=f(x)$ there is no second derivative $f^{\prime \prime}\left(x_{0}\right)=0$ or $f^{\prime \prime}\left(x_{0}\right)$. Points at which $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ does not exist are called critical points of the second kind. The critical point of the second kind x_{0} is the abscissa of the point of inflection if $f^{\prime \prime}(x)$ retains constant signs in the intervals $x_{0}-\delta<x<x_{0}$ and $x_{0}<x<x_{0}+\delta$, where δ is some posi-

Fig. 29 tive number; provided these signs are opposite. And it is not a point of inflection if the signs of $f^{\prime \prime}(x)$ are the same in the above-indicated intervals.

Example 1. Determine the intervals of concavity and convexity and also the points of inflection of the Gaussian curve

$$
y=e^{-x^{2}}
$$

Solution. We have

$$
y^{\prime}=-2 x e^{-x}
$$

and

$$
y^{\prime \prime}=\left(4 x^{2}-2\right) e^{-x^{2}}
$$

Equating the second derivative $y^{\prime \prime}$ to zero, we find the critical points of the second kind

$$
x_{1}=-\frac{1}{\sqrt{2}} \quad \text { and } \quad x_{2}=\frac{1}{\sqrt{2}}
$$

These points divide the number scale $-\infty<x<+\infty$ into three intervals: I $\left(-\infty, x_{1}\right)$ II $\left(x_{1}, x_{2}\right)$, and III $\left(x_{2},+\infty\right)$. The signs of $y^{\prime \prime}$ will be, respec-

Fig. 30

Fig. 31
tively,,,+-+ (this is obvious if, for example, we take one point in each of the intervals and substitute the corresponding values of x into $y^{\prime \prime}$) Therefore: 1) the curve is concave up when $-\infty<x<-\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}<x<+\infty$; 2) the curve is concave down when $-\frac{1}{\sqrt{2}}<x<\frac{1}{\sqrt{2}}$. The points $\left(\frac{ \pm 1}{\sqrt{2}}, \frac{1}{\sqrt{e}}\right)$ are points of inflection (Fig. 30).

It will be noted that due to the symmetry of the Gaussian curve about the y-axis, it would be sufficient to investigate the sign of the concavity of this curve on the semiaxis $0<x<+\infty$ alone.

Example 2. Find the points of inflection of the graph of the function

$$
y=\sqrt[3]{x+2}
$$

Solution. We have:

$$
\begin{equation*}
y^{\prime \prime}=-\frac{2}{9}(x+2)^{-\frac{8}{3}}=\frac{-2}{9 \sqrt[3]{(x+2)^{5}}} \tag{1}
\end{equation*}
$$

It is obvious that $y^{\prime \prime}$ does not vanish anywhere.
Equating to zero the denominator of the fraction on the right of (1), we find that $y^{\prime \prime}$ does not exist for $x=-2$. Since $y^{\prime \prime}>0$ for $x<-2$ and $y^{\prime \prime}<0$ for $x>-2$, it follows that $(-2,0)$ is the point of inflection (Fig. 31). The tangent at this point is parallel to the axis of ordinates, since the first derivative y^{\prime} is infinte at $x=-2$.

Find the intervals of concavity and the points of inflection of the graphs of the following functions:
891. $y=x^{3}-6 x^{2}+12 x+4$.
892. $y=(x+1)^{4}$.
893. $y=\frac{1}{x+3}$.
894. $y=\frac{x^{3}}{x^{2}+12}$.
895. $y=\sqrt[3]{4 x^{3}-12 x}$.
896. $y=\cos x$.
897. $y=x-\sin x$.
898. $y=x^{2} \ln x$.
899. $y=\arctan x-x$.
900. $y=\left(1+x^{2}\right) e^{x}$.

Sec. 3. Asymptotes

1°. Deflnition. If a point (x, y) is in continuous motion along a curve $y==f(x)$ in such a way that at least one of its coordinates approaches infinity (and at the same time the distance of the point from some straght line tends to zero), then this straight line is called an asymptote of the curve.
2°. Vertical asymptotes. If there is a number a such that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty,
$$

then the straight line $x=a$ is an asymptote (vertical asymptote).
3° Inclined asymptotes. If there are limits

$$
\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=k_{1}
$$

and

$$
\lim _{x \rightarrow+\infty}\left[f(x)-k_{1} x\right]=b_{1},
$$

then the straight line $y=k_{1} x+b_{1}$ will be an asymptote (a right inclined asymptote or, when $k_{1}=0$, a right horizontal asymptote).

If there are limits

$$
\lim _{x \rightarrow-\infty} \frac{f(x)}{x}=k_{2}
$$

and

$$
\lim _{x \rightarrow-\infty}\left[f(x)-k_{2} x\right]=b_{2},
$$

then the straight line $y=k_{2} x+b_{2}$ is an asymptote (a left inclined asymptote or, when $k_{2}=0$, a left horizontal asymptote). The graph of the function $y=f(x)$ (we assume the function is single-valued) cannot have more than one right (inclined or horizontal) and more than one left (inclined or horizontal) asymptote.

Example 1. Find the asymptotes of the curve

$$
y=\frac{x^{2}}{\sqrt{x^{2}-1}} .
$$

Solution. Equating the denominator to zero, we get two vertical asymptotes.

$$
x=-1 \quad \text { and } \quad x=1
$$

We seek the inclined asymptotes. For $x \rightarrow+\infty$ we obtain

$$
\begin{gathered}
k_{1}=\lim _{x \rightarrow+\infty} \frac{y}{x}=\lim _{x \rightarrow+\infty} \frac{x^{2}}{r \sqrt{x^{2}-1}}=1, \\
b_{1}=\lim _{x \rightarrow+\infty}(y-x)=\lim _{x \rightarrow+\infty} \frac{x^{2}-x \sqrt{x^{2}-1}}{\sqrt{x^{2}-1}}=0,
\end{gathered}
$$

Fig. 32
hence, the straight line $y=x$ is the right asymptote. Similarly, when $x \rightarrow-\infty$, we have

$$
\begin{aligned}
& k_{2}=\lim _{x \rightarrow-\infty} \frac{y}{x}=-1 \\
& b_{2}=\lim _{x \rightarrow-\infty}(y+x)=0 .
\end{aligned}
$$

Thus, the left asymptote is $y=-x$ (Fig. 32). Testing a curve for asymptotes is simplified if we take into consideration the symmetry of the curve.

Example 2. Find the asymptotes of the curve $y=x+\ln x$.

Solution. Since

$$
\lim _{x \rightarrow+0} y=-\infty
$$

the straight line $x=0$ is a vertical asymptote (lower). Let us now test the curve only for the inclined right asymptote (since $x>0$).

We have:

$$
\begin{gathered}
k=\lim _{x \rightarrow+\infty} \frac{y}{x}=1, \\
b=\lim _{x \rightarrow+\infty}(y-x)=\lim _{x \rightarrow+\infty} \ln x=\infty .
\end{gathered}
$$

Hence, there is no inclined asymptote.
If a curve is represented by the parametric equations $x=\varphi(t), y=\psi(t)$, then we first test to find out whether there are any values of the parameter t for which one of the functions $\varphi(t)$ or $\psi(t)$ becomes infinite, while the other remains finite. When $\varphi\left(t_{0}\right)=\infty$ and $\psi\left(t_{0}\right)=c$, the curve has a horizontal asymptote $y=c$. When $\psi\left(t_{0}\right)=\infty$ and $\varphi\left(t_{0}\right)=c$, the curve has a vertical asymptote $x=c$.

If $\varphi\left(t_{0}\right)=\psi\left(t_{0}\right)=\infty$ and

$$
\lim _{t \rightarrow t_{0}} \frac{\psi(t)}{\varphi(t)}=k ; \lim _{t \rightarrow t_{0}}[\psi(t)-k \varphi(t)]=b,
$$

then the curve has an incluned asymptote $y=k x+b$.
If the curve is represented by a polar equation $r=f(\varphi)$, then we can find its asymptotes by the preceding rule after transforming the equation of the curve to the parametric form by the formulas $x=r \cos \varphi=f(\varphi) \cos \varphi$; $y=r \sin \varphi=f(\varphi) \sin \varphi$.

Find the asymptotes of the following curves:
901. $y=\frac{1}{(x-2)^{2}}$.
902. $y=\frac{x}{x^{2}-4 x+3}$.
903. $y=\frac{x^{2}}{x^{2}-4}$.
904. $y=\frac{x^{3}}{x^{2}+9}$.
905. $y=\sqrt{x^{2}-1}$.
906. $y=\frac{x}{\sqrt{x^{2}+3}}$.
907. $y=\frac{x^{2}+1}{\sqrt{x^{2}-1}}$.
908. $y=x-2+\frac{x^{2}}{\sqrt{x^{2}+9}}$.
909. $y=e^{-x^{2}}+2$.
910. $y=\frac{1}{1-e^{x}}$.
911. $y=e^{\frac{1}{x}}$.
912. $y=\frac{\sin x}{x}$.
913. $y=\ln (1+x)$.
914. $x=t ; y=t+2 \arctan t$.
915. Find the asymptote of the hyperbolic spiral $r=\frac{a}{\varphi}$.

Sec. 4. Graphing Functions by Characteristic Points

In constructing the graph of a function, first find its domain of definition and then determine the behaviour of the function on the boundary of this domain. It is also useful to note any peculiarities of the function (if there are any), such as symmetry, periodicity, constancy of sign, monotonicity, etc.

Then find any points of discontinuity, bending points, points of inflection, asymptotes, etc. These elements help to determine the general nature of the graph of the function and to obtain a mathematically correct outline of it.

Example 1. Construct the graph of the function

$$
y=\frac{x}{\sqrt[3]{x^{2}-1}}
$$

Solution. a) The function exists everywhere except at the points $x= \pm 1$. The function is odd, and therefore the graph is symmetric about the point $O(0,0)$. This simplifies construction of the graph
b) The discontinuities are $x=-1$ and $x=1$; and $\lim _{x \rightarrow 1 \pm 0} y= \pm \infty$ and $\lim y= \pm \infty$; hence, the straight lines $x= \pm 1$ are vertical asymptotes of the $x \rightarrow-1 \pm 0$ graph.
c) We seck inclined asymptotes, and find

$$
\begin{aligned}
& k_{1}=\lim _{x \rightarrow+\infty} \frac{y}{x}=0, \\
& b_{1}=\lim _{x \rightarrow+\infty} y=\infty,
\end{aligned}
$$

thus, there is no right asymptote. From the symmetry of the curve it follows that there is no left-hand asymptote either.
d) We find the critical points of the first and second kinds, that is, points at which the first (or, respectively, the second) derivative of the given function vanishes or does not exist.

We have: .

$$
\begin{align*}
& y^{\prime}=\frac{x^{2}-3}{3 \sqrt[3]{\left(x^{2}-1\right)^{4}}} \tag{1}\\
& y^{\prime \prime}=\frac{2 x\left(9-x^{2}\right)}{9 \sqrt[3]{\left(x^{2}-1\right)^{7}}} . \tag{2}
\end{align*}
$$

The derivatives y^{\prime} and $y^{\prime \prime}$ are nonexistent only at $x= \pm 1$, that is, only at points where the function y itself does not exist; and so the critical points are only those at which y^{\prime} and $y^{\prime \prime}$ vanish.

From (1) and (2) it follows that

$$
\begin{array}{ll}
y^{\prime}=0 & \text { when } x= \pm \sqrt{3} \\
y^{\prime \prime}=0 & \text { when } x=0 \text { and } x= \pm 3 .
\end{array}
$$

Thus, y^{\prime} retains a constant sign in each of the intervals $(-\infty,-\sqrt{3})$, $(-\sqrt{\overline{3}},-1),(-1,1),(1, \sqrt{3})$ and $(\sqrt{3},+\infty)$, and $y^{\prime \prime}$-in each of the intervals $(-\infty,-3),(-3,-1),(-1,0),(0,1),(1,3)$ and $(3,+\infty)$.

To determine the signs of y^{\prime} (or, respectively, $y^{\prime \prime}$) in each of the indicated intervals, it is sufficient to determine the sign of y^{\prime} (or $y^{\prime \prime}$) at some one point of each of these intervals.

It is convenient to tabulate the results of such an investigation (Table I), calculating also the ordinates of the characteristic points of the graph of the function. It will be noted that due to the oddness of the function y, it is enough to calculate only for $x \geqslant 0$; the left-hand half of the graph is constructed by the principle of odd symmetry.

Table I

x	0	$(0,1)$	1	$(1, V \overline{3})$	$\sqrt{\overline{3}} \approx 1.73$	$(\sqrt{\overline{3}}, 3)$	3	(3, +
"	0	-	$\pm \infty$	+	$\frac{\sqrt{3}}{\sqrt[3]{2}} \approx 1.37$	+	1.5	$+$
y^{\prime}	-	-	$\begin{aligned} & \text { non- } \\ & \text { exist } \end{aligned}$	-	0	$+$	$+$	+
t'	0	-	$\begin{aligned} & \text { non- } \\ & \text { exist } \end{aligned}$	+	+	$+$	0	-
$\begin{aligned} & \text { Con- } \\ & \text { con- } \\ & \text { clu- } \\ & \text { sion } \end{aligned}$	$\begin{gathered} \text { Point } \\ \text { Pof } \\ \text { of cec- } \\ \text { fino } \end{gathered}$	Function derfeases. graph down	$\left\lvert\, \begin{aligned} & \text { Discon } \\ & \text { tinuit } \end{aligned}\right.$	Function graph is concave up	Min. puint	Function increases; is concave	$\begin{gathered} \text { Point } \\ \text { of } \\ \text { inflec- } \\ \text { fion } \end{gathered}$	

e) Using the results of the investigation, we construct the graph of the function (Fig 33).

Fig. 33

4-1900

Example 2. Graph the function

$$
y=\frac{\ln x}{x} .
$$

Solution. a) The domain of definition of the function is $0<x<+\infty$.
b) There are no discontinuities in the domain of definition, but as we approach the boundary point ($x=0$) of the domain of definition we have

$$
\lim _{x \rightarrow 0} y=\lim _{x \rightarrow 0} \frac{\ln x}{x}=-\infty
$$

Hence, the straight line $x=0$ (ordinate axis) is a vertical asymptote.
c) We seek the right asymptote (there is no left asymptote, since x cannot tend to $-\infty$):

$$
\begin{aligned}
& k=\lim _{x \rightarrow+\infty} \frac{y}{x}=0 \\
& b=\lim _{x \rightarrow+\infty} y=0
\end{aligned}
$$

The right asymptote is the axis of abscissas: $y=0$.
d) We find the critical points; and have

$$
\begin{aligned}
& y^{\prime}=\frac{1-\ln x}{x^{2}} \\
& y^{\prime \prime}=\frac{2 \ln x-3}{x^{3}} ;
\end{aligned}
$$

y^{\prime} and $y^{\prime \prime}$ exist at all points of the domain of definition of the function and
$y^{\prime}=0$ when $\ln x=1$, that is, when $x=e$;
$y^{\prime \prime}=0$ when $\ln x=\frac{3}{2}$, that is, when $x=e^{3 / 2}$.
We form a table, including the characteristic points (Table II). In addition to the characteristic points it is useful to find the points of intersection of

Fig. 34
The curve wilh the coordinate axes. Putting $y=0$, we find $x=1$ (the point of intersection of the curve with the axis of abscissas); the curve does not intersect the axis of ordinates
e) Utilizing the results of investigation, we construct the graph of the tunction (Fig. 34).
II $219 D_{1}$

4*

Graph the following functions and determine for each function its domain of definition, discontinuities, extremal points, intervals of increase and decrease, points of inflection of its graph, the direction of concavity, and also the asymptotes.
045. $y=\frac{x}{\sqrt[3]{(x-2)^{2}}}$.
050. $y=2|x|-x^{2}$.
916. $y=x^{3}-3 x^{2}$.
917. $y=\frac{6 x^{2}-x^{4}}{9}$.
918. $y=(x-1)^{2}(x+2)$.
919. $y=\frac{(x-2)^{2}(x+4)}{4}$.
920. $y=\frac{\left(x^{2}-5\right)^{3}}{125}$.
921. $y=\frac{x^{2}-2 x+2}{x-1}$.
922. $y=\frac{x^{4}-3}{x}$.
923. $y=\frac{x^{4}+3}{x}$.
924. $y=x^{2}+\frac{2}{x}$.
925. $y=\frac{1}{x^{2}+3}$.
926. $y=\frac{8}{x^{2}-4}$.
927. $y=\frac{4 x}{4+x^{2}}$.
928. $y=\frac{4 x-12}{(x-2)^{2}}$.
929. $y=\frac{x}{x^{2}-4}$.
930. $y=\frac{16}{x^{2}(x-4)}$.
931. $y=\frac{3 x^{4}+1}{x^{3}}$.
932. $y=\sqrt{x}+\sqrt{4-x}$.
933. $y=\sqrt{8+x}-\sqrt{8-x}$.
934. $y=x \sqrt{x+3}$.
935. $y=\sqrt{x^{3}-3 x}$.
936. $y=\sqrt[3]{1-x^{2}}$.
937. $y=\sqrt[3]{1-x^{3}}$.
938. $y=2 x+2-3 \sqrt[3]{(x+1)^{2}}$.
939. $y=\sqrt[3]{x+1}-\sqrt[3]{x-1}$.
940. $y=\sqrt[3]{(x+4)^{2}}-\sqrt[3]{(x-4)^{2}}$
941. $y=\sqrt[3]{(x-2)^{2}}+\sqrt[3]{(x-4)^{2}}$.
942. $y=\frac{4}{\sqrt{4-x^{2}}}$.
943. $y=\frac{8}{x \sqrt{x^{2}-4}}$.
944. $y=\frac{x}{\sqrt[3]{x^{2}-1}}$.
946. $y=x e^{-x}$.
947. $y=\left(a+\frac{x^{2}}{a}\right) e^{\frac{x}{a}}$.
948. $y=e^{8 x-x^{2}-14}$.
949. $y=\left(2+x^{2}\right) e^{-x^{2}}$.
951. $y=\frac{\ln x}{\sqrt{x}}$.
952. $y=\frac{x^{2}}{2} \ln \frac{x}{a}$.
953. $y=\frac{x}{\ln x}$.
954. $y=(x+1) \ln ^{2}(x+1)$.
955. $y=\ln \left(x^{2}-1\right)+\frac{1}{x^{2}-1}$.
956. $y=\ln \frac{\sqrt{x^{2}+1}-1}{x}$.
957. $y=\ln \left(1+e^{-x}\right)$.
958. $y=\ln \left(e+\frac{1}{x}\right)$.
959. $y=\sin x+\cos x$.
960. $y=\sin x+\frac{\sin 2 x}{2}$.
961. $y=\cos x-\cos ^{2} x$.
962. $y=\sin ^{2} x+\cos ^{3} x$.
963. $y=\frac{1}{\sin x+\cos x}$.
964. $y=\frac{\sin x}{\sin \left(x+\frac{\pi}{4}\right)}$.
976. $y=\operatorname{arccosh}\left(x+\frac{1}{x}\right)$.
965. $y=\sin x \cdot \sin 2 x$.
977. $y=e^{\sin x}$.
966. $y=\cos x \cdot \cos 2 x$.
978. $y=e^{\arcsin V \bar{x}}$.
967. $y=x+\sin x$.
979. $y=e^{\arctan x}$.
968. $y=\arcsin \left(1-\sqrt[3]{x^{2}}\right)$.
983. $y=\ln \sin x$.
969. $y=\frac{\arcsin x}{\sqrt{1-x^{2}}}$.
981. $y=\ln \tan \left(\frac{\pi}{4}-\frac{x}{2}\right)$.
970. $y=2 x-\tan x$.
971. $y=x \arctan x$.
982. $y=\ln x-\arctan x$.
983. $y=\cos x-\ln \cos x$.
972. $y=x \arctan \frac{1}{x}$ when $x \neq 0$
984. $y=\arctan (\ln x)$.
and $y=0$ when $x=0$.
973. $y=x-2 \operatorname{arccot} x$.
985. $y=\arcsin \ln \left(x^{2}+1\right)$.
974. $y=\frac{x}{2}+\arctan x$.
986. $y=x^{x}$.
987. $y=x^{\frac{1}{x}}$.
975. $y=\ln \sin x$.

A good exercise is to graph the functions indicated in Fxamples 826-848.

Conslruct the graphs of the following functions represented parametrically.
988. $x=t^{2}-2 t, \quad y=: t^{2}+2 t$.
989. $x=a \cos ^{3} t, y=a \sin t(a>0)$.
990. $x=t e^{t}, \quad y=t e^{-t}$.
991. $x=t+e^{-t}, y=2 t+e^{-2 t}$.
992. $x=a(\sinh t-t), y=a(\cosh t-1)(a>0)$.

Sec. 5. Differential of an Arc. Curvature

1°. Differential of an arc. The differential of an are s of a plane curve represented by an cquation in Cartesian coordonates x and y is expressed by the formula

$$
d s=\sqrt{(d x)^{2}+(d y)^{2}}
$$

here, if the equation of the curve is of the form
a) $y=f(x)$, then $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x ;$
b) $x=f_{1}(y)$, then $d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$;
c) $x=\varphi(t), y=\psi(t)$, then $d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$;
d) $F(x, y)=0$, then $d s=\frac{\sqrt{F_{k}^{2}+F_{t \prime}^{\prime 2}}}{\left|F_{y}^{\prime}\right|} d x=\frac{\sqrt{F_{i}^{\prime}+F_{u}^{\prime 2}}}{\left|F_{i}^{\prime}\right|} d y$.

Denoting by a the angle formed by the tangent (in the direction of increasing arc of the curve s) with the nositive x-direction, we get

$$
\begin{aligned}
& \cos \alpha=\frac{d x}{d \mathrm{~s}}, \\
& \sin \alpha=\frac{d y}{d s} .
\end{aligned}
$$

In polar coordinates,

$$
d s=\sqrt{(d r)^{2}+(r d \varphi)^{2}}=\sqrt{r^{2}-1-\left(\frac{d r}{d \varphi}\right)^{2}} d \varphi
$$

Denoting by β the angle between the radius vector of the point of the curve and the tangent to the curve at this point, we have

$$
\begin{aligned}
& \cos \beta=\frac{d r}{d s} \\
& \sin \beta=r \frac{d \varphi}{d s} .
\end{aligned}
$$

2°. Curvature of a curve. The curvature K of a curve at one of its points M is the limst of the ratio of the angle between the positive directions of the tangents at the points M and N of the curve (angle of contingence) to the length of the arc $\bar{M} N=\Lambda s$ when $v — M$ (Fig. 35), that is,

$$
K=\lim _{\Delta s \rightarrow 0} \frac{\Delta \alpha}{\lambda s}=\frac{d \alpha}{d s},
$$

Whore a is the angle between the positive directions of the tangent at the point M and the x-axis.

Fig. 35
The radius of curvature R is the reciprocal of the absolute value of the curvature, i. e.,

$$
R=\frac{1}{|K|} .
$$

The circle ($K=\frac{1}{a}$, where a is the radius of the circle) and the straight line $(K=0)$ are lines of constant curvature.

We have the following formulas for computing the curvature in rectangular coordinates (accurate to within the sign):

1) if the curve is given by an equation explicitly, $y=f(x)$, then

$$
K=\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}} ;
$$

2) If the curve is given by an equation implacitiy, $F(x, y)=0$, then

$$
K=\frac{\left|\begin{array}{ccc}
F_{x x}^{\prime \prime} & F_{x y}^{\prime \prime} & F_{x}^{\prime} \\
F_{y x}^{\prime \prime} & F_{y y}^{\prime \prime} & F_{y}^{\prime} \\
F_{x}^{\prime \prime} & F_{y} & 0
\end{array}\right|}{\left(F_{x}^{\prime 2}+F_{y}^{\prime 2}\right)^{3 / 2}}
$$

3) if the curve is represented by equations in parametric form, $x=\varphi(t)$, $y=\psi(t)$, then

$$
K=\frac{\left|\begin{array}{l}
x^{\prime} y^{\prime} \\
x^{\prime \prime} y^{\prime \prime}
\end{array}\right|}{\left(x^{\prime 2}+y^{\prime 2}\right)^{3 / 2}}
$$

where

$$
x^{\prime}=\frac{d x}{d t}, \quad y^{\prime}=\frac{d y}{d t}, \quad x^{\prime \prime}=\frac{d^{2} x}{d t^{2}} . \quad y^{\prime \prime}=\frac{d^{2} y}{d t^{2}} .
$$

In polar coordinates, when the curve is given by the equation $r=f(p)$, we have

$$
K=\frac{r^{2}+2 r^{\prime 2}-r r^{\prime \prime}}{\left(r^{2}+r^{\prime 2}\right)^{3 / 2}}
$$

where

$$
r^{\prime}=\frac{d r}{d \varphi} \quad \text { and } \quad r^{\prime}=\frac{d^{2} r}{d \varphi^{2}}
$$

3°. Circle of curvature. The circle of curvature (or osculating circle) of a curve at the point M is the limiting position of a circle drawn through M and two other points of the curve, P and Q, as $P \longrightarrow M$ and $Q \rightarrow M$.

The radius of the circle of curvature is equal to the radius of curvature, and the centre of the circle of curvature (the centre of curvature) lies on the normal to the curve drawn at the point M in the direction of concavity of the curve.

The coordmates X and Y of the centre of curvature of the curve are computed from the formulas

$$
X=x-\frac{y^{\prime}\left(1+y^{\prime 2}\right)}{y^{\prime \prime}}, \quad Y=y+\frac{1+y^{\prime 2}}{y^{\prime \prime}} .
$$

The evolute of a curve is the locus of the centres of curvature of the curve.

If in the formulas for determining the coordinates of the centre of curvature we regard X and Y as the current coordinates of a point of the evolute, then these formmas yield parametric equations of the evolute with parameter x or y (or t, if the curve itself is represented by equations in parametric form)

Example 1. Find the equation of the evolute of the parabola $y=x^{2}$.

Solution. $X=-4 x^{s}, Y=\frac{1+6 x^{2}}{2}$. Eliminating the parameter x, we find the equation of the evolute in explicit form, $Y=\frac{1}{2}+3\left(\frac{X}{4}\right)^{2 / 8}$.

The involute of a curve is a curve for which the given curve is an evolute.

The normal $M C$ of the involute Γ_{2} is a tangent to the evolute Γ_{1}; the length of the arc $\overline{C C_{1}}$ of the evolute is equal to the corresponding increment in the radius of curvature $\widehat{C C}_{1}=M_{1} C_{1}-M C$;

Fig. 36 that is why the involute Γ_{2} is also called the evolvent of the curve Γ_{1} obtained by unwinding a taut thread wound onto Γ_{1} (Fig. 36). To each evolute there corresponds an infinitude of involutes, which are related to different initial lengths of thread.
4°. Vertices of a curve. The vertex of a curve is a point of the curve at which the curvature has a maximum or a minimum. To determine the vertices of a curve, we form the expression of the curvature K and find its extremal points. In place of the curvature K we can take the radius of curvature $R=\frac{1}{|K|}$ and seek its extremal points if the computations are simpler in this case.

Example 2. Find the vertex of the catenary $y=a \cosh \frac{x}{a}(a>0)$.
Solution. Since $y^{\prime}=\sinh \frac{x}{a}$ and $y^{\prime \prime}=\frac{1}{a} \cosh \frac{x}{a}$, it follows that $K=$ $=\frac{1}{a \cosh ^{2} \frac{x}{a}}$ and, hence, $R=a \cosh ^{2} \frac{x}{a}$. We have $\frac{d R}{d x}=\sinh 2 \frac{x}{a}$. Equating the derivative $\frac{d R}{d x}$ to zero, we get $\sinh 2 \frac{x}{a}=0$, whence we find the sole critical point $x=0$ Computing the second derivative $\frac{d^{2} R}{d x^{2}}$ and putting into it the value $x=0$, we get $\left.\frac{d^{2} R}{d x^{2}}\right|_{x=0}=\left.\frac{2}{a} \cosh 2 \frac{x}{a}\right|_{x=0}=\frac{2}{a}>0$. Therefore, $x=0$ is the minimum point of the radius of curvature (or of the maximum of curvature) of the catenary. The vertex of the catenary $y=a \cosh \frac{x}{a}$ is, thus, the point $A(0, a)$.

Find the differential of the arc, and also the cosine and sine of the angle formed, with the positive x-direction, by the tangent to each of the following curves:
993. $x^{2}+y^{2}=a^{2}$ (circle).
994. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (ellipse).
$995 y^{2}=2 p x$ (parabola).
996. $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ (asiroid).
997. $y=a \cosh \frac{x}{a}$ (catenary).
998. $x=a(t-\sin t) ; y=a(1-\cos t)$ (cycloid).
999. $x=a \cos ^{3} t, y=a \sin ^{3} t$ (astroid).

Find the differential of the arc, and also the cosine or sine of the angle formed by the radius vector and the tangent to each of the following curves:
1000. $r=a \varphi$ (spiral of Archimedes).
1001. $r=\frac{a}{\varphi}$ (hyperbolic spiral).
1002. $r=a \sec ^{2} \frac{\varphi}{2}$ (parabola).
1003. $r=a \cos ^{2} \frac{\varphi}{2}$ (cardioid).
1004. $r=a^{\varphi}$ (logarithmic spiral).
1005. $r^{2}=a^{2} \cos 2 \varphi$ (lemniscate).

Compute the curvature of the given curves at the indicated points:
1006. $y=x^{4}-4 x^{3}-18 x^{2}$ at the coordinate origin.
1007. $x^{2}+x y+y^{2}=3$ at the point $(1,1)$.
1008. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the vertices $A(a, 0)$ and $B(0, b)$.
1009. $x=t^{2}, y=t^{3}$ at the point $(1,1)$.
1010. $r^{2}=2 a^{2} \cos 2 \varphi$ at the vertices $\varphi=0$ and $\varphi=\pi$.
1011. At what point of the parabola $\psi^{2}=8 x$ is the curvature equal to 0.128 ?
1012. Find the vertex of the curve $y=e^{\lambda}$.

Find the radii of curvature (at any point) of the given lanes:
1013. $y=x^{3}$ (cubic parabola).
1014. $\frac{x^{2}}{a^{2}}+\frac{y^{\prime \prime}}{b^{2}}=1$ (ellipse).
1015. $x=\frac{y^{2}}{4}-\frac{\ln y}{2}$.
1016. $x=a \cos ^{2} t ; y=a \sin ^{3} t$ (astroid).
1017. $x=a(\cos t+t \sin t) ; y=a(\sin t-t \cos t)$ involute of a circle).
1018. $r=a e^{k \varphi}$ (logarithmic spiral).
1019. $r=a(1+\cos p)$ (cardioid).
1020. Find the least value of the radius of curvature of the parabola $y^{2}=2 p x$.
1021. Prove that the radius of curvature of the catenary $y=a \cosh \frac{x}{a}$ is equal to a segment of the normal.

Compute the coordinates of the centre of curvature of the given curves at the indicated points:
1022. $x y=1$ at the point $(1,1)$.
1023. $a y^{2}=x^{3}$ at the point (a, a).

Write the equations of the circles of curvature of the given curves at the indicated points:
1024. $y=x^{2}-6 x+10$ at the point $(3,1)$.
1025. $y=e^{x}$ at the point $(0,1)$.

Find the evolutes of the curves:
1026. $y^{2}=2 p x$ (parabola).
1027. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (ellipse).
1028. Prove that the evolute of the cycloid

$$
x=a(t-\sin t), \quad y=a(1-\cos t)
$$

is a displaced cycloid.
1029. Prove that the evolute of the logarithmic spiral

$$
r=a e^{k \varphi}
$$

is also a logarithmic spiral with the same pole.
1030. Show that the curve (the involute of a circle)

$$
x=a(\cos t+t \sin t), \quad y=a(\sin t-t \cos t)
$$

is the involute of the circle $x=a \cos t ; y=a \sin t$.

INDEFINITE INTEGRALS

Sec. 1. Direct Integration

1°. Basic rules of integration.

1) If $F^{\prime}(x)=-f(x)$, then

$$
\int f(x) d x=F(x)+C
$$

where C is an arbitrary constant.
2) $\int A f(x) d x=-A \int f(x) d x$, where A is a consiant quantity.
3) $\int\left[f_{1}(x) \pm f_{2}(r)\right] d_{1}=\int f_{1}(x) d x \pm \int f_{2}(x) d x$.
4) If $\int f(x) d x \ldots F(x)+C$ and $u=\mathrm{F}^{\prime}(x)$, then

$$
\int f(u) d u=F(u)-C .
$$

In particular,

$$
\int f(a \lambda ; b) d x \cdot \frac{1}{a} F(a \lambda \mid b)+C \quad(a \neq 0)
$$

2°. Table of standard integrals.
I. $\int i^{n} d x-\frac{\lambda^{n+1}}{n-1}!C, \quad n \neq-1$.
II. $\int \frac{d x}{x}==\ln |x|-C$.
111. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \arctan \frac{x}{a}+C=-\frac{1}{a} \operatorname{arccot} \frac{x}{a}+C \quad(a \neq 0)$.

IV $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right|+C \quad(a \neq 0)$.
$\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \ln \left|\frac{a+x}{a-x}\right|+C \quad(a \neq 0)$.
V. $\int \frac{d x}{\sqrt{x^{2}+a}}=\ln \left|x+\sqrt{x^{2}-1-a}\right|+C \quad(a \neq 0)$.
VI. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\arcsin \frac{x}{a}+C=-\arccos \frac{x}{a}+C \quad(a>0)$.
VII. $\int a^{x} d x=\frac{a^{x}}{\ln a}+C \quad(a>0) ; \int e^{x} d x=e^{x}+C$.
VIII. $\int \sin x d x=-\cos x+C$.
IX. $\int \cos x d x=\sin x+C$.
$\mathrm{X} \int \frac{d x}{\cos ^{2} x}=\tan x+C$.
XI. $\int \frac{d x}{\sin ^{2} x}=-\cot x+C$.

XII $\int \frac{d x}{\sin x}=\ln \left|\tan \frac{x}{2}\right|+C=\ln |\operatorname{cosec} x-\cot x|+C$.
X III. $\int \frac{d x}{\cos x}=\ln \left|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|+C=\ln |\tan x+\sec x|+C$.
XIV. $\int \sinh x d x=\cosh x+C$.
XV. $\int \cosh x d x=\sinh x+C$.

XV1. $\int \frac{d x}{\cosh ^{2} x}=\tanh x+C$.
XVII. $\int \frac{d x}{\sinh ^{2} x}=-\operatorname{coth} x+C$.

Example 1.

$$
\begin{aligned}
\int\left(a x^{2}+b x+c\right) d x=\int a x^{2} d x & +\int b_{x} d x+\int c d x= \\
& =a \int x^{2} d x+b \int x d x+c \int d x=a \frac{x^{3}}{3}+b \frac{x^{2}}{2}+c x+C .
\end{aligned}
$$

Applying the basic rules $1,2,3$ and the formulas of integration, find the following integrals:
1031. $\int 5 d^{2} x^{6} d x$.
1032. $\int\left(6 x^{2}+8 x+3\right) d x$.
1033. $\int x(x+a)(x+b) d x$.
1034. $\int\left(a+b x^{3}\right)^{2} d x$.
1035. $\int \sqrt{2 p x} d x$.
1036. $\int \frac{d x}{\sqrt[n]{x}}=$
1037. $\int(n x)^{\frac{1-n}{n}} d x$.
1038. $\int\left(a^{\frac{2}{3}}-x^{\frac{2}{3}}\right)^{3} d x$.
1039. $\int(\sqrt{x}+1)(x-\sqrt{x}+1) d x$.
1040. $\int \frac{\left(x^{2}+1\right)\left(x^{2}-2\right)}{\sqrt[3]{x^{2}}} d x$.
1041. $\int \frac{\left(x^{n t}-1^{n}\right)^{2}}{\sqrt{x}} d x$.
1042. $\int \frac{(\sqrt{a}-V)^{*}}{\sqrt{a .1}} d x$.
1043. $\int \frac{d x}{x^{2}+7}$.
1044. $\int \frac{d x}{x^{2}-10}$.
1045. $\int \frac{d x}{\sqrt{4+x^{2}}}$.
1046. $\int \frac{d x}{\sqrt{8-x^{2}}}$.
1047. $\int \frac{\sqrt{2+x^{2}}-\sqrt{2-x^{2}}}{\sqrt{4-x^{4}}} d x$.

1048*. a) $\int \tan ^{2} x d x$;
b) $\int \tanh ^{2} x d x$.
1049. a) $\int \cot ^{2} x d x$;
b) $\int \operatorname{coth}^{2} x d x$.
1050. $\int 3^{x} e^{x} d x$
3°. Integration under the sign of the differential. Rule 4 considerably expands the table of standard integrals: by virtue of this rule the table of integrals holds true irrespective of whether the variable of integration is an independent variable or a differentiable function.

Example 2.

$$
\begin{aligned}
\int \frac{d x}{\sqrt{5 x-2}} & =\frac{1}{5} \int(5 x-2)^{-\frac{1}{2}} d(5 x-2)= \\
& =\frac{1}{5} \int u^{-\frac{1}{2}} d u=\frac{1}{5} \cdot \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+C=\frac{2}{5} \frac{(5 x-2)^{\frac{1}{2}}}{\frac{1}{2}}+C=\frac{2}{5} \sqrt{5 x-2}+C,
\end{aligned}
$$

where we put $u=5 x-2$. We took advantage of Rule 4 and tabular integral I.
Example 3. $\int \frac{x d x}{\sqrt{1+x^{2}}}=\frac{1}{2} \int \frac{d\left(x^{2}\right)}{\sqrt{1+\left(x^{2}\right)^{2}}}=\frac{1}{2} \ln \left(x^{2}+\sqrt{1+x^{4}}\right)+C$.
We implied $u=x^{2}$, and use was made of Rule 4 and tabular integral V .
Example 4. $\int x^{2} e^{x^{3}} d x=\frac{1}{3} \int e^{x^{1}} d\left(x^{3}\right)=\frac{1}{3} e^{x^{3}}+C$ by virtue of Rule 4 and tabular integral VII.

In examples 2, 3, and 4 we reduced the given integral to the following form before making use of a tabular integral:

$$
\int f(\varphi(x)) \varphi^{\prime}(x) d x=\iint(u) d u, \text { where } u=\varphi(x) .
$$

This type of transformation is called integration under the differential sign. Some common transformations of diferentials, which were used in Examples 2 and 3 , are:
a) $d x=\frac{1}{a} d(a x+b) \quad(a \neq 0) ; \quad$ b) $x d x=\frac{1}{2} d\left(x^{2}\right)$ and so on.

Using the basic rules and formulas of integration, find the following integrals:
1051**. $\int \frac{a d x}{a-x}$.
1055. $\int \frac{a x+b}{\alpha x+\beta} d x$.

1052**. $\int \frac{2 x+3}{2 x-1} d x$.
1056. $\int \frac{x^{2}+1}{x-1} d x$.
1053. $\int \frac{1-3 .}{3+2 .} d x$.
1057. $\int \frac{x^{2}+5 x+7}{x+3} d x$.
1054. $\int \frac{x d x}{a+b x}$.
1058. $\int \frac{x^{4}+x^{2}+1}{x-1} d x$.
1059. $\int\left(a+\frac{b}{x-a}\right)^{2} d x$.

1060*. $\int \frac{x}{(x+1)^{2}} d x$.
1061. $\int \frac{b d y}{\sqrt{1-y}}$.
1062. $\int \sqrt{a-b x} d x$.

1063* $\int \frac{x}{\sqrt{x^{2}+1}} d x$.
1064. $\int \frac{\sqrt{-} x+\ln x}{x} d x$.
1065. $\int \frac{d x}{3 x^{2}+5}$.
1066. $\int \frac{d x}{7 x^{2}-8}$.
1067. $\int \frac{d x}{(a+b)-(a-b) x^{2}}$
$(0<b<a)$.
1068. $\int \frac{x^{2}}{x^{2}+2} d x$.
1069. $\int \frac{x^{3}}{a^{2}-x^{2}} d x$.
1070. $\int \frac{x^{2}-5 x+6}{x^{2}+4} d x$.
1071. $\int \frac{d x}{\sqrt{7+8 x^{2}}}$.
1072. $\int \frac{d x}{\sqrt{7-5 x^{2}}}$.
1073. $\int \frac{2 x-5}{3 x^{2}-2} d x$.
1074. $\int \frac{3-2 x}{5 x^{2}+7} d x$.
1075. $\int \frac{3 x+1}{\sqrt{5 x^{2}+1}} d x$.
1076. $\int \frac{x+3}{\sqrt{x^{2}-4}} d x$.
1077. $\int \frac{x d x}{x^{2}-5}$.
1078. $\int \frac{x d x}{2 x^{2}+3}$.
1079. $\int \frac{a x+b}{a^{2} x^{2}+b^{2}} d x$.
1080. $\int \frac{x d x}{\sqrt{a^{4}-x^{4}}}$.
1081. $\int \frac{x^{2}}{1+x^{6}} d x$.
1082. $\int \frac{x^{2} d x}{\sqrt{x^{6}-1}}$.
1083. $\int \sqrt{\frac{\arcsin x}{1-x^{2}}} d x$.
1084. $\int \frac{\arctan \frac{x}{2}}{4+x^{2}} d x$.
1085. $\int \frac{x-\sqrt{\operatorname{actan} 2 x}}{1+4 x^{2}} d x$.
1086. $\int \sqrt{\frac{d x}{\left(1+x^{2}\right) \ln \left(x+\sqrt{1+x^{2}}\right)}}$.
1087. $\int a e^{-m x} d x$.
1088. $\int 4^{2-3 x} d x$.
1089. $\int\left(e^{t}-e^{-t}\right) d t$.
1090. $\int\left(e^{-\frac{x}{a}}+e^{-\frac{x}{a}}\right)^{2} d x$.
1091. $\int \frac{\left(a^{x}-b^{x}\right)^{2}}{a^{i} b^{x}} d x$.
1092. $\int \frac{a^{2 x}-1}{\sqrt{a^{x}}} d x$.
1093. $\int e^{-\left(x^{2}+1\right)} x d x$.
1094. $\int x \cdot 7^{x^{2}} d x$.
1095. $\int \frac{e^{\frac{1}{x}}}{x^{2}} d x$
1096. $\int 5^{V^{-} x} \frac{d x}{\sqrt{x}}$.
1097. $\int \frac{e^{x}}{e^{x}-1} d x$.
1098. $\int e^{x} \sqrt{a-b e^{x}} d x$.
1099. $\int\left(e^{\frac{x}{a}}+1\right)^{\frac{1}{3}} e^{\frac{x}{a}} d x$.

1100*. $\int \frac{d x}{2^{x}+3}$.
1101. $\int \frac{a^{x} d x}{1+a^{2 x}}$.
1102. $\int \frac{e^{-b x}}{1-e^{-: b x}} d x$.
1103. $\int \frac{e^{t} d t}{\sqrt{1-e^{i t}}}$.
1104. $\int \sin (a+b x) d x$.
1105. $\int \cos \frac{x}{\sqrt{2}} d x$.
1106. $\int(\cos a x+\sin a x)^{2} d x$.
1107. $\int \cos \sqrt{x} \frac{d x}{\sqrt{x}}$.
1108. $\int \sin (\lg x) \frac{d x}{x}$.

1109*. $\int \sin ^{2} x d x$.
1110*. $\int \cos ^{2} x d x$.
1111. $\int \sec ^{2}(a x+b) d x$.
1112. $\int \cot ^{2} a x d x$.
1113. $\int \frac{d x}{\sin \frac{x}{u}}$.
1114. $\int \frac{d x}{3 \cos \left(5 x-\frac{\pi}{4}\right)}$.
1115. $\int \frac{d x}{\sin (a x+b)}$.
1116. $\int \frac{x d x}{\cos ^{2} x^{2}}$.
1117. $\int x \sin \left(1-x^{2}\right) d x$.
1118. $\int\left(\frac{1}{\sin x \sqrt{2}}-1\right)^{2} d x$.
1119. $\int \tan x d x$.
1120. $\int \cot x d x$.
1121. $\int \cot \frac{x}{a-b} d x$.
1122. $\int \frac{d x}{\tan \frac{x}{5}}$.
1123. $\int \tan \sqrt{x} \frac{d x}{\sqrt{x}}$.
1124. $\int x \cot \left(x^{2}+1\right) d x$.
1125. $\int \frac{d x}{\sin x \cos x}$.
1126. $\int \cos \frac{x}{a} \sin \frac{x}{a} d x$.
1127. $\int \sin ^{3} 6 x \cos 6 x d x$.
1128. $\int \frac{\cos a x}{\sin ^{5} a x} d x$.
1129. $\int \frac{\sin 3 x}{3+\cos 3 x} d x$.
1130. $\int \frac{\sin x \cos x}{\sqrt{\cos ^{2} x-\sin ^{2} x}} d x$.
1131. $\int \sqrt{1+3 \cos ^{2} x} \sin 2 x d x$.
1132. $\int \tan ^{3} \frac{x}{3} \sec ^{2} \frac{x}{3} d x$.
1133. $\int \frac{\sqrt{\tan x}}{\cos ^{2} x} d x$.
1134. $\int \frac{\cot ^{\frac{2}{3}} x}{\sin ^{2} x} d x$.
1135. $\int \frac{1+\sin 3 x}{\cos ^{2} 3 x} d x$.
1136. $\int \frac{(\cos a x+\sin a x)^{2}}{\sin a x} d x$.
1137. $\int \frac{\operatorname{cosec}^{2} 3 x}{b-a \cot 3 x} d x$.
1138. $\int(2 \sinh 5 x-3 \cosh 5 x) d x$.
1139. $\int \sinh ^{2} x d x$.
1140. $\int \frac{d x}{\sinh x}$.
1141. $\int \frac{d x}{\cosh x}$.
1142. $\int \frac{d x}{\sinh x \cosh x}$.

Find the indefinite integrals:
1145. $\int x \sqrt[5]{5-x^{2}} d x$
1146. $\int \frac{x^{3}-1}{x^{4}-4 x+1} d x$.
1147. $\int \frac{x^{3}}{x^{8}+5} d x$.
1148. $\int x e^{-x^{2}} d x$.
1149. $\int \frac{3-\sqrt{2+3 x^{2}}}{2+3 x^{2}} d x$.
1150. $\int \frac{x^{3}-1}{x-1} d x$.
1151. $\int \frac{d x}{\sqrt{e^{x}}}$.
1152. $\int \frac{1-\sin x}{x+\cos x} d x$.
1153. $\int \frac{\tan 3 x-\cot 3 x}{\sin 3 x} d x$.
1154. $\int \frac{d x}{x \ln ^{2} x}$.
1155. $\int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x-2}} d x$.
1156. $\int\left(2+\frac{x}{2 x^{2}+1}\right) \frac{d x}{2 x^{2}+1}$.
1157. $\int a^{\sin x} \cos x d x$.
1158. $\int \frac{x^{2}}{\sqrt[3]{x^{3}+1}} d x$.
1159. $\int \frac{x d x}{\sqrt{1-x^{4}}}$.
1160. $\int \tan ^{2} a x d x$.
1161. $\int \sin ^{2} \frac{x}{2} d x$.
1162. $\int \frac{\sec ^{2} x d x}{\sqrt{4-\tan ^{2} x}}$.
1143. $\int \tanh x d x$.
1144. $\int \operatorname{coth} x d x$.
1178. $\int \sin \left(\frac{2 \pi t}{T}+\varphi_{0}\right) d t$. 1185. $\int \frac{\sec x \tan x}{\sqrt{\sec ^{2} x+1}} d x$.
1179. $\int \frac{d x}{x\left(4-\ln ^{2} x\right)}$.
1180. $\int \frac{\arccos \frac{x}{2}}{\sqrt{4-x^{2}}} d x$.
1181. $\int e^{-\tan x} \sec ^{2} x d x$.
1182. $\int \frac{\sin x \cos x}{\sqrt{2-\sin ^{4} x}} d x$.
1183. $\int \frac{d x}{\sin ^{2} x \cos ^{2} x}$.
1184. $\int \frac{\arcsin x+x}{\sqrt{1-x^{2}}} d x$.
1186. $\int \frac{\cos 2 x}{4+\cos ^{2} 2 x} d x$.
1187. $\int \frac{d x}{1+\cos ^{2} x}$.
1188. $\int \sqrt{\frac{\ln \left(x+\sqrt{x^{2}+1}\right)}{1+x^{2}}} d x$.
1189. $\int x^{2} \cos \left(x^{3}+3\right) d x$.
1190. $\int \frac{3^{\tanh ^{\tan x}}}{\cosh ^{2} x} d x$.

Sec. 2. Integration by Substitution

1°. Change of variable in an indefinite integral. Putting

$$
x=\psi(t) .
$$

where t is a new variable and φ is a continuously differentiable function, we will have:

$$
\begin{equation*}
\int f(x) d x=\int f[\varphi(\mathrm{t})] \varphi^{\prime}(t) d t \tag{1}
\end{equation*}
$$

The attempt is made to choose the function φ in such a way that the rught side of (1) becomes more convenient for integration.

Example 1. Find

$$
\int x \sqrt{x-1} d x
$$

Solution. It is natural to put $\mathrm{t}=\sqrt{x-1}$, whence $x=t^{2}+1$ and $d x=2 t d t$. Hence,

$$
\begin{aligned}
\int x \sqrt{x-1} d x=\int\left(t^{2}+1\right) t \cdot 2 t d t & =2 \int\left(t^{2}+t^{2}\right) d t= \\
& =\frac{2}{5} t^{5}+\frac{2}{3} t^{3}+C=\frac{2}{5}(x-1)^{\frac{5}{2}}+\frac{2}{3}(x-1)^{\frac{3}{2}}+C .
\end{aligned}
$$

Sometimes substitutions of the form
are used.

$$
u=\varphi(x)
$$

Suppose we succeeded in transforming the integrand $f(x) d x$ to the form $f(x) d x=g(u) d u$, where $u=\varphi(x)$.

If $\int g(u) d u$ is known, that is,

$$
\int g(u) d u=F(u)+0,
$$

then

$$
\int f(x) d x=F[\varphi(x)]+C
$$

Actually, we have already made use of this method in Sec. $1,3^{\circ}$.
Examples 2, 3, 4 (Sec. 1) may be solved as follows:
Example 2. $u=5 x-2 ; \quad d u=5 d x ; \quad d x=\frac{1}{5} d u$.

$$
\int \frac{d x}{\sqrt{5 x-2}}=\frac{1}{5} \frac{d u}{\sqrt{u}}=\frac{1}{5} \frac{u^{\frac{1}{2}}}{\frac{1}{2}}+C=\frac{2}{5} \sqrt{5 x-2}+C .
$$

Example 3. $u=x^{2} ; d u=2 x d x ; x d x=\frac{d u}{2}$.
$\int \frac{x d x}{\sqrt{1+x^{4}}}=\frac{1}{2} \int \frac{d u}{\sqrt{1+u^{2}}}=\frac{1}{2} \ln \left(u+\sqrt{1+u^{2}}\right)+C=\frac{1}{2} \ln \left(x^{2}+\sqrt{1+x^{4}}\right)+C$.
Example 4. $u=x^{s} ; \quad d u=3 x^{2} d x ; \quad x^{2} d x=\frac{d u}{3}$.

$$
\int x^{2} e^{x^{3}} d x=\frac{1}{3} \int e^{u} d u=\frac{1}{3} e^{u}+C=\frac{1}{3} e^{x 3}+C .
$$

2°. Trigonometric substitutions.

1) If an integral contains the radical $\sqrt{a^{2}-x^{2}}$, the usual thing is to put $x=a \sin t$; whence

$$
\sqrt{a^{2}-x^{2}}=a \cos t
$$

2) If an integral contains the radical $\sqrt{x^{2}-a^{2}}$, we put $x=a$ ect t, whence

$$
\sqrt{x^{2}-a^{2}}=a \tan t
$$

3) If an integral contains the radical $\sqrt{x^{2}+a^{2}}$, we put $x=a \tan t$; whence

$$
\sqrt{x^{2}+a^{2}}=a \sec t .
$$

It should be noted that trigonometric substitutions do not always turn out to be advantageous.

It is sometimes more convenient to make use of hyperbolic substitutions, which are similar to trigonometric substitutions (see Example 1209).

For more details about trigonometric and hyperbolic substitutions, see Sec. 9.

Example 5. Find

$$
\int \frac{\sqrt{x^{2}+1}}{x^{2}} d x
$$

Solution. Put $x=\tan t$. Therefore, $d x=\frac{d t}{\cos ^{2} t}$,

$$
\begin{aligned}
& \int \frac{\sqrt{x^{2}+1}}{x^{2}} d x=\int \frac{\sqrt{\tan ^{2} t+1}}{\tan ^{2} t} \frac{d t}{\cos ^{2} t}=\int \frac{\sec t \cos ^{2} t}{\sin ^{2} t} \frac{d t}{\cos ^{2} t}= \\
& =\int \frac{d t}{\sin ^{2} t \cos t}=\int \frac{\sin ^{2} t+\cos ^{2} t}{\sin ^{2} t \cdot \cos t} d t=\int \frac{d t}{\cos t}+\int \frac{\cos t}{\sin ^{2} t} d t= \\
& =\ln |\tan t+\sec t|-\frac{1}{\sin t}+C=\ln \left|\tan t+\sqrt{1+\tan ^{2} t}\right|- \\
& -\frac{\sqrt{1+\tan ^{2} t}}{\tan t}+C=\ln \left|x+\sqrt{x^{2}+1}\right|-\frac{\sqrt{x^{2}+1}}{x}+C .
\end{aligned}
$$

1191. Applying the indicated substitutions, find the following integrals:
a) $\int \frac{d}{x \sqrt{x^{2}}-\frac{1}{2}}, \quad x=\frac{1}{t}$;
b) $\int \frac{d}{e^{x}+1}, \quad x=-\ln t$,
c) $\int x\left(5 x^{2}-3\right)^{7} d x, \quad 5 x^{2}-3=t$;
d) $\int \frac{x d y}{\sqrt{x+1}}, \quad t=\sqrt{x!1}$;
e) $\int \frac{\cos x d x}{\sqrt{1+\sin ^{2} x}}, t=\sin x$.

Applying suitable substitutions, find the following integrals:
1192. $\int x(2 x+5)^{10} d x$.
1197. $\int \frac{(\operatorname{dit} \sin x)^{\prime}}{\sqrt{1-x^{2}}} d x$.
1193. $\int \frac{1+1}{1+\sqrt{x}} d x$.
1198. $\int \frac{e^{2 x}}{\sqrt{e^{x}+1}} d x$.
1194. $\int \frac{d r}{x \sqrt{2 x+1}}$.
1195. $\int \frac{d x}{\sqrt{e^{x}-1}}$.
1196. $\int \frac{\ln 2 x d x}{\ln 4 x x}$.
1199. $\int \frac{\sin ^{9} x}{\sqrt{\cos x}} d x$.

1200*. $\int \frac{d x}{x \sqrt{1+x^{2}}}$.

Applying trigonometric substitutions, find the following integrals:
1201. $\int \frac{x^{2} d x}{\sqrt{1-x^{2}}}$.
1202. $\int \frac{x^{3} d x}{\sqrt{2-x^{2}}}$.
1203. $\int \frac{\sqrt{x^{2}-a^{2}}}{x} d x$.
1204*. $\int \frac{d x}{\sqrt{\sqrt{x^{2}-1}}}$.
1205. $\int \frac{\sqrt{x^{2}+1}}{x} d x . \quad$ 1206*. $\int \frac{d x}{x^{2} \sqrt{4-x^{2}}}$.
1207. $\int \sqrt{1-x^{2}} d x$.
1208. Evaluate the integral

$$
\int \frac{d x}{\sqrt{x(1-x)}}
$$

by means of the substitution $x=\sin ^{2} t$.
1209. Find

$$
\int \sqrt{a^{2}+x^{2}} d x
$$

by applying the hyperbolic substitution $x=a \sinh t$.
Solution. We have: $\sqrt{a^{2}+x^{2}}=\sqrt{a^{2}+a^{2} \sinh ^{2} t}=a \cosh t$ and $d x=a \cosh t d t$. Whence
$\int \sqrt{a^{2}+x^{2}} d x=\int a \cosh t \cdot a \cosh t d t=$
$=a^{2} \int \cosh ^{2} t d t=a^{2} \int \frac{\cosh 2 t+1}{2} d t=\frac{a^{2}}{2}\left(\frac{1}{2} \sinh 2 t+t\right)+C=$

$$
=\frac{a^{2}}{2}(\sinh t \cosh t+t)+C .
$$

Since

$$
\sinh t=\frac{x}{a}, \quad \cosh t=\frac{\sqrt{a^{2}+x^{2}}}{a}
$$

and

$$
e^{t}=\cosh t+\sinh t=\frac{x+\sqrt{a^{2}+x^{2}}}{a}
$$

we finally get

$$
\int \sqrt{a^{2}+x^{2}} d x=\frac{x}{2} \sqrt{a^{3}+x^{2}}+\frac{a^{2}}{2} \ln \left(x+\sqrt{a^{2}+x^{2}}\right)+C_{1},
$$

where $C_{1}=C-\frac{a^{2}}{2} \ln a$ is a new arbitrary constant.
1210. Find

$$
\int \frac{x^{2} d x}{\sqrt{x^{2}-a^{2}}}
$$

putting $x=a \cosh t$.
Sec. 3. Integration by Parts
A formula for integration by parts. If $u=\varphi(x)$ and $v=\psi(x)$ are differentiable functions, then

$$
\int u d v=u v-\int v d u .
$$

Example 1. Find

$$
\int x \ln x d x .
$$

Putting $u=\ln x, d v=x d x$, we have $d u=\frac{d x}{x}, \quad v=\frac{x^{2}}{2}$ Whence

$$
\int x \ln x d x=\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \frac{d x}{x}=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+C .
$$

Sometimes, to reduce a given integral to tabular form, one has to apply the formula of integration by parts several times. In certain cases, integration by parts yields an equation from which the desired integral is determined. Example 2. Find

$$
\int e^{x} \cos x d x
$$

We have
$\int e^{x} \cos x d x=\int e^{x} d(\sin x)=e^{x} \sin x-\int e^{x} \sin x d x=e^{x} \sin x+$ $+\int e^{x} d(\cos x)=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x$.
Hence,

$$
\int e^{x} \cos x d x=e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
$$

whence

$$
\int e^{x} \cos x d x=\frac{e^{x}}{2}(\sin x+\cos x)+C .
$$

Applying the formula of integration by parts, find the following integrals:
1211. $\int \ln x d x$.
1212. $\int \arctan x d x$.
1213. $\int \arcsin x d x$.
1214. $\int x \sin x d x$.
1215. $\int x \cos 3 x d x$.
1216. $\int \frac{x}{e^{x}} d x$.
1217. $\int x \cdot 2^{-x} d x$.

1218**. $\int x^{2} e^{3 x} d x$.
1219*. $\int\left(x^{2}-2 x+5\right) e^{-x} d x$.
1220*. $\int x^{3} e^{-\frac{\lambda}{3}} d x$.
1221. $\int x \sin x \cos x d x$

1222* $\int\left(x^{2}+5 x+6\right) \cos 2 x d x$.
1223. $\int x^{2} \ln x d x$.
1224. $\int \ln ^{2} x d x$.
1225. $\int \frac{\ln x}{1^{3}} d x$.
1226. $\int \frac{\ln x}{\sqrt{x}} d x$.
1227. $\int x \arctan x d x$.
1228. $\int x \arcsin x d x$.
1229. $\int \ln \left(x+\sqrt{1+x^{2}}\right) d x$.
1230. $\int \frac{x d x}{\sin ^{2} x}$.
1231. $\int \frac{x \cos x}{\sin ^{2} x} d x$.
1234. $\int e^{a x} \sin b x d x$.
1232. $\int e^{x} \sin x d x$.
1235. $\int \sin (\ln x) d x$.
1233. $\int 3^{x} \cos x d x$.

Applying various methods, find the following integrals:
1236. $\int x^{3} e^{-x^{2}} d x$.
1246. $\int \frac{\arcsin \sqrt{x}}{\sqrt{1-x}} d x$.
1237. $\int e^{V^{-} \bar{x}} d x$.
1247. $\int x \tan ^{2} 2 x d x$.
1238. $\int\left(x^{2}-2 x+3\right) \ln x d x$.
1248. $\int \frac{\sin ^{2} x}{e^{x}} d x$.
1239. $\int x \ln \frac{1-x}{1+x} d x$.
1249. $\int \cos ^{2}(\ln x) d x$.
1240. $\int \frac{\ln ^{2} x}{x^{2}} d x$.

1250**. $\int \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x$.
1241. $\int \frac{\ln (\ln x)}{x} d x$.

1251*. $\int \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}$.
1242. $\int x^{2} \arctan 3 x d x$.

1252*. $\int \sqrt{a^{2}-x^{2}} d x$.
1243. $\int x(\arctan x)^{2} d x$.

1253*. $\int \sqrt{A+x^{2}} d x$.
1244. $\int(\arcsin x)^{2} d x$.

1254*. $\int \frac{x^{2} d x}{\sqrt{9-x^{2}}}$.
1245. $\int \frac{\arcsin x}{x^{2}} d x$.

Sec. 4. Standard Integrals Containing a Quadratic Trinomial
1°. Integrals of the form

$$
\int \frac{m x+n}{a x^{2}+b x+c} d x
$$

The principal calculation procedure is to reduce the quadratic trinomial to the form

$$
\begin{equation*}
a x^{2}+b x+c=a(x+k)^{2}+i \tag{1}
\end{equation*}
$$

where k and l are constants. To perform the transformations in (1), it is best to take the perfect square out of the quadratic trinomial. The following substitution may also be used:

$$
2 a x+b=t .
$$

If $m=0$, then, reducing the quadratic trinomial to the form (1), we get the tabular integrals III or IV (see Table).

Example 1.

$$
\begin{aligned}
\int \frac{d x}{2 x^{2}-5 x+7} & =\frac{1}{2} \int \frac{d x}{\left(x^{2}-2 \cdot \frac{5}{4} x+\frac{25}{16}\right)+\left(\frac{7}{2}-\frac{25}{16}\right)}= \\
& =\frac{1}{2} \int \frac{d\left(x-\frac{5}{4}\right)}{\left(x-\frac{5}{4}\right)^{2}+\frac{31}{16}}=\frac{1}{2} \frac{1}{\frac{\sqrt{31}}{4}} \arctan \frac{x-\frac{5}{4}}{\frac{\sqrt{31}}{4}}+C= \\
& =\frac{2}{\sqrt{31}} \arctan \frac{4 x-5}{\sqrt{31}}+C .
\end{aligned}
$$

If $m \neq 0$, then from the numerator we can take the derivative $2 a x+b$ out of the quadratic trinomial

$$
\begin{aligned}
& \int \frac{m x+n}{a x^{2}+b x+c} d x=\int \frac{\frac{m}{2 a}(2 a x+b)+\left(n-\frac{m b}{2 a}\right)}{a x^{2}+b x+c} d x== \\
&=\frac{m}{2 a} \ln \left|a x^{2}+b x+c\right|+\left(n-\frac{m b}{2 a}\right) \int \frac{d x}{a x^{2}+b c+c},
\end{aligned}
$$

and thus we arrive at the integral discussed above.
Example 2.

$$
\begin{aligned}
& \int \frac{x-1}{1^{2}-x-1} d x=\int \frac{\frac{1}{2}(2 x-1)-\frac{1}{2}}{x^{2}-x-1} d x=\frac{1}{2} \ln \left|x^{2}-x-1\right|- \\
& \quad-\frac{1}{2} \int^{2} \frac{d\left(x-\frac{1}{2}\right)}{\left(x-\frac{1}{2}\right)^{2}-\frac{5}{4}}=\frac{1}{2} \ln \left|x^{2}-x-1\right|-\frac{1}{2 \sqrt{5}} \ln \left|\frac{2 x-1-\sqrt{5}}{2 x-1+\sqrt{5}}\right|+C .
\end{aligned}
$$

2°. Integrals of the form $\int^{\prime} \frac{m x+n}{\sqrt{u x^{2}+b x+c}} d x$. The methods of calculation are similar to those analyzed above. The integral is finally reduced to tabular integral V, if $a>0$, and VI, if $a<0$.

Example 3.

$$
\int \frac{d x}{\sqrt{2+3 x-2 x^{2}}}=\frac{1}{\sqrt{2}} \int \frac{d x}{\sqrt{\frac{25}{16}-\left(x-\frac{3}{4}\right)^{2}}}=\frac{1}{\sqrt{2}} \arcsin \frac{4 x-3}{5}+C .
$$

Example 4.

$$
\begin{array}{r}
\int \frac{x+3}{\sqrt{x^{2}+2 x+2}} d x=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+2}} d x+2 \int \frac{d x}{\sqrt{(x+1)^{2}+1}}= \\
=\sqrt{x^{2}+2 x+2}+2 \ln \left(x+1+\sqrt{x^{2}+2 x+2}\right)+0 .
\end{array}
$$

3°. Integrals of the form $\int \frac{d x}{(m x+n) \sqrt{a x^{2}+b x+c}}$. By means of the inverse substitution

$$
\frac{1}{m x+n}=t
$$

these integrals are reduced to integrals of the form 2°.
Example 5. Find

$$
\int \frac{d x}{(x+1) \sqrt{x^{2}+1}} .
$$

$$
x+1=\frac{1}{t}
$$

whence

$$
d x=-\frac{d t}{t^{2}} .
$$

We have:

$$
\begin{array}{r}
\int \frac{d x}{(x+1) \sqrt{x^{2}+1}}=\int \frac{-\frac{d t}{t^{2}}}{\int \frac{1}{t} \sqrt{\left(\frac{1}{t}-1\right)^{2}+1}}=-\int \frac{d t}{\sqrt{1-2 t+2 t^{2}}}= \\
=-\frac{1}{\sqrt{2}} \int \frac{d t}{\sqrt{\left(t-\frac{1}{2}\right)^{2}+\frac{1}{4}}}=-\frac{1}{\sqrt{2}} \ln \left|t-\frac{1}{2}+\sqrt{t^{2}-t+\frac{1}{2}}\right|+ \\
\quad+C=-\frac{1}{\sqrt{2}} \ln \left|\frac{1-x+\sqrt{2\left(x^{2}+1\right)}}{x+1}\right|+C .
\end{array}
$$

4°. Integrals of the form $\int \sqrt{a x^{2}+b x+c} d x$. By taking the perfect square out of the quadratic trinomial, the given integral is reduced to one of the following two basic integrals (see examples 1252 and 1253):

1) $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}+C$;
($a>0$);
2) $\int \sqrt{x^{2}+A} d x=\frac{x}{2} \sqrt{x^{2}+A}+\frac{A}{2} \ln \left|x+\sqrt{x^{2}+A}\right|+C$.

Example 6.

$$
\begin{aligned}
& \int \sqrt{1-2 x-x^{2}} d x=\int \sqrt{2-(1+x)^{2}} d(1+x)= \\
&=\frac{1+-x}{2} \sqrt{1-2 x-x^{2}}+\arcsin \frac{1+x}{\sqrt{2}}+C
\end{aligned}
$$

Find the following interrals:
1255. $\int \frac{d x}{x^{2}+2 x+5}$.
1257. $\int \frac{d x}{3 x^{2}-x+1}$.
1256. $\int \frac{d x}{x^{2}+2 x}$.
1358. $\int \frac{x d x}{x^{2}-7 x+13}$.
1259. $\int \frac{3 x-2}{x^{2}-\frac{1 x+5}{4 x+5}} d x$.
1260. $\int \frac{(x-1)^{2}}{x^{2}+3 x+4} d x$.
1261. $\int \frac{x^{2} d x}{x^{2}-6 x+10}$
1262. $\int \frac{d x}{\sqrt{2+3 x-2 x^{2}}}$.
1263. $\int \frac{d x}{\sqrt{x-x^{2}}}$
1264. $\int \frac{d x}{\sqrt{x^{2}+p x+q}}$.
1265. $\int \frac{3 x-6}{\sqrt{x^{2}-4 x+5}} d r$.
1266. $\int \frac{2 x-8}{\sqrt{1-x-x^{2}}} d x$.
1267. $\int \frac{x}{\sqrt{5 x^{2}-2 x+1}} d x$.
1268. $\int \frac{d x}{x \sqrt{1-x^{2}}}$.
1269. $\int \frac{d x}{x \sqrt{x^{2}+x-1}}$.
1270. $\int \frac{d x}{(x-1) \sqrt{x^{2}-2}}$.
1271. $\int \frac{d x}{(x+1) \sqrt{x^{2}+2 v}}$.
1272. $\int \sqrt{x^{2}+2 x+5} d x$.
1273. $\int \sqrt{x-x^{2}} d x$
1274. $\int \sqrt{2-x-x^{2}} d x$.
1275. $\int \frac{x d x}{x^{4}-4 x^{2}+3}$.
1276. $\int \frac{\cos x}{\sin ^{2} x-6 \sin x+12} d x$.
1277. $\int \frac{e^{x} d x}{\sqrt{1+\epsilon^{x}+e^{2 x}}}$
1278. $\int \frac{\sin 1 d x}{\sqrt{\cos ^{2} x+4 \cos x+1}}$.
1279. $\int \frac{\ln x d x}{x \sqrt{1-1 \ln x-\ln ^{2} x}}$.

Sec. 5. Integration of Rational Functions

1°. The method of undeiermined coefficients. Integration of a rational function, after taking out the whole part, reduces to integration of the proper rattonal fraction

$$
\begin{equation*}
\frac{P(x)}{Q(x)} \tag{1}
\end{equation*}
$$

where $P(x)$ and $Q(x)$ are integral polynomals, and the degree of the numerator $P(x)$ is lower than that of the denominator $Q(x)$.

If

$$
Q(x)=(x-a)^{x} \ldots(x-l)^{\wedge}
$$

where a, \ldots, l are real distinct roots of the polynomial $Q(x)$, and α, \ldots λ are natural numbers (root multiplicities), then decomposition of (1) into partial fractions is justified:
$\frac{P(x)}{Q(x)}==\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\ldots+\frac{A_{\alpha}}{(x-a)^{\alpha}}+\ldots$

$$
\begin{equation*}
\ldots+\frac{L_{1}}{x-l}+\frac{L_{2}}{(x-l)^{2}}+\ldots+\frac{L_{\lambda}}{(x-l)^{x}} \tag{2}
\end{equation*}
$$

To calculate the undetermined coefficients A_{1}, A_{2}, \ldots, both sides of the identity (2) are reduced to an integral form, and then the coefficients of like powers of the variable x are equated (ilirst method). These coefficients may likewise be determined by putting (in equation (2) or in an equivalent equation] x equal to suitably chosen numbers (second method).

Example 1. Find

Solution. We have:

$$
\int \frac{x d x}{(x-1)(x+1)^{2}}=I
$$

Whence

$$
\frac{x}{(x-1)(x+1)^{2}}=\frac{A}{x-1}+\frac{B_{1}}{x+1}+\frac{B_{2}}{(x+1)^{2}} .
$$

$$
\begin{equation*}
x \equiv A(x+1)^{2}+B_{1}(x-1)(x+1)+B_{2}(x-1) \tag{3}
\end{equation*}
$$

a) First method of determining the coefficients. We rewrite identity (3) in the form $x \equiv\left(A+B_{1}\right) x^{2}+\left(2 A+B_{2}\right) x+\left(A-B_{1}-B_{2}\right)$ Equating the coefficients of identical powers of x, we get:

Whence

$$
0=A+B_{1} ; \quad 1=2 A+B_{2} ; \quad 0=A-B_{1}-B_{2}
$$

$$
A=\frac{1}{4} ; \quad B_{1}=-\frac{1}{4} ; \quad B_{2}=\frac{1}{2}
$$

b) Second method of determining the coeffictents. Puttıng $x=1$ in identity (3), we will have:

Putting $x=-1$, we get:

$$
1=A \cdot A, \quad \text { i. е., } \quad A=1 / 4 .
$$

$$
-1=-B_{2} \cdot 2, \quad \text { i. e., } \quad B_{2}=1 / 2
$$

Further, putting $x=0$, we will have:
or $B_{1}=A-B_{2}=-1_{4}$.
Hence,

$$
\begin{aligned}
I=\frac{1}{4} \int \frac{d x}{x-1}- & \frac{1}{4} \int \frac{d x}{x+1}+\frac{1}{2} \int \frac{d x}{(x+1)^{2}}= \\
& =\frac{1}{4} \ln |x-1|-\frac{1}{4} \ln |x+1|
\end{aligned} \begin{aligned}
2(x+1) & -C= \\
& =-\frac{1}{2(x+1)}+\frac{1}{4} \ln \left|\frac{x-1}{x+1}\right|+C .
\end{aligned}
$$

Example 2. Find

$$
\int \frac{d x}{x^{3}-2 x^{2}+x}=I .
$$

Solution. We have:

$$
\frac{1}{x^{3}-2 x^{2}+x}=\frac{1}{x(x-1)^{2}}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}
$$

and

$$
\begin{equation*}
1=A(x-1)^{2}+B x(x-1)+C x \tag{4}
\end{equation*}
$$

When solving this example it is advisable to combine the two methods of determining coefficients. Applying the second method, we put $x=0$ in identity (4). We get $1=A$. Then, putting $x=1$, we get $1=C$. Further, applying the first method, we equate the coefflcients of x^{2} in identity (4), and get ${ }^{-}$

Hence,

$$
\begin{gathered}
0=A+B, \quad \text { i. e., } \quad B=-1 \\
A=1, \quad B=-1, \quad \text { and } \quad C=1
\end{gathered}
$$

Consequently,

$$
I=\int \frac{d x}{x}-\int \frac{d x}{x-1}+\int \frac{d x}{(x-1)^{2}}=\ln |x|-\ln |x-1|-\frac{1}{x-1}+C .
$$

If the polynomial $Q(x)$ has complex roots $a \pm i b$ of multiplicity k, then partial fractions of the form

$$
\begin{equation*}
\frac{A_{1} x+B_{1}}{x^{2}+p x+q}+\cdots+\frac{A_{k} x+B_{k}}{\left(x^{2}+p x+q\right)^{k}} \tag{5}
\end{equation*}
$$

will enter into the expansion (2). Here,

$$
x^{2}+p x+q=[x-(a+t b)][x-(a-t b)]
$$

and $A_{1}, B_{1}, \ldots, A_{k}, B_{k}$ are undetermined coefficients which are determined by the methods given above For $k=1$, the fraction (5) is integrated directly; for $k>1$, use is made of the reduction method; here, it is first advisable to represent the quadratic trinomal $x^{2}+p x+q$ in the form $\left(x+\frac{p}{2}\right)^{v}+$ $+\left(q-\frac{p^{2}}{4}\right)$ and make the substitution $x+\frac{p}{2}=z$.

Example 3. Find

$$
\int \frac{x+1}{\left(x^{2}-4 x+5\right)^{2}} d x=1 .
$$

Solution. Smee

$$
x^{2}+41: 5-(x+2)^{2}+1,
$$

then, putting $x+2=z$ wo get

$$
\begin{aligned}
& I=\int \frac{z-1}{\left(z^{2}+1\right)^{2}} d z=\int \frac{z}{\left(z^{2}\right.} \frac{d z}{1)^{2}}-\int \frac{\left(1+\frac{\left.z^{2}\right)-z^{2}}{\left(z^{2}\right.}+1\right)^{2}}{} d z= \\
& =-\frac{1}{z\left(z^{2}+1\right)}-\int \frac{d z}{z^{2}+1}+\int z d\left|-\frac{1}{2\left(z^{2}+1\right)}\right|--\frac{1}{2\left(z^{2}+1\right)}- \\
& -\operatorname{arc} \tan z-\frac{z}{2\left(z^{2}+1\right)}+\frac{1}{2} \arctan z=-\frac{z+1}{2\left(z^{2}+1\right)}- \\
& -\frac{1}{2} \operatorname{arc} \tan z+C=-\frac{1+3}{2\left(x^{2}+4 x+5\right)}-\frac{1}{2} \arctan (x+2)+C .
\end{aligned}
$$

2°. The Ostrogradsky method. If $Q(x)$ has multiple roots, then

$$
\begin{equation*}
\int \frac{P(x)}{Q(\lambda)} d x=\frac{X(x)}{Q_{1}(x)}+\int \frac{Y(x)}{Q_{2}(x)} d x, \tag{6}
\end{equation*}
$$

where $Q_{1}(x)$ is the greatest common divisor of the polynomial $Q(x)$ and its derivative $Q^{\prime}(x)$;

$$
Q_{2}(x)=Q(x): Q_{1}(x) ;
$$

$X(x)$ and $Y(x)$ are polynomials with undetermined coefficients, whose degrees are, respectively, less by unity than those of $Q_{1}(x)$ and $Q_{2}(x)$.

The undetermined coefticients of the polynomals $X^{2}(x)$ and $Y(x)$ are computed by differentiating the identity (6).

Example 4. Find

$$
\int \frac{d x}{\left(x^{3}-1\right)^{2}} .
$$

Solution

$$
\int \frac{d x}{\left(x^{3}-1\right)^{2}}=\frac{A x^{2}+B x+C}{x^{3}-1}+\int \frac{D x^{2}+E x+F}{x^{3}-1} d x
$$

Differentiating this identity, we get

$$
\begin{aligned}
& \frac{1}{\left(x^{3}-1\right)^{2}}=\frac{(2 A x+B)\left(x^{3}-1\right)-3 x^{2}\left(A x^{2}+B x+C\right)}{\left(x^{3}-1\right)^{2}}+\frac{D x^{2}+E x+F}{x^{3}-1} \\
& 1=(2 A x+B)\left(x^{3}-1\right)-3 x^{2}\left(A x^{2}+B x+C\right)+\left(D x^{2}+E x+F\right)\left(x^{3}-1\right)
\end{aligned}
$$

Equating the coefficients of the respective degrees of x, we will have:

$$
D=0 ; \quad E-A=0 ; \quad F-2 B=0 ; \quad D+3 C=0 ; \quad E+2 A=0 ; \quad B+F=-1 ;
$$

whence

$$
A=0 ; \quad B=-\frac{1}{3} ; \quad C=0 ; \quad D=0 ; \quad E=0 ; \quad F=-\frac{2}{3}
$$

and, consequently,

$$
\begin{equation*}
\int \frac{d x}{\left(x^{3}-1\right)^{2}}=-\frac{1}{3} \frac{x}{x^{3}-1}-\frac{2}{3} \int \frac{d x}{x^{3}-1} \tag{7}
\end{equation*}
$$

To compute the integral on the right of (7), we decompose the fraction $\frac{1}{x^{3}-1}$ into partial fractions:

$$
\frac{1}{x^{3}-1}=\frac{L}{x-1}+\frac{M x+N}{x^{2}+x+1},
$$

that is,

$$
\begin{equation*}
1=L\left(x^{2}+x+1\right)+M x(x-1)+N(x-1) . \tag{8}
\end{equation*}
$$

Putting $x=1$, we get $L=\frac{1}{3}$.
Equating the coefficients of identical degrees of x on the right and left of (8), we find.
or

$$
L+M=0 ; \quad L-N=1,
$$

$$
M=-\frac{1}{3} ; \quad N=-\frac{2}{3}
$$

Thereiore,
$\int \frac{d x}{x^{3}-1}=\frac{1}{3} \int \frac{d x}{x-1}-\frac{1}{3} \int \frac{x+2}{x^{2}+x+1} d x=$

$$
=\frac{1}{3} \ln |x-1|-\frac{1}{6} \ln \left(x^{2}+x+1\right)-\frac{1}{\sqrt{3}} \operatorname{arc} \tan \frac{2 x+1}{\sqrt{3}}+C
$$

and
$\int \frac{d x}{\left(x^{3}-1\right)^{2}}=-\frac{x}{3\left(x^{3}-1\right)}+\frac{1}{9} \ln \frac{x^{2}+x+1}{(x-1)^{2}}+\frac{2}{3 \sqrt{3}} \arctan \frac{2 x+1}{\sqrt{3}}+C$.
Find the following integrals:
1280. $\int \frac{d x}{(x+a)(x+b)}$.
1282. $\int \frac{d x}{(x+1)(x+2)(x+3)}$.
$1281 \int \frac{x^{2}-5 x+9}{x^{2}-5 x+6} d x$.
1283. $\int \frac{2 x^{2}+41 x-91}{(x-1)(x+3)(x-4)} d x$.
1284. $\int \frac{5 x^{3}+2}{x^{3}-5 x^{2}+4 x} d x$. 1293. $\int \frac{d x}{\left(\lambda^{2}-4 x+3\right)\left(x^{2}+4 x+5\right)}$.
1285. $\int \frac{d x}{x(x+1)^{2}}$.
1294. $\int \frac{d x}{x^{3}+1}$.
1286. $\int \frac{x^{3}-1}{4 x^{3}-x} d x$.
1295. $\int \frac{d x}{x^{4}+1}$.
1287. $\int \frac{x^{4}-6 x^{3}+12 x^{2}+6}{x^{3}-6 x^{2}+12 x-8} d x$.
1296. $\int \frac{d x}{x^{4}+x^{2}+1}$.
1288. $\int \frac{5 x^{2}+6 x+9}{(x-3)^{2}(x+1)^{2}} d x$.
1297. $\int \frac{d x}{\left(1+x^{2}\right)^{2}}$.
1289. $\int \frac{x^{2}-8 x+7}{\left(x^{2}-3 x-10\right)^{2}} d x$.
1298. $\int \frac{3 x+5}{\left(x^{2}+2 x+2\right)^{2}} d x$.
1290. $\int \frac{2 x-3}{\left(x^{2}-3 x+2\right)^{5}} d x$.
1299. $\int \frac{d x}{(x+1)\left(x^{2}+x+1\right)^{2}}$.
1291. $\int \frac{x^{8}+x+1}{x\left(x^{2}+1\right)} d x$.
1300. $\int \frac{x^{3}+1}{\left(x^{2}-4 x+5\right)^{2}} d x$.
1292. $\int \frac{x^{4}}{x^{4}-1} d x$.

Applying Ostrogradsky's method, find the following integrals:
1301. $\int \frac{d x}{(x+1)^{2}\left(x^{2}+1\right)^{2}}$.
1303. $\int \frac{d x}{\left(x^{2}+1\right)^{4}}$.
1302. $\int \frac{d x}{\left(1^{4}-1\right)^{2}}$.
1304. $\int \frac{x^{4}-2 x^{2}+2}{\left(x^{2}-2 x+2\right)^{2}} d x$.

Applying different procedures, find the integrals:
1305. $\int \frac{x^{5}}{\left(x^{3}+1\right)\left(x^{3}+8\right)} d x$.

1310*. $\int \frac{d x}{x\left(x^{7}+1\right)}$.
1306. $\int \frac{x^{7}+x^{3}}{x^{12}-21^{4}+1} d x$.
1311. $\int \frac{d}{x\left(\lambda^{5}+1\right)^{2}}$.
1307. $\int \frac{x^{2}-x+14}{(x-4)^{3}(x-2)} d x$.
1312. $\int \frac{d x}{\left(x^{2}+2 x+2\right)\left(x^{2}+2 x+5\right)}$.
1308. $\int \frac{d x}{x^{4}\left(x^{3}+1\right)^{2}}$
1313. $\int \frac{x^{2} d 1}{(x-1)^{12}}$.
1309. $\int \frac{d x}{x^{3}-4 x^{2}+5 x-2}$.
1314. $\int \frac{d}{x^{8}+\lambda^{6}}$.

Sec. 6. Intagrating Certain Irrational Functions
$\mathbf{1}^{\text {. }}$. Integrals of the f.rm

$$
\begin{equation*}
\int R\left[x,\left(\frac{a x+b}{c x+d}\right)^{\frac{p_{1}}{q_{1}}},\left(\frac{a x+b}{c x+d}\right)^{\frac{p_{2}}{q_{1}}}, \ldots\right] d x \tag{1}
\end{equation*}
$$

where R is a rational function and $p_{1}, q_{1}, p_{2}, q_{2}$ are whote numbers.

Integrals of form (1) are found by the substitution

$$
\frac{a x+b}{c x+d}=z^{n}
$$

where n is the least common multiple of the numbers q_{1}, q_{2}, \ldots
Example 1. Find

$$
\int \frac{d x}{\sqrt{2 x-1}-\sqrt[4]{2 x-1}}
$$

Solution. The substitution $2 \lambda-1=z^{4}$ leads to an integral of the form

$$
\begin{aligned}
\int \frac{d x}{\sqrt{2 x-1}-\sqrt[4]{2 x-1}}=\int \frac{2 z^{3} d z}{z^{2}-z} & =2 \int \frac{z^{2} d z}{z-1}= \\
& =2 \int\left(z+1+\frac{1}{z-1}\right) \\
& d z=(z+1)^{2}+2 \ln |z-1|+C= \\
& =(1+\sqrt[1]{2 x-1})^{2}+\ln (\sqrt[4]{2 x-1}-1)^{2}+C .
\end{aligned}
$$

Find the integrals:
1315. $\int \frac{x^{3}}{\sqrt{x-1}} d x$.
1321. $\int \frac{\sqrt{x}}{x+2} d x$
1316. $\int \frac{x d x}{\sqrt[3]{a x+b}}$.
1322. $\int \frac{d x}{(2-\lambda) \sqrt{1-8}}$.
1317. $\int \sqrt{x+1}=\frac{d x}{1-\sqrt{(x+1)^{3}}}$.
1323. $\int \sqrt{\frac{x-1}{1+1}} d x$.
1318. $\int \frac{d x}{\sqrt{x}+\sqrt[3]{x}}$.
1324. $\int \sqrt[3]{\frac{x-1}{-1}} d x$.
1319. $\int \frac{\sqrt[2]{x}-1}{\sqrt[5]{x}+1} d x$.
1320. $\int \frac{\sqrt{x+1}+2}{(x+1)^{2}-\sqrt{x+1}} d x$.
2°. Integrals of the form

$$
\begin{equation*}
\int \frac{P_{n}(x)}{\sqrt{a x^{2}+b x+c}} d x, \tag{2}
\end{equation*}
$$

where $P_{n}(x)$ is a polynomal of degree n

Pu

$$
\begin{equation*}
\int \frac{P_{n}(x)}{\sqrt{a x^{2}+b x+c}} d x=Q_{n-1}(x) \sqrt{a x^{2}+b x+c}+\lambda \int \frac{d x}{\sqrt{a x^{2}+b x+c}}, \tag{3}
\end{equation*}
$$

where $Q_{n-1}(x)$ is a polynomial of degree $(n-1)$ with undetermined coefficients and λ is a number.

The coefficients of the polynomial $Q_{n-1}(x)$ and the number λ are found by differentiating identity (3).

Example 2.

$$
\begin{aligned}
\int x^{2} \sqrt{x^{2}+4} d x=\int \frac{x^{4}+4 x^{2}}{\sqrt{x^{2}+4}} d x & = \\
& =\left(A x^{3}+B x^{2}+C x+D\right) \sqrt{x^{2}+4}+\lambda \int \frac{d x}{\sqrt{x^{2}+4}}
\end{aligned}
$$

Whence

$$
\frac{x^{4}+4 x^{2}}{\sqrt{x^{2}+4}}=\left(3 A x^{2}+2 B x+C\right) \sqrt{x^{2}+4}+\frac{\left(A x^{3}+B x^{2}+C x+D\right)}{\sqrt{x^{2}+4}} x+\frac{\lambda}{\sqrt{x^{2}+4}} .
$$

Multiplying by $\sqrt{x^{2}+4}$ and equating the coefficients of identical degrees of x, we obtain

$$
A=\frac{1}{4} ; \quad B=0 ; \quad C=\frac{1}{2} ; \quad D=0 ; \quad \lambda=-2
$$

Hence,

$$
\int x^{2} \sqrt{x^{2}+4} d x=\frac{x^{3}+2 x}{4} \sqrt{x^{2}+4}-2 \ln \left(x+\sqrt{x^{2}+4}\right)+C
$$

3°. Integrals of the form

$$
\begin{equation*}
\int \frac{d x}{(x-a)^{n} \sqrt{a x^{2}+b x+c}} . \tag{4}
\end{equation*}
$$

They are reduced to integrals of the form (2) by the substitution:

$$
\frac{1}{\lambda-\alpha}=t .
$$

Find the integrals:
1326. $\int \frac{x^{2} d x}{\sqrt{x^{2}-x+1}}$.
1329. $\int \frac{d x}{x^{5} \sqrt{x^{2}-1}}$.
1327. $\int \frac{x^{5}}{\sqrt{1-x^{2}}} d x$.
1330. $\int \frac{d x}{(x+1)^{3} \sqrt{x^{2}+2 x}}$.
1328. $\int \frac{x^{6}}{\sqrt{1+x^{2}}} d x$.
1331. $\int \frac{x^{2}+x+1}{x \sqrt{x^{2}-x+1}} d x$.
4°. Integrals of the binomial differentials

$$
\begin{equation*}
\int x^{\prime n}\left(a+b x^{n}\right)^{p} d x, \tag{5}
\end{equation*}
$$

where m, n and p are rational numbers.
Chebyshev's conditions. The integral (5) can be expressed in terms of a finite combination of elementary functions only in the following three cases:

1) If p is a whole number;
2) if $\frac{m+1}{n}$ is a whole number. Here, we make the substitution $a+b x^{n}=$ $=\boldsymbol{z}^{s}$, where s is the denominator of the fraction p;
3) if $\frac{m+1}{n}+\rho$ is a whole number. Here, use is made of the substitution $a x^{-n}+b=z^{s}$.

Example 3. Find

$$
\int \frac{\sqrt[3]{1+\sqrt[4]{x}}}{\sqrt{x}} d x=I
$$

Solution. Here, $n=-\frac{1}{2} ; n=\frac{1}{4} ; p=\frac{1}{3} ; \frac{m+1}{n}=\frac{-\frac{1}{2}+1}{\frac{1}{4}}=2$. Hence,
we have here Case 2 integrability.
The substitution

$$
1+x^{\frac{1}{4}}=z^{3}
$$

yields $x=\left(z^{3}-1\right)^{4} ; d x=12 z^{2}\left(z^{8}-1\right)^{s} d z$ Therefore,
$I=\int x^{-\frac{1}{2}\left(1+x^{\frac{1}{4}}\right) \frac{1}{3}} d x=12 \int \frac{z^{3}\left(z^{3}-1\right)^{3}}{\left(z^{3}-1\right)^{2}} d z=$

$$
=12 \int\left(z^{4}-z^{3}\right) d z=\frac{12}{7} z^{7}-3 z^{4}+C,
$$

where $z=\sqrt[8]{1+\sqrt[4]{x}}$.
Find the integrals:
1332. $\int x^{3}\left(1+2 x^{2}\right)^{-\frac{3}{2}} d x$.
1335. $\int \frac{d x}{x \sqrt[3]{1+x^{5}}}$.
1333. $\int \frac{d x}{\sqrt[4]{1+x^{4}}}$.
1336. $\int \frac{d x}{x^{2}\left(2+x^{3}\right)^{\frac{5}{3}}}$.
1334. $\int \frac{d x}{x^{4} \sqrt{1+x^{2}}}$.
1337. $\int \frac{d x}{\sqrt{x^{3}} \sqrt[3]{1+\sqrt[4]{x^{3}}}}$.

Sec. 7. Integrating Trigonometric Functions
1°. Integrals of the form

$$
\begin{equation*}
\int \sin ^{m} x \cos ^{n} x d x=I_{m, n} \tag{1}
\end{equation*}
$$

where m and n are integers.

1) If $m=2 k+1$ is an odd positive number, then we put

$$
I_{m, n}=-\int \sin ^{2 k} x \cos ^{n} x d(\cos x)=-\int\left(1-\cos ^{2} x\right)^{k} \cos ^{n} x d(\cos x)
$$

We do the same if n is an odd positive number.
Example 1.

$$
\begin{aligned}
\int \sin ^{10} x \cos ^{3} x d x & =\int \sin ^{10} x\left(1-\sin ^{2} x\right) d(\sin x)= \\
& =\frac{\sin ^{11} x}{11}-\frac{\sin ^{13} x}{13}+C
\end{aligned}
$$

2) If m and n are even positive numbers, then the integrand (1) is transformed by means of the formulas

$$
\begin{gathered}
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x), \quad \cos ^{2} x=\frac{1}{2}(1+\cos 2 x) \\
\sin x \cos x=\frac{1}{2} \sin 2 x
\end{gathered}
$$

Example 2. $\int \cos ^{2} 3 x \sin ^{4} 3 x d x=\int(\cos 3 x \sin 3 x)^{2} \sin ^{2} 3 x d x=$

$$
\begin{aligned}
& =\int \frac{\sin ^{2} 6 x}{4} \frac{1-\cos 6 x}{2} d x=\frac{1}{8} \int\left(\sin ^{2} 6 x-\sin ^{2} 6 x \cos 6 x\right) d x= \\
& =\frac{1}{8} \int\left(\frac{1-\cos 12 x}{2}=\sin ^{2} 6 x \cos 6 x\right) d x= \\
& =\frac{1}{8}\left(\frac{x}{2}-\frac{\sin 12 x}{24}-\frac{1}{18} \sin ^{3} 6 x\right)+C .
\end{aligned}
$$

3) If $m=-\mu$ and $n=-v$ are integral negative numbers of identical parity, then

$$
\begin{aligned}
I_{m, n} & =\int \frac{d x}{\sin ^{\mu} x \cos ^{\nu} x}=\int \operatorname{cosec}^{\mu} x \sec ^{\nu-2} x d(\tan x)= \\
& =\int\left(1+\frac{1}{\tan ^{2} x}\right)^{\frac{\mu}{2}}\left(1+\tan ^{2} x\right)^{\frac{v-2}{2}} d(\tan x)=\int \frac{\left(1+\tan ^{2} x\right)^{\frac{\mu+v}{2}-1}}{\tan ^{\mu} x} d(\tan x)
\end{aligned}
$$

In particular, the following integrals reduce to this case:

$$
\int \frac{d x}{\sin ^{\mu} x}=\frac{1}{2^{\mu-1}} \int^{2} \frac{d\left(\frac{x}{2}\right)}{\sin ^{\mu} \frac{x}{2} \cos ^{\mu} \frac{x}{2}} \text { and } \int \frac{d x}{\cos ^{v} x}=\int \frac{d\left(x+\frac{\pi}{2}\right)}{\sin ^{\nu}\left(x+\frac{\pi}{2}\right)} .
$$

Example 3. $\int \frac{d x}{\cos ^{4} x}=\int \sec ^{2} x d(\tan x)=\int\left(1+\tan ^{2} x\right) d(\tan x)=$

$$
=\tan x+\frac{1}{3} \tan ^{3} x+C
$$

Example 4. $\int \frac{d x}{\sin ^{3} x}=\frac{1}{2^{3}} \int \frac{d x}{\sin ^{3} \frac{x}{2} \cos ^{3} \frac{x}{2}}=\frac{1}{8} \int \tan ^{-3} \frac{x}{2} \sec ^{8} \frac{x}{2} d x=$
$=\frac{1}{8} \int \frac{\left(1+\tan ^{2} \frac{x}{2}\right)^{2}}{\tan ^{3} \frac{x}{2}} \sec ^{2} \frac{x}{2} d x=\frac{2}{8} \int\left[\tan ^{-3} \frac{x}{2}+\frac{2}{\tan \frac{x}{2}}+\right.$
$\left.+\tan \frac{x}{2}\right] d\left(\tan \frac{x}{2}\right)=\frac{1}{4}\left[-\frac{1}{2 \tan ^{2} \frac{x}{2}}+2 \ln \left|\tan \frac{x}{2}\right|+\frac{\tan ^{2} \frac{x}{2}}{2}\right]+C$.
5-1900
4) Integrals of the form $\int \tan ^{m} x d x$ (or $\int \cot ^{m} x d x$), where m is an integral positive number, are evaluated by the formula

$$
\tan ^{2} x=\sec ^{2} x-1
$$

(or, respectively, $\cot ^{2} x=\operatorname{cosec}^{2} x-1$).
Example 5. $\int \tan ^{4} x d x=\int \tan ^{2} x\left(\sec ^{2} x-1\right) d x=\frac{\tan ^{2} x}{3}-\int \tan ^{2} x d x=$ $=\frac{\tan ^{2} x}{3}-\int\left(\sec ^{2} x-1\right) d x=\frac{\tan ^{3} x}{3}-\tan x+x+C$.
5) In the general case, integrals $I_{m, n}$ of the form (1) are evaluated by means of reduction formulas that are usually derived by integration by parts.

Example 6. $\int \frac{d x}{\cos ^{3} x}=\int \frac{\sin ^{2} x+\cos ^{2} x}{\cos ^{2} x} d x=$
$=\int \sin x \cdot \frac{\sin x}{\cos ^{3} x} d x+\int \frac{d x}{\cos x}=\sin x \cdot \frac{1}{2 \cos ^{2} x}-\frac{1}{2} \int \frac{\cos x}{\cos ^{2} x} d x+\int \frac{d x}{\cos x}=$
$=\frac{\sin x}{2 \cos ^{2} x}+\frac{1}{2} \ln |\tan x+\sec x|+C$.
Find the integrals:
1338. $\int \cos ^{2} x d x$.
1339. $\int \sin ^{5} x d x$.
1340. $\int \sin ^{2} x \cos ^{3} x d x$.
1352. $\int \frac{d x}{\sin \frac{x}{2} \cos ^{3} \frac{x}{2}}$.
1341. $\int \sin ^{3} \frac{x}{2} \cos ^{5} \frac{x}{2} d x$.
1353. $\int \frac{\sin \left(x+\frac{\pi}{4}\right)}{\sin x \cos x} d x$.
1342. $\int \frac{\cos ^{5} x}{\sin ^{3} x} d x$.
1354. $\int \frac{d x}{\sin ^{5} x}$.
1343. $\int \sin ^{4} x d x$.
1355. $\int \sec ^{3} 4 x d x$.
1344. $\int \sin ^{2} x \cos ^{2} x d x$.
1356. $\int \tan ^{2} 5 x d x$.
1345. $\int \sin ^{2} x \cos ^{4} x d x$.
1357. $\int \cot ^{3} x d x$.
1346. $\int \cos ^{6} 3 x d x$.
1358. $\int \cot ^{4} x d x$.
1347. $\int \frac{d x}{\sin ^{4} x}$.
1359. $\int\left(\tan ^{3} \frac{x}{3}+\tan ^{4} \frac{x}{4}\right) d x$.
1348. $\int \frac{d x}{\cos ^{8} x}$.
1360. $\int x \sin ^{2} x^{2} d x$.
1349. $\int \frac{\cos ^{2} x}{\sin ^{6} x} d x$.
1361. $\int \frac{\cos ^{2} x}{\sin ^{4} x} d x$.
1350. $\int \frac{d x}{\sin ^{2} x \cos ^{4} x}$.
1362. $\int \sin ^{8} x \sqrt[3]{\cos x} d x$.
1351. $\int \frac{d x}{\sin ^{5} x \cos ^{5} x}$.
1363. $\int \frac{d x}{\sqrt{\sin x \cos ^{2} x}}$.
1364. $\int \frac{d x}{\sqrt{\tan x}}$.
2. Integrals of the form $\int \sin m x \cos n x d x, \int \sin m x \sin n x d x$ and $\int \cos m x \cos n x d x$. In these cases the following formulas are used:

1) $\sin m x \cos n x=\frac{1}{2}[\sin (m+n) x+\sin (m-n) x]$;
2) $\sin m x \sin n x=\frac{1}{2}[\cos (m-n) x-\cos (m+n) x]$:
3) $\cos m x \cos n x=\frac{1}{2}[\cos (m-n) x+\cos (m+n) x]$.

Example 7. $\int \sin 9 x \sin x d x=\int \frac{1}{2}[\cos 8 x-\cos 10 x] d x=$ $=\frac{1}{16} \sin 8 x-\frac{1}{20} \sin 10 x+C$.

Find the integrals:
1365. $\int \sin 3 x \cos 5 x d x$.
1369. $\int \cos (a x+b) \cos (a x-b) d x$.
1366. $\int \sin 10 x \sin 15 x d x$.
1370. $\int \sin \omega t \sin (\omega t+\varphi) d t$.
1367. $\int \cos \frac{x}{2} \cos \frac{x}{3} d x$.
1371. $\int \cos x \cos ^{2} 3 x d x$.
1368. $\int \sin \frac{x}{3} \sin \frac{2 x}{3} d x$.
1372. $\int \sin x \sin 2 x \sin 3 x d x$.
3°. Integrals of the form

$$
\begin{equation*}
\int R(\sin x, \cos x) d x, \tag{2}
\end{equation*}
$$

where R is a rational function.

1) By means of substitution

$$
\tan \frac{x}{2}=t
$$

whence

$$
\sin x=\frac{2 t}{1+t^{2}}, \quad \cos x=\frac{1-t^{2}}{1+t^{2}}, \quad d x=\frac{2 d t}{1+t^{2}}
$$

integrals of form (2) are reduced to integrals of rational functions by the new variable t.

Example 8. Find

$$
\int \frac{d x}{1+\sin x+\cos x}=1
$$

Solution. Putting $\tan \frac{x}{2}=t$, we will have

$$
I=\int \frac{\frac{2 d t}{1+t^{2}}}{1+\frac{2 t}{1+t^{2}}+\frac{1-t^{2}}{1+t^{2}}}=\int \frac{d t}{1+t}=\ln |1+t|+C=\ln \left|1+\tan \frac{x}{2}\right|+C
$$

2) If we have the identity

$$
R(-\sin x,-\cos x) \leftrightharpoons R(\sin x, \quad \cos x)
$$

Then we can use the substitution $\tan x=t$ to reduce the integral (2) to a rational form.

Here,

$$
\sin x=\frac{t}{\sqrt{1+t^{2}}}, \cos x=\frac{1}{\sqrt{1+t^{2}}}
$$

and

$$
x=\arctan t, d x=\frac{d t}{1+t^{2}}
$$

Example 9. Find

$$
\begin{equation*}
\int \frac{d x}{1+\sin ^{2} x}=1 . \tag{3}
\end{equation*}
$$

Solution. Putting

$$
\tan x=t, \quad \sin ^{2} x=\frac{t^{2}}{1+t^{2}}, \quad d x=\frac{d t}{1+t^{2}}
$$

we will have

$$
\begin{aligned}
I & =\int \frac{d t}{\left(1+t^{2}\right)\left(1+\frac{t^{2}}{1+t^{2}}\right)}=\int \frac{d t}{1+2 t^{2}}=\frac{1}{\sqrt{2}} \int \frac{d(t \sqrt{2})}{1+(t \sqrt{2})^{2}}= \\
& =\frac{1}{\sqrt{2}} \arctan \left(t \sqrt{ }^{2}\right)+C=\frac{1}{\sqrt{2}} \arctan (\sqrt{2} \tan x)+C .
\end{aligned}
$$

We note that the integral (3) is evaluated faster if the numerator and denominator of the fraction are first divided by $\cos ^{2} x$.

In individual cases, it is useful to apply artificial procedures (see, for example, 1379).

Find the integrals:
1373. $\int \frac{d x}{3+5 \cos x}$.
1374. $\int \frac{d x}{\sin x+\cos x}$.
1375. $\int \frac{\cos x}{1+\cos x} d x$.
1376. $\int \frac{\sin x}{\sqrt{-\sin x}} d x$.
1377. $\int \frac{d x}{8-4 \sin x+7 \cos x}$.
1378. $\int \frac{d x}{\cos x+2 \sin x+3}$.

1379**. $\int \frac{3 \sin x+2 \cos x}{2 \sin x+3 \cos x} d x$.
1380. $\int \frac{1+\tan x}{1-\tan x} d x$.

1381*. $\int \frac{d x}{1+3 \cos ^{2} x}$.

1382*. $\int \frac{d x}{3 \sin ^{2} x+5 \cos ^{2} x}$.
1383*. $\int \frac{d x}{\sin ^{2} x+3 \sin x \cos x-\cos ^{2} x}$.
1384*. $\int \frac{d x}{\sin ^{2} x-5 \sin x \cos x}$.
1385. $\int \frac{\sin x}{(1-\cos x)^{3}} d x$.
1386. $\int \frac{\sin 2 x}{1+\sin ^{2} x} d x$.
1387. $\int \frac{\cos 2 x}{\cos ^{4} x+\sin ^{4} x} d x$.
1388. $\int \frac{\cos x}{\sin ^{2} x-6 \sin x+5} d x$.

1389*. $\int \frac{d x}{(2-\sin x)(3-\sin x)}$.
1390*. $\int \frac{1-\sin x+\cos x}{1+\sin x-\cos x} d x$.

Sec. 8. Integration of Hyperbolic Functions

Integration of hyperbolic functions is completely analogous to the integration of trigonometric functions.

The following basic formulas should be remembered:

1) $\cosh ^{2} x-\sinh ^{2} x=1$;
2) $\sinh ^{2} x=\frac{1}{2}(\cosh 2 x-1)$;
3) $\cosh ^{2} x=\frac{1}{2}(\cosh 2 x+1)$;
4) $\sinh x \cosh x=\frac{1}{2} \sinh 2 x$.

Example 1. Find

$$
\int \cosh ^{2} x d x
$$

Solution. We have
$\int \cosh ^{2} x d x=\int \frac{1}{2}(\cosh 2 x+1) d x=\frac{1}{4} \sinh 2 x+\frac{1}{2} x+C$.
Example 2. Find

$$
\int \cosh ^{3} x d x
$$

Solution. We have
$\int \cosh ^{3} x d x=\int \cosh ^{2} x d(\sinh x)=\int\left(1+\sinh ^{2} x\right) d(\sinh x)=$

$$
=\sinh x+\frac{\sinh ^{3} x}{3}+C .
$$

Find the integrals:
1391. $\int \sinh ^{3} x d x$.
1392. $\int \cosh ^{4} x d x$.
1393. $\int \sinh ^{3} x \cosh x d x$.
1394. $\int \sinh ^{2} x \cosh ^{2} x d x$.
1395. $\int \frac{d x}{\operatorname{stah} x \cosh ^{2} x}$.
1396. $\int \frac{d x}{\sinh ^{2} x \cosh ^{2} x}$.
1397. $\int \tanh ^{3} x d x$.
1398. $\int \operatorname{coth}^{4} x d x$.
1399. $\int \frac{d x}{\sinh ^{2} x+\cosh ^{2} x}$.
1400. $\int \frac{d x}{2 \sinh x+3 \cosh x}$.

1401*. $\int \frac{d x}{\tanh x-1}$.
1402. $\int \frac{\sinh x d x}{\sqrt{\cosh 2 x}}$.

Sec. 9. Using Trigonometric and Hyperbolio Substitutions for Finding Integrals of the Form

$$
\begin{equation*}
\int R\left(x, \sqrt{a x^{2}+b x+c}\right) d x \tag{1}
\end{equation*}
$$

where R is a rational function.

Transforming the quadratic trinomial $a x^{2}+b x+c$ into a sum or difference of squares, the integral (1) becomes reducible to one of the following types of integrals:

1) $\int R\left(z, \sqrt{m^{2}-z^{2}}\right) d z$;
2) $\int R\left(z, \sqrt{m^{2}+z^{2}}\right) d z$;
3) $\int R\left(z, \sqrt{z^{2}-m^{2}}\right) d z$.

The latter integrals are, respectively, faken by means of substitutions:

1) $z=m \sin t$ or $z=m \tanh t$,
2) $z=m \tan t$ or $z=m \sinh t$,
3) $z=m \sec t$ or $z=m \cosh t$.

Example 1. Find

$$
\int \frac{d x}{(x+1)^{2} \sqrt{x^{2}+2 x+2}}=I .
$$

Solution. We have

$$
x^{2}+2 x+2=(x+1)^{2}+1
$$

Putting $x+1=\tan z$, we then have $d x=\sec ^{2} z d z$ and

$$
\begin{aligned}
I=\int \frac{d x}{(x+1)^{2} \sqrt{(x+1)^{2}+1}}=\int \frac{\sec ^{2} z d z}{\tan ^{2} z \sec z} & =\int \frac{\cos z}{\sin ^{2} z} d z= \\
& =-\frac{1}{\sin z}+C=\frac{\sqrt{x^{2}+2 x+2}}{x+1}+C .
\end{aligned}
$$

Example 2. Find

$$
\int x \sqrt{x^{2}+x+1} d x=1 .
$$

Solution. We have

$$
x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} .
$$

Putting

$$
x+\frac{1}{2}=\frac{\sqrt{\overline{3}}}{2} \sinh t \quad \text { and } \quad d x=\frac{\sqrt{3}}{2} \cosh t d t
$$

we get
$I=\int\left(\frac{\sqrt{3}}{2} \sinh t-\frac{1}{2}\right) \frac{\sqrt{3}}{2} \cosh t \cdot \frac{\sqrt{3}}{2} \cosh t d t=$

$$
\begin{aligned}
& =\frac{3 \sqrt{3}}{8} \int \sinh t \cosh ^{2} t d t-\frac{3}{8} \int \cosh ^{2} t d t= \\
& \quad=\frac{3 \sqrt{3}}{8} \frac{\cosh ^{3} t}{3}-\frac{3}{8}\left(\frac{1}{2} \sinh t \cosh t+\frac{1}{2} t\right)+C .
\end{aligned}
$$

Since

$$
\sinh t=\frac{2}{\sqrt{3}}\left(x+\frac{1}{2}\right), \cosh t=\frac{2}{\sqrt{3}} \sqrt{x^{2}+x+1}
$$

and

$$
t=\ln \left(x+\frac{1}{2}+\sqrt{x^{2}+x+1}\right)+\ln \frac{2}{\sqrt{3}},
$$

we finally have
$I=\frac{1}{3}\left(x^{2}+x+1\right)^{\frac{8}{2}}-\frac{1}{4}\left(x+\frac{1}{2}\right) \sqrt{x^{2}+x+1}-$
$-\frac{3}{16} \ln \left(x+\frac{1}{2}+\sqrt{x^{2}+x+1}\right)+C$.
Find the integrals:
1403. $\int \sqrt{3-2 x-x^{2}} d x . \quad$ 1409. $\int \sqrt{x^{2}-6 x-7} d x$.
1404. $\int \sqrt{2+x^{2}} d x$.
1410. $\int\left(x^{2}+x+1\right)^{\frac{2}{2}} d x$.
1405. $\int \frac{x^{2}}{\sqrt{9+x^{2}}} d x$.
1411. $\int \frac{d x}{(x-1) \sqrt{x^{2}-3 x+2}}$.
1406. $\int \sqrt{x^{2}-2 x+2} d x$.
1412. $\int \frac{d x}{\left(x^{2}-2 x+5\right)^{\frac{2}{2}}}$.
1407. $\int \sqrt{x^{2}-4} d x$.
1413. $\int \frac{d x}{\left(1+x^{2}\right) \sqrt{1-x^{2}}}$.
1408. $\int \sqrt{x^{2}+x} d x$.
1414. $\int \frac{d x}{\left(1-x^{2}\right) \sqrt{1+x^{2}}}$.

Sec. 10. Integration of Various Transcendental Functions
Find the integrals:
1415. $\int\left(x^{2}+1\right)^{2} e^{2 x} d x$.
1416. $\int x^{2} \cos ^{2} 3 x d x$.
1417. $\int x \sin x \cos 2 x d x$.
1418. $\int e^{2 x} \sin ^{2} x d x$.
1419. $\int e^{x} \sin x \sin 3 x d x$.
1420. $\int x e^{x} \cos x d x$.
1421. $\int \frac{d x}{e^{2 x}+e^{x}-2}$.
1422. $\int \frac{d x}{\sqrt{e^{2 x}+e^{x}+1}}$.
1423. $\int x^{2} \ln \frac{1+x}{1-x} d x$.
1424. $\int \ln ^{2}\left(x+\sqrt{1+x^{2}}\right) d x$.
1425. $\int x \arccos (5 x-2) d x$.
1426. $\int \sin x \sinh x d x$.

Sec. 11. Using Reduction Formulas
Derive the reduction formulas for the following integrals:
1427. $I_{n}=\int \frac{d x}{\left(x^{2}+a^{2}\right)^{n}}$; find I_{2} and I_{2}.
1428. $I_{n}=\int \sin ^{n} x d x$; find I_{4} and I_{5}.
1429. $I_{n}=\int \frac{d x}{\cos ^{n} x} ;$ find I_{s} and I_{4}.
1430. $I_{\mathrm{n}}=\int x^{n} e^{-x} d x$; find I_{10}.

Sec. 12. Miscellaneous Examples on Integration
1431. $\int \frac{d x}{2 x^{2}-4 x+9}$.
1432. $\int \frac{x-5}{x^{2}-2 x+2} d x$.
1433. $\int \frac{x^{3}}{x^{2}+x+\frac{1}{2}} d x$.
1434. $\int \frac{d x}{x\left(x^{2}+5\right)}$.
1435. $\int \frac{d x}{(x+2)^{2}(x+3)^{2}}$.
1436. $\int \frac{d x}{(x+1)^{2}\left(x^{2}+1\right)}$.
1437. $\int \frac{d x}{\left(x^{2}+2\right)^{2}}$.
1438. $\int \frac{d x}{x^{4}-2 x^{2}+1}$.
1439. $\int \frac{x d x}{\left(x^{2}-x+1\right)^{3}}$.
1440. $\int \frac{.3-4 x}{(1-2 \sqrt{x})^{2}} d x$.
1441. $\int \frac{(\sqrt{x}+1)^{2}}{x^{3}} d x$.
1442. $\int \frac{d x}{\sqrt{x^{2}+x+1}}$.
1443. $\int \frac{1-\sqrt[3]{2 x}}{\sqrt{2 x}} d x$.
1444. $\int \frac{d x}{\left(\sqrt[3]{x^{2}}+\sqrt[3]{x}\right)^{2}}$.
1445. $\int \frac{2 x+1}{\sqrt{\left(4 x^{2}-2 x+1\right)^{3}}} d x$.
1446. $\int \frac{d x}{\sqrt[4]{5-x}+\sqrt{5-x}}$.
1447. $\int \frac{x^{2}}{\sqrt{\left(x^{2}-1\right)^{3}}} d x$.
1448. $\int \frac{x d x}{\left(1+x^{2}\right) \sqrt{1-x^{4}}}$.
1449. $\int \frac{x d x}{\sqrt{1-2 x^{2}-x^{2}}}$.
1450. $\int \frac{x+1}{\left(x^{2}+1\right)^{\frac{3}{2}}} d x$.

1451*. $\int \frac{d x}{\left(x^{2}+4 x\right) \sqrt{4-x^{2}}}$.
1452. $\int \sqrt{x^{2}-9} d x$.
1453. $\int \sqrt{x-4 x^{2}} d x$.
1454. $\int \frac{d x}{x \sqrt{x^{2}+x+1}}$.
1455. $\int x \sqrt{x^{2}+2 x+2} d x$.
1456. $\int \frac{d x}{x^{4} \sqrt{x^{2}-1}}$.
1457. $\int \frac{d x}{x \sqrt{1-x^{3}}}$.
1458. $\int \frac{d x}{\sqrt[3]{1+x^{5}}}$.
1459. $\int \frac{5 x}{\sqrt{1+x^{4}}} d x$.
1460. $\int \cos ^{4} x d x$.
1461. $\int \frac{d x}{\cos x \sin ^{5} x}$.
1462. $\int \frac{1+\sqrt{\cot x}}{\sin ^{2} x} d x$.
1463. $\int \frac{\sin ^{3} x}{\sqrt[5]{\cos ^{3} x}} d x$.
1464. $\int \operatorname{cosec}^{5} 5 x d x$.
1465. $\int \frac{\sin ^{2} x}{\cos ^{6} x} d x$.
1466. $\int \sin \left(\frac{\pi}{4}-x\right) \sin \left(\frac{\pi}{4}+x\right) d x$.
1467. $\int \tan ^{2}\left(\frac{x}{2}+\frac{\pi}{4}\right) d x$.
1468. $\int \frac{d x}{2 \sin x+3 \cos x-5}$.
1469. $\int \frac{d x}{2+3 \cos ^{2} x}$.
1470. $\int \frac{d x}{\cos ^{2} x+2 \sin x \cos x+2 \sin ^{2} x}$.
1471. $\int \frac{d x}{\sin x \sin 2 x}$.
1472. $\int \frac{d x}{(2+\cos x)(3+\cos x)}$.
1473. $\int \frac{\sec ^{2} x}{\sqrt{\tan ^{2} x+4 \tan x+1}} d x$.
1474. $\int \frac{\cos a x}{\sqrt{a^{2}+\sin ^{2} a x}} d x$.
1475. $\int \frac{x d x}{\cos ^{2} 3 x}$.
1476. $\int x \sin ^{2} x d x$.
1477. $\int x^{2} e^{x^{1}} d x$.
1478. $\int x e^{2 x} d x$.
1479. $\int x^{2} \ln \sqrt{1-x} d x$.
1480. $\int \frac{x \arctan x}{\sqrt{1+x^{2}}} d x$.
1481. $\int \sin ^{2} \frac{x}{2} \cos \frac{3 x}{2} d x$.
1482. $\int \frac{d x}{(\sin x+\cos x)^{2}}$.
1483. $\int \frac{d x}{(\tan x+1) \sin ^{2} x}$.
1484. $\int \sinh x \cosh x d x$.
1485. $\int \frac{\sinh \sqrt{1-x}}{\sqrt{1-x}} d x$.
1486. $\int \frac{\sinh x \cosh x}{\sinh ^{2} x+\cosh ^{2} x} d x$.
1487. $\int \frac{x}{\sinh ^{2} x} d x$.
1488. $\int \frac{d x}{e^{2 x}-2 e^{x}}$.
1489. $\int \frac{e^{x}}{e^{2 x}-6 e^{x}+13} d x$.
1490. $\int \frac{e^{2 x}}{\left(e^{x}+1\right)^{\frac{1}{4}}} d x$.
1491. $\int \frac{2^{x}}{1-4^{x}} d x$.
1492. $\int\left(x^{2}-1\right) 10^{-2 x} d x$.
1493. $\int \sqrt{e^{x}+1} d x$.
1494. $\int \frac{\arctan x}{x^{2}} d x$.
1495. $\int x^{2} \arcsin \frac{1}{x} d x$.
1496. $\int \cos (\ln x) d x$.
1497. $\int\left(x^{2}-3 x\right) \sin 5 x d x$.
1498. $\int x \arctan (2 x+3) d x$.
1499. $\int \arcsin \sqrt{x} d x$.
1500. $\int|x| d x$.

Chapter V

DEFINITE INTEGRALS

Sec. 1. The Definite Integral as the Limit of a Sum

1°. Integral sum. Let a function $f(x)$ be defined on an interval $a \leqslant x \leqslant b$, and $a=x_{0}<x_{1}<\ldots<x_{n}=b$ is an arbitrary partition of this interval into n subintervals (Fig. 37). A sum of the form

$$
\begin{equation*}
S_{n}=\sum_{i=0}^{n-1} f\left(\xi_{i}\right) \Delta x_{i} \tag{1}
\end{equation*}
$$

where

$$
\begin{gathered}
x_{i} \leqslant \xi_{i} \leqslant x_{i+1} ; \quad \Delta x_{i}=x_{i+1}-x_{i} \\
\quad i=0,1,2, \ldots(n-1),
\end{gathered}
$$

is called the integral sum of the function $f(x)$ on $[a, b]$. Geometrically, S_{n} is the algebraic area of a step-like figure (see Fig. 37).

Fig. 37

Fig. 38
2°. The definite integral. The limit of the sum S_{n}, provided that the number of subdivisions n tends to infinity, and the largest of them, Δx_{i}, to zero, is called the definite integral of the function $f(x)$ within the limits from $x=a$ to $x=b$; that is,

$$
\begin{equation*}
\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=0}^{n-1} f\left(\xi_{i}\right) \Delta x_{i}=\int_{a}^{b} f(x) d x \tag{2}
\end{equation*}
$$

If the function $f(x)$ is continuous on $[a, b]$, it is integrable on $[a, b]$; i.e., the limit of (2) exists and is independent of the mode of partition of the interval of integration $[a, b]$ into subintervals and is independent of the choice of points ξ_{i} in these subintervals. Geometrically, the definite integral (2) is the algebraic sum of the areas of the figures that make up the curvilinear trapezoid $a A B b$, in which the areas of the parts located above the x-axis are plus, those below the x-axis, minus (Fig. 37).

The definitions of integral sum and definite integral are naturally generalized to the case of an interval $[a, b]$, where $a>b$.

Example 1. Form the integral sum S_{n}^{\prime} for the function

$$
f(x)=1+x
$$

on the interval $[1,10]$ by dividing the interval into n equal parts and choosing points ξ_{i} that coincide with the left end-points of the subintervals $\left[x_{i}, x_{i+1}\right]$. What is the $\lim S_{n}$ equal to?

Solution. Here, $\Delta x_{t}=\frac{n \rightarrow \infty}{n}=\frac{10}{n}$ and $\xi_{i}=x_{i}=x_{0}+i \Delta x_{i}=1+\frac{9 i}{n}$. Whence $\left(\xi_{i}\right)=1+1+\frac{9 i}{n}=2+\frac{9 i}{n}$. Hence (Fig. 38),

$$
\begin{gathered}
\mathcal{S}_{n}=\sum_{l=0}^{n-1} f\left(\xi_{i}\right) \Delta x_{i}=\sum_{i=0}^{n-1}\left(2+\frac{9 i}{n}\right) \frac{9}{n}=\frac{18}{n} n+\frac{81}{n^{2}}(0+1+\ldots+n-1)= \\
=18+\frac{81}{n^{2}} \frac{n(n-1)}{2}=18+\frac{81}{2}\left(1-\frac{1}{n}\right)=58 \frac{1}{2}-\frac{81}{2 n}, \\
\lim _{n \rightarrow \infty} S_{n}=58 \frac{1}{2} .
\end{gathered}
$$

Example 2. Find the area bounded by an arc of the parabola $y=x^{2}$, the x-axis, and the ordinates $x=0$, and $x=a(a>0)$.

Solution. Partition the base a into n equal parts $\Delta x=\frac{a}{n}$. Choosing the value of the function at the beginning of each subinterval, we will have

$$
\begin{gathered}
y_{1}=0 ; y_{2}=\left(\frac{a}{n}\right)^{2} ; y_{2}=\left[2\left(\frac{a}{n}\right)^{2}\right] ; \ldots ; \\
y_{n}=\left[(n-1) \frac{a}{n}\right]^{2}
\end{gathered}
$$

The areas of the rectangles are obtained by multiplying each y_{k} by the base $\Delta x=\frac{a}{n}$ (Fig. 39). Summing, we get the area of the step-like figure

Fig. 39

$$
S_{n}=\frac{a}{n}\left(\frac{a}{n}\right)^{2}\left[1+2^{2}+3^{2}+\ldots+(n-1)^{2}\right] .
$$

Using the formula for the sum of the squares of integers,

$$
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

we find

$$
S_{n}=\frac{a^{3} n(n-1)(2 n-1)}{6 n^{2}}
$$

and, passing to the limit, we obtain

$$
S=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty} \frac{a^{2}(n-1) n(2 n-1)}{6 n^{s}}=\frac{a^{8}}{3} .
$$

Evaluate the following definite integrals, regarding them as the limits of appropriate integral sums:
1501. $\int_{a}^{b} d x$.
1503. $\int_{-2}^{1} x^{2} d x$.
1502. $\int_{0}^{T}\left(v_{0}+g t\right) d t$,
1504. $\int_{0}^{10} 2^{x} d x$.
v_{0} and g are constant. 1505*. $\int_{1}^{5} x^{4} d x$.

1506*. Find the area of a curvilinear trapezoid bounded by the hyperbola

$$
y=\frac{1}{x}
$$

by two ordinates: $x=a$ and $x=b \quad(0<a<b)$, and the x-axis.
1507*. Find

$$
f(x)=\int_{0}^{x} \sin t d t
$$

Sec. 2. Evaluating Definite Integrals by Means of Indefinite Integrals

1°. A definite integral with variable upper limit. If a function $f(t)$ is continuous on an interval $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is the antiderivative of the function $f(x)$; that is,

$$
F^{\prime}(x)=f(x) \text { for } a \leqslant x \leqslant b
$$

2°. The Newton-Leibniz formula. If $F^{\prime}(x)=f(x)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

The antiderivative $F(x)$ is computed by finding the indefinite integral

$$
\int f(x) d x=F(x)+C
$$

Example 1. Find the integral

$$
\int_{-1}^{8} x^{4} d x
$$

Solution. $\int_{-1}^{2} x^{4} d x=\left.\frac{x^{5}}{5}\right|_{-1} ^{3}=\frac{3^{5}}{5}-\frac{(-1)^{5}}{5}=48 \frac{4}{5}$.
1508. Let

Find

$$
I=\int_{a}^{b} \frac{d x}{\ln x}(b>a>1)
$$

$$
\begin{array}{ll}
\text { 1) } \frac{d I}{d a} ; & \text { 2) } \frac{d l}{d b}
\end{array}
$$

Find the derivatives of the following functions:
1509. $F(x)=\int_{1}^{x} \ln t d t \quad(x>0)$. 1511. $F(x)=\int_{x}^{x^{2}} e^{-t^{2}} d t$.
1510. $F(x)=\int_{x}^{0} \sqrt{1+t^{4}} d t$. 1512. $I=\int_{\frac{1}{x}}^{V \bar{x}} \cos \left(t^{2}\right) d t \quad(x>0)$.
1513. Find the points of the extremum of the function

$$
y=\int_{0}^{x} \frac{\sin t}{t} d t \text { in the region } x>0
$$

Applying the Newton-Leibniz formula, find the integrais:
1514. $\int_{0}^{1} \frac{d x}{1+x}$.
1515. $\int_{-2}^{-1} \frac{d x}{x^{2}}$.
1516. $\int_{-x}^{x} e^{t} d t$.
1517. $\int_{0}^{x} \cos t d t$.

Using definite integrals, find the limits of the sums:
$1518^{* *}$. $\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{n-1}{n^{2}}\right)$.
1519**. $\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}\right)$.
1520. $\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+\ldots+n^{p}}{n^{p+1}}(p>0)$.

Evaluate the integrals:
1521. $\int_{1}^{2}\left(x^{2}-2 x+3\right) d x$.
1534. $\int_{2}^{8} \frac{d x}{\sqrt{5+4 x-x^{2}}}$.
1522. $\int_{0}^{8}(\sqrt{2 x}+\sqrt[3]{x}) d x$
1535. $\int_{0}^{1} \frac{y^{2} d y}{\sqrt{y^{6}+4}}$.
1523. $\int_{1}^{4} \frac{1+\sqrt{y}}{y^{2}} d y$.
1536. $\int_{0}^{\frac{\pi}{4}} \cos ^{2} \alpha d \alpha$.
1524. $\int_{:}^{0} \sqrt{x-2} d x$.
1537. $\int_{0}^{\frac{\pi}{2}} \sin ^{3} \varphi d \varphi$.
1525. $\int_{0}^{-3} \frac{d x}{\sqrt{25+3 x}}$.
1538. $\int_{e}^{e^{2}} \frac{d x}{x \ln x}$.
1526. $\int_{-2}^{-3} \frac{d x}{x^{2}-1}$.
1527. $\int_{0}^{1} \frac{x d x}{x^{2}+3 x+2}$.
1528. $\int_{-1}^{3} \frac{y^{5} d y}{y+2}$.
1539. $\int_{i}^{e} \frac{\sin (\ln x)}{x} d x$.
1529. $\int_{0}^{1} \frac{d x}{x^{2}+4 x+5}$.
1540. $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \tan x d x$.
1541. $\int_{\pi}^{8} \cot ^{4} \varphi d \varphi$.
1530. $\int_{=}^{4} \frac{d x}{x^{2}-3 x+2}$.
1542. $\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x$.
1531. $\int_{0}^{1} \frac{z^{3}}{z^{8}+1} d z$.
1543. $\int_{0}^{1} \cosh x d x$.
1532. $\int^{\frac{\pi}{4}} \sec ^{2} \alpha d \alpha$.
1544. $\int_{\ln 2}^{\ln 2} \frac{d x}{\cosh ^{2} x}$.
1533. $\int_{0}^{2} \frac{d x}{\sqrt{1-x^{2}}}$.
1545. $\int_{0}^{\pi} \sinh ^{2} x d x$.

Sec. 3. Improper Integrals

1°. Integrals of unbounded functions. If a function $f(x)$ is not bounded in any neighbourhood of a point c of an interval $[a, b]$ and is continuous for $a \leqslant x<c$ and $c<x \leqslant b$, then by definition we put

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{\varepsilon \rightarrow 0} \int_{a}^{c-\varepsilon} f(x) d x+\lim _{\varepsilon \rightarrow 0} \int_{c+\varepsilon}^{b} f(x) d x \tag{1}
\end{equation*}
$$

If the limits on the right side of (1) exist and are finite, the improper integral is called convergent, otherwise it is divergent. When $c=a$ or $c=b$, the definition is correspondingly simplified.

If there is a continuous function $F(x)$ on $[a, b]$ such that $F^{\prime}(x)=f(x)$ when $x \neq c$ (generalized antiderivative), then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=F(b)-F(a) \tag{2}
\end{equation*}
$$

If $|f(x)| \leqslant F(x)$ when $a \leqslant x \leqslant b$ and $\int_{a}^{b} F(x) d x$ converges, then the integral (1) also converges (comparison test).

If $f(x) \geqslant 0$ and $\lim _{x \rightarrow c} f(x)|c-x|^{m}=-A \neq \infty, A \neq 0$, i. e., $f(x) \sim \frac{A}{|c-x|^{n i}}$ when $x \rightarrow c$, then 1) for $m<1$ the integral (1) converges, 2) for $m \geqslant 1$ the integral (1) diverges.
2°. Integrais with infinite limits. If the function $f(x)$ is continuous when $a \leqslant x<\infty$, then we assume

$$
\begin{equation*}
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x \tag{3}
\end{equation*}
$$

and depending on whether there is a finite limit or not on the right of (3), the respective integral is called convergent or divergent.

Similarly,

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x \text { and } \int_{-\infty}^{\infty} f(x) d x=\lim _{\substack{a \rightarrow-\infty \\ b \rightarrow+\infty}} \int_{a}^{b} f(x) d x .
$$

If $|f(x)| \leqslant F(x)$ and the integral $\int_{a}^{\infty} F(x) d x$ converges, then the infegral (3) converges as well.

If $f(x) \geqslant 0$ and $\lim _{x \rightarrow \infty} f(x) \quad x^{m}=A \neq \infty, A \neq 0$, 1. e., $f(x) \sim \frac{A}{x^{m i}}$ when $x \rightarrow \infty$, then 1) for $m>1$ the integral (3) converges, 2) for $m \leqslant 1$ the integral (3) diverges.

Example 1.

$$
\int_{-1}^{1} \frac{\hat{a} x}{x^{2}}=\lim _{\varepsilon \rightarrow 0} \int_{-1}^{-\varepsilon} \frac{d x}{x^{2}}+\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} \frac{d x}{x^{2}}=\lim _{\varepsilon \rightarrow 0}\left(\frac{1}{\varepsilon}-1\right)+\lim _{\varepsilon \rightarrow 0}\left(\frac{1}{\varepsilon}-1\right)=\infty
$$

and the integral diverges.
Example 2.

$$
\int_{0}^{\infty} \frac{d x}{1+x^{2}}=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{1+x^{2}}=\lim _{b \rightarrow \infty}(\arctan b-\arctan 0)=\frac{\pi}{2} .
$$

Example 3. Test the convergence of the probability integral

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x^{2}} d x \tag{4}
\end{equation*}
$$

Solution. We put

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\int_{0}^{1} e^{-x^{2}} d x+\int_{1}^{\infty} e^{-x^{2}} d x
$$

The first of the two integrals on the right is not an improper integral, while the second one converges, since $e^{-x^{2}} \leqslant e^{-x}$ when $x \geqslant 1$ and

$$
\int_{i}^{\infty} e^{-x} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} e^{-x} d x=\lim _{b \rightarrow \infty}\left(-e^{-b}+e^{-1}\right)=e^{-1}
$$

hence, the integral (4) converges.
Example 4. Test the following integral for convergence:

$$
\begin{equation*}
\int_{1}^{\infty}-\frac{d x}{\sqrt{x^{3}+1}} . \tag{5}
\end{equation*}
$$

Solution. When $x \rightarrow+\infty$, we have

$$
\frac{1}{\sqrt{x^{3}+1}}=\frac{1}{\sqrt{x^{3}\left(1+\frac{1}{x^{3}}\right)}}=-\frac{1}{x^{\frac{3}{2}}} \frac{1}{\sqrt{1+\frac{1}{x^{3}}}} \sim \frac{1}{x^{\frac{3}{2}}} .
$$

Since the integral

$$
\int_{1}^{\infty} \frac{d x}{x^{\frac{3}{2}}}
$$

converges, our integral (5) likewise converges.
Example 5. Test for convergence the elliptic integral

$$
\begin{equation*}
\int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}} \tag{6}
\end{equation*}
$$

Solution. The point of discontinuity of the integrand is $x=1$. Applying the Lagrange formula we get

$$
\frac{1}{\sqrt{1-x^{4}}}=\frac{1}{\sqrt{(1-x) \cdot 4 x_{1}^{3}}}=\frac{1}{(1-x)^{\frac{2}{4}}} \cdot \frac{1}{2 x_{1}^{\frac{3}{2}}},
$$

where $x<x_{1}<1$. Hence, for $x \rightarrow 1$ we have

$$
\frac{1}{\sqrt{1-x^{4}}} \sim \frac{1}{2}\left(\frac{1}{1-x}\right)^{\frac{1}{4}}
$$

Since the integral

$$
\int_{0}^{1}\left(\frac{1}{1-x}\right)^{\frac{1}{4}} d x
$$

converges, the given integral (6) converges as well.
Evaluate the improper integrals (or establish their divergence):
1546. $\int_{0}^{1} \frac{d x}{\sqrt{x}}$.
1554. $\int_{-\infty}^{\infty} \frac{d x}{1+x^{2}}$.
1547. $\int_{-1}^{2} \frac{d x}{x}$.
1555. $\int_{-\infty}^{\infty} \frac{d x}{x^{2}+4 x+9}$.
1548. $\int_{0}^{1} \frac{d x}{x^{p}}$.
1556. $\int^{\infty} \sin x d x$.
1549. $\int_{0}^{1} \frac{d x}{(x-1)^{2}}$.
1557. $\int_{0}^{\frac{1}{2}} \frac{d x}{x \ln x}$.
1550. $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$.
1558. $\int_{0}^{\frac{1}{2}} \frac{d x}{x \ln ^{2} x}$.
1551. $\int_{1}^{\infty} \frac{d x}{x}$.
1559. $\int_{a}^{\infty} \frac{d x}{x \ln x} \quad(a>1)$.
1552. $\int_{1}^{\infty} \frac{d x}{x^{2}}$.
1560. $\int_{a}^{\infty} \frac{d x}{x \ln ^{2} x} \quad(a>1)$.
1553. $\int_{i}^{\infty} \frac{d x}{x^{p}}$.
1561. $\int_{0}^{2} \cot x d x$.
1562. $\int_{0}^{\infty} e^{-k x} d x \quad(k>0) . \quad 1565 . \int_{0}^{\infty} \frac{d x}{x^{2}+1}$.
1563. $\int_{0}^{\infty} \frac{\arctan x}{x^{2}+1} d x$.
1566. $\int_{0}^{1} \frac{d x}{x^{3}-5 x^{2}}$.
1564. $\int_{i}^{\infty} \frac{d x}{\left(x^{2}-1\right)^{2}}$.

Test the convergence of the following integrals:
1567. $\int_{0}^{100} \frac{d x}{\sqrt[3]{x}+2 \sqrt[4]{x}+x^{4}}$.
1571. $\int_{0}^{1} \frac{d x}{\sqrt[3]{1-x^{4}}}$.
1568. $\int_{1}^{+\infty} \frac{d x}{2 x+\sqrt[3]{x^{2}+1}+6}$.
1572. $\int_{1}^{2} \frac{d x}{\ln x}$.
1569. $\int_{-1}^{\infty} \frac{d x}{x^{2}+\sqrt[3]{x^{4}+1}}$.
1573. $\int_{\frac{\pi}{2}}^{\infty} \frac{\sin x}{x^{2}} d x$.
1570. $\int_{0}^{\infty} \frac{x d x}{\sqrt{x^{5}+1}}$.

1574*. Prove that the Euler integral of the first kind (betafunction)

$$
\mathrm{B}(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x
$$

converges when $p>0$ and $q>0$.
1575*. Prove that the Euler integral of the second kind (gam-ma-function)

$$
\Gamma(p)=\int_{0}^{\infty} x^{p-1} e^{-x} d x
$$

converges for $p>0$.

Sec. 4. Change of Variable in a Definite Integral

If a function $f(x)$ is continuous over $a<x<b$ and $x=\varphi(t)$ ls a function continuous together with its derivative $\varphi^{\prime}(t)$ over $\alpha<t<\beta$, where $a=\varphi(\alpha)$ and $b=\varphi(\beta)$, and $f[\varphi(t)]$ is defined and continuous on the interval $\alpha<t<\beta$,
then

$$
\int_{a}^{b} f(x) d x=\int_{\alpha}^{\beta} f[\varphi(t)] \varphi^{\prime}(t) d t .
$$

Example 1. Find

$$
\int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2} d x} \quad(a>0)
$$

$$
\begin{aligned}
x & =a \sin t \\
d x & =a \cos t d t .
\end{aligned}
$$

Then $t=\arcsin \frac{x}{a}$ and, consequently, we can take $\alpha=\arcsin 0=0$, $\beta=\arcsin 1=\frac{\pi}{2}$. Therefore, we shall have

$$
\begin{aligned}
& \int_{0}^{a} x^{2} \sqrt{a^{2}-x^{2}} d x=\int_{0}^{\frac{\pi}{2}} a^{2} \sin ^{2} t \sqrt{a^{2}-a^{2} \sin ^{2} t} a \cos t d t= \\
& =a^{4} \int_{0}^{\frac{\pi}{2}} \sin ^{2} t \cos ^{2} t d t=\frac{a^{4}}{4} \int_{0}^{\frac{\pi}{2}} \sin ^{2} 2 t d t=\frac{a^{4}}{8} \int_{0}^{\frac{\pi}{2}}(1-\cos 4!) d t= \\
& =\left.\frac{a^{4}}{8}\left(t-\frac{1}{4} \sin 4 t\right)\right|_{0} ^{\frac{\pi}{2}}=\frac{\pi a^{4}}{16}
\end{aligned}
$$

1576. Can the substitution $x=\cos t$ be made in the integral

$$
\int_{0}^{2} \sqrt[3]{1-x^{2}} d x ?
$$

Transform the following definite integrals by means of the indicated substitutions:
1577. $\int_{1}^{3} \sqrt{x+1} d x, x=2 t-1 . \quad$ 1580. $\int_{0}^{\frac{\pi}{2}} f(x) d x, \quad x=\arctan t$.
1578. $\int_{\frac{1}{2}}^{1} \frac{d x}{\sqrt{1-x^{4}}}, x=\sin t$.
1581. For the integral
$\int_{a}^{b} f(x) d x \quad(b>a)$
1579. $\int_{\frac{1}{4}}^{\frac{4}{3}} \frac{d x}{\sqrt{x^{2}+1}}, x=\sinh t$.
indicate an integral linear substitution

$$
x=\alpha t+\beta,
$$

as a result of which the limits of integration would be 0 and 1 , respectively.

Applying the indicated substitutions, evaluate the following integrals:
1582. $\int_{0}^{4} \frac{d x}{1+\sqrt{x}}, \quad x=t^{2}$.
1583. $\int_{\substack{\frac{1}{3} \\ \ln }}^{20} \frac{(x-2)^{2 / 3}}{(x-2)^{2 / 3}+3} d x, \quad x-2=z^{3}$.
1584. $\int_{0}^{1} \sqrt{e^{x}-1} d x$,
$e^{x}-1=z^{2}$.
1585. $\int_{0}^{\pi} \frac{d t}{3+2 \cos t}$,
$\tan \frac{t}{2}=z$.
1586. $\int_{0}^{2} \frac{d x}{1+a^{2} \sin ^{2} x}$,
$\tan x=t$.
Evaluate the following integrals by means of appropriate substitutions:
1587. $\int_{\frac{\sqrt{2}}{2}}^{1} \frac{\sqrt{1-x^{2}}}{x^{2}} d x$.
1589. $\int_{0}^{\ln s} \frac{e^{x} \sqrt{e^{x}-1}}{e^{x}+3} d x$.
1590. $\int_{0}^{8} \frac{d x}{2 x+\sqrt{3 x+1}}$.
1598. $\int_{1}^{2} \frac{\sqrt{x^{2}-1}}{x} d x$

Evaluate the integrals:
1591. $\int_{1}^{2} \frac{d x}{x \sqrt{x^{2}+5 x+1}}$.
1593. $\int_{0}^{a} \sqrt{a x-x^{2}} d x$.
1592. $\int_{-1}^{1} \frac{d x}{\left(1+x^{2}\right)^{2}}$.
1594. $\int_{0}^{2 \pi} \frac{d x}{5-3 \cos x}$.
1595. Prove that if $f(x)$ is an even function, then

$$
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

But if $f(x)$ is an odd function, then

$$
\int_{-a}^{a} f(x) d x=0
$$

1596. Show that

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x=2 \int_{0}^{\infty} e^{-x^{2}} d x=\int_{0}^{\infty} \frac{e^{-x}}{\sqrt{x}} d x
$$

1597. Show that

$$
\int_{0}^{1} \frac{d x}{\arccos x}=\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{x} d x
$$

1598. Show that

$$
\int_{0}^{\frac{\pi}{2}} f(\sin x) d x=\int_{0}^{\frac{\pi}{2}} f(\cos x) d x
$$

Sec. 5. Integration by Parts

If the functions $u(x)$ and $v(x)$ are continuously differentiable on the interval $[a, b]$, then

$$
\begin{equation*}
\int_{a}^{b} u(x) v^{\prime}(x) d x=\left.u(x) v(x)\right|_{a} ^{b}-\int_{a}^{b} v(x) u^{\prime}(x) d x \tag{1}
\end{equation*}
$$

Applying the formula for integration by parts, evaluate the following integrals:
1599. $\int_{0}^{\frac{\pi}{2}} x \cos x d x$
1603. $\int_{0}^{\infty} x e^{-x} d x$
1600. $\int_{1}^{e} \ln x d x$
1604. $\int_{0}^{\infty} e^{-a x} \cos b x d x \quad(a>0)$.
1601. $\int_{0}^{1} x^{3} e^{2 x} d x$.
1605. $\int_{0}^{\infty} e^{-a x} \sin b x d x \quad(a>0)$.
1602. $\int_{0}^{\pi} e^{x} \sin x d x$.

1606**. Show that for the gamma-function (see Example 1575) the following reduction formula holds true:

$$
\Gamma(p+1)=p \Gamma(p) \quad(p>0)
$$

From this derive that $\Gamma(n+1)=n!$, if n is a natural number.
1607. Show that for the integral

$$
I_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x=\int_{0}^{\frac{\pi}{2}} \cos ^{n} x d x
$$

the reduction formula

$$
I_{n}=\frac{n-1}{n} I_{n-2}
$$

holds true.
Find I_{n}, if n is a natural number. Using the formula obtained, evaluate I_{0} and I_{10}.
1608. Applying repeated integration by parts, evaluate the integral (see Example 1574)

$$
\mathrm{B}(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x
$$

where p and q are positive integers.
1609*. Express the following integral in terms of B (betafunction):

$$
I_{n, m}=\int_{0}^{\frac{\pi}{2}} \sin ^{m} x \cos ^{n} x d x
$$

if m and n are nonnegative integers.

Sec. 6. Mean-Value Theorem

1°. Evaluation of integrals. If $f(x) \leqslant F(x)$ for $a \leqslant x \leqslant b$, then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \leqslant \int_{a}^{b} F(x) d x \tag{1}
\end{equation*}
$$

If $f(x)$ and $\varphi(x)$ are continuous for $a \leqslant x \leqslant b$ and, besides, $\varphi(x) \geqslant 0$, then

$$
\begin{equation*}
m \int_{a}^{b} \varphi(x) d x \leqslant \int_{a}^{b} f(x) \varphi(x) d x \leqslant M \int_{a}^{b} \varphi(x) d x, \tag{2}
\end{equation*}
$$

where m is the smallest and M is the largest value of the function $f(x)$ on the interval $[a, b]$.

In particular, if $\varphi(x)=1$, then

$$
\begin{equation*}
m(b-a) \leqslant \int_{a}^{b} f(x) d x \leqslant M(b-a) \tag{3}
\end{equation*}
$$

The inequalities (2) and (3) may be replaced, respectively, by their equivaent equalities:

$$
\int_{a}^{b} f(x) \varphi(x) d x=f(c) \int_{a}^{b} \varphi(x) d x
$$

and

$$
\int_{a}^{b} f(x) d x=f(\xi)(b-a),
$$

where c and ξ are certain numbers lying between a and b.
Example 1. Evaluate the integral

$$
I=\int_{0}^{\frac{\pi}{2}} \sqrt{1+\frac{1}{2} \sin ^{2} x} d x
$$

Solution. Since $0 \leqslant \sin ^{2} x \leqslant 1$, we have

$$
\frac{\pi}{2}<l<\frac{\pi}{2} \sqrt{\frac{3}{2}},
$$

that is,

$$
1.57<I<1.91
$$

2°. The mean value of a function. The number

$$
\mu=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

is called the mean value of the function $f(x)$ on the inferval $a \leqslant x \leqslant b$.
1610*. Determine the signs of the integrals without evaluating them:
a) $\int_{-1}^{2} x^{2} d x$;
b) $\int_{0}^{\pi} x \cos x d x$;
c) $\int_{0}^{2 \pi} \frac{\sin x}{x} d x$.
1611. Determine (without evaluating) which of the following integrals is greater:
a) $\int_{0}^{1} \sqrt{1+x^{2}} d x$ or $\int_{0}^{1} d x$;
$\begin{array}{ll}\text { b) } \int_{0}^{1} x^{2} \sin ^{2} x d x & \text { or } \int_{0}^{1} x \sin ^{2} x d x ; \\ \text { c) } \int_{1}^{2} e^{x^{2}} d x & \text { or } \int_{1}^{2} e^{x} d x .\end{array}$

Find the mean values of the functions on the indicated inter. vals:
1612. $f(x)=x^{2}$,

$$
0 \leqslant x \leqslant 1
$$

1613. $f(x)=a+b \cos x$,
$-\pi \leqslant x \leqslant \pi$.
$0 \leqslant x \leqslant \pi$.
1614. $f(x)=\sin ^{2} x$,
$0 \leqslant x \leqslant \pi$.
1615. $f(x)=\sin ^{4} x$,
ies between $\frac{2}{3} \approx 0.67$ and $\frac{1}{\sqrt{2}} \approx$
≈ 0.70. Find the exact value of this integral.
Evaluate the integrals:
1616. $\int_{0}^{1} \sqrt{4+x^{2}} d x$.

1620*. $\int_{0}^{\frac{\pi}{4}} x \sqrt{\tan x}$.
1618. $\int_{-1}^{+1} \frac{d x}{8+x^{1}}$.
1621. $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\sin x}{x} d x$.
1619. $\int_{0}^{2 \pi} \frac{d x}{10+3 \cos x}$.
1622. Integrating by parts, prove that

$$
0<\int_{100 \pi}^{200 \pi} \frac{\cos x}{x} d x<\frac{1}{100 \pi}
$$

Sec. 7. The Areas of Plane Figures

1°. Area in rectangular coordinates. If a continuous curve is defined in rectangular coordinates by the equation $y=f(x)[f(x) \geqslant 0]$, the area of the curvilinear trapezoid bounded by this curve, by two vertical lines at the

Fig. 40

Fig. 41
points $x=a$ and $x=b$ and by a segment of the x-axis $a \leqslant x \leqslant b$ (Fig. 40), is given by the formula

$$
\begin{equation*}
S=\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

Example 1. Compute the area bounded by the parabola $y=\frac{x^{2}}{2}$, the straight lines $x=1$ and $x=3$, and the x-axis (Fig. 41).

Fig. 42

Fig. 43

Solution. The sought-for area is expressed by the integral

$$
S=\int_{1}^{3} \frac{x^{2}}{2} d x=4 \frac{1}{3}
$$

Example 2. Evaluate the area bounded by the curve $x=2-y-y^{2}$ and the y-axis (Fig. 42).

Solution. Here, the roles of the coordinate axes are changed and so the sought-for area is expressed by the integral

$$
S=\int_{-2}^{1}\left(2-y-y^{2}\right) d y=4 \frac{1}{2},
$$

where the limits of integration $y_{1}=-2$ and $y_{2}=1$ are found as the ordinates of the points of intersection of the curve with the y-axis.

Fig. 44

Fig. 45

In the more general case, if the area S is bounded by two continuous curves $y=f_{1}(x)$ and $y=f_{2}(x)$ and by two vertical lines $x=a$ and $x=b$, where $f_{1}(x) \leqslant f_{2}(x)$ when $a \leqslant x \leqslant b$ (Fig. 43), we will then have:

$$
\begin{equation*}
S=\int_{a}^{b}\left[f_{2}(x)-f_{1}(x)\right] d x \tag{2}
\end{equation*}
$$

Example 3. Evaluate the area S contained between the curves

$$
\begin{equation*}
y=2-x^{2} \text { and } y^{1}=x^{2} \tag{3}
\end{equation*}
$$

(Fig. 44).
Solution. Solving the set of equations (3) simultaneously, we find the limits of integration: $x_{1}=-1$ and $x_{2}=1$. By virtue of formula (2), we obtain

$$
S=\int_{-1}^{1}\left(2-x^{2}-x^{2 / 8}\right) d x=\left(2 x-\frac{x^{3}}{3}-\frac{3}{5} x^{\frac{8}{8}}\right)_{-1}^{1}=2 \frac{2}{15} .
$$

If the curve is defined by equations in parametric form $x=\varphi(t), y=\psi(t)$, then the area of the curvilinear trapezoid bounded by this curve, by two
vertical lines ($x=a$ and $x=b$), and by a segment of the x-axis is expressed by the integral

$$
S=\int_{t_{1}}^{t_{2}} \psi(t) \varphi^{\prime}(t) d t,
$$

where t_{1} and t_{2} are determined from the equations
$a=\varphi\left(t_{1}\right)$ and $b=\varphi\left(t_{2}\right)\left[\psi(t) \geqslant 0\right.$ on the interval $\left.\left[t_{1}, t_{2}\right]\right]$.
Example 4. Find the area of the ellipse (Fig. 45) by using its paramefric equations

$$
\left\{\begin{array}{l}
x=a \cos t \\
y=b \sin t .
\end{array}\right.
$$

Solution. Due to the symmetry, it is sufficient to compute the area of a quadrant and then multiply the result by four. If in the equation $x=a \cos t$ we first put $x=0$ and then $x=a$, we get the limits of integration $t_{1}=\frac{\pi}{2}$ and $\boldsymbol{t}_{\mathbf{2}}=0$. Therefore,

$$
\frac{1}{4} S=\int_{\frac{\pi}{2}}^{0} b \sin a(-\sin t) d t=a b \int_{0}^{\frac{\pi}{2}} \sin ^{2} t d t=\frac{\pi a b}{4}
$$

and, hence, $S=\pi a b$.
2°. The area in polar coordinates. If a curve is defined in polar coordinates $b y$ the equation $r=f(\varphi)$, then the area of the sector $A O B$ (Fig. 46), bounded by an arc of the curve, and by two radius vectors $O A$ and $O B$,

Fig. 46

Fig. 47
which correspond to the values $\varphi_{1}=\alpha$ and $\varphi_{2}=\beta$, is expressed by the integral

$$
S=\frac{1}{2} \int_{\alpha}^{\beta}[f(\varphi)]^{2} d \varphi .
$$

Example 5. Find the area contained inside Bernoulli's lemniscate $r^{2}=a^{2} \cos 2 \varphi$ (Fig. 47).

Solution. By virtue of the symmetry of the curve we determine first one quadrant of the sought-for area:

$$
\frac{1}{4} S=\frac{1}{2} \int_{0}^{\frac{\pi}{4}} a^{2} \cos 2 \varphi d \varphi=\frac{a^{2}}{2}\left[\frac{1}{2} \sin 2 \varphi\right]_{0}^{\frac{\pi}{4}}=\frac{a^{2}}{4} .
$$

Whence $S=a^{2}$.
1623. Compute the area bounded by the parabola $y=4 x-x^{2}$ and the x-axis.
1624. Compute the area bounded by the curve $y=\ln x$, the x-axis and the straight line $x=e$.

1625*. Find the area bounded by the curve $y=x(x-1)(x-2)$ and the x-axis.
1626. Find the area bounded by the curve $y^{s}=x$, the straight line $y=1$ and the vertical line $x=8$.
1627. Compute the area bounded by a single half-wave of the sinusoidal curve $y=\sin x$ and the x-axis.
1628. Compute the area contained between the curve $y=\tan x$, the x-axis and the straight line $x=\frac{\pi}{3}$.
1629. Find the area contained between the hyperbola $x y=m^{2}$, the vertical lines $x=a$ and $x=3 a(a>0)$ and the x-axis.
1630. Find the area contained between the witch of Agnesi $y=\frac{a^{3}}{x^{2}+a^{2}}$ and the x-axis.
1631. Compute the area of the figure bounded by the curve $y=x^{3}$, the straight line $y=8$ and the y-axis.
1632. Find the area bounded by the parabolas $y^{2}=2 p x$ and $x^{2}=2 p y$.
1633. Evaluate the area bounded by the parabola $y=2 x-x^{2}$ and the straight line $y=-x$.
1634. Compute the area of a segment cut off by the straight line $y=3-2 x$ from the parabola $y=x^{2}$.
1635. Compute the area contained between the parabolas $y=x^{2}$, $y=\frac{x^{2}}{2}$ and the straight line $y=2 x$.
1636. Compute the area contained between the parabolas $y=\frac{x^{2}}{3}$ and $y=4-\frac{2}{3} x^{2}$.
1637. Compute the area contained between the witch of Agnesi $y=\frac{1}{1+x^{2}}$ and the parabola $y=\frac{x^{2}}{2}$.
1638. Compute the area bounded by the curves $y=x e^{x}, y=e^{-x}$ and the straight line $x=1$.
1639. Find the area of the figure bounded by the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and the straight line $x=2 a$.

1640*. Find the entire area bounded by the astroid

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}
$$

1641. Find the area between the catenary

$$
y=a \cosh \frac{x}{a}
$$

the y-axis and the straight line $y=\frac{a}{2 e}\left(e^{2}+1\right)$.
1642. Find the area bounded by the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$.
1643. Compute the area contained within the curve

$$
\left(\frac{x}{5}\right)^{2}+\left(\frac{y}{4}\right)^{\frac{2}{3}}=1
$$

1644. Find the area between the equilateral hyperbola $x^{2}-y^{2}=$ $=9$, the x-axis and the diameter passing through the point $(5,4)$.
1645. Find the area between the curve $y=\frac{1}{x^{2}}$, the x-axis, and the ordinate $x=1 \quad(x>1)$.

1646*. Find the area bounded by the cissoid $y^{2}=\frac{x^{5}}{2 a-x}$ and its asymptote $x=2 a(a>0)$.

1647*. Find the area between the strophoid $y^{2}=\frac{x(x-a)^{2}}{2 a-x}$ and its asymptote $(a>0)$.
1648. Compute the area of the two parts into which the circle $x^{2}+y^{2}=8$ is divided by the parabola $y^{2}=2 x$.
1649. Compute the arca contained between the circle $x^{2}+y^{2}=16$ and the parabola $x^{2}=12(y-1)$.
1650. Find the area contained within the astroid

$$
x=a \cos ^{3} t ; \quad y=b \sin ^{3} t
$$

1651. Find the area bounded by the x-axis and one arc of the cycloid

$$
\left\{\begin{array}{l}
x=a(t-\sin t) \\
y=a(1-\cos t)
\end{array}\right.
$$

1652. Find the area bounded by one branch of the trochoid

$$
\left\{\begin{array}{l}
x=a t-b \sin t, \\
y=a-b \cos t
\end{array} \quad(0<b \leqslant a)\right.
$$

and a tangent to it at its lower points.
1653. Find the area bounded by the cardioid

$$
\left\{\begin{array}{l}
x=a(2 \cos t-\cos 2 t) \\
y=a(2 \sin t-\sin 2 t)
\end{array}\right.
$$

1654*. Find the area of the loop of the folium of Descartes

$$
x=\frac{3 a t}{1+t^{3}} ; \quad y=\frac{3 a t^{2}}{1+t^{3}}
$$

1655*. Find the entire area of the cardioid $r=a(1+\cos \varphi)$. 1656*. Find the area contained between the first and second turns of Archimedes' spiral, $r=a \varphi$ (Fig. 48).
1657. Find the area of one of the leaves of the curve $r=a \cos 2 \varphi$.
1658. Find the entire area bounded by the curve $r^{2}=a^{2} \sin 4 \varphi$.

1659*. Find the area bounded by the curve $r=a \sin 3 \varphi$.
1660. Find the area bounded by Pascal's limaçon
Fig. 48

$$
r=2+\cos \varphi
$$

1661. Find the area bounded by the parabola $r=a \sec ^{2} \frac{\varphi}{2}$ and the two half-lines $\varphi=\frac{\pi}{4}$ and $\varphi=\frac{\pi}{2}$.
1662. Find the area of the ellipse $r=\frac{p}{1+\varepsilon \cos \varphi}(\varepsilon<1)$.
1663. Find the area bounded by the curve $r=2 a \cos 3 \varphi$ and lying outside the circle $r=a$.

1664*. Find the area bounded by the curve $x^{4}+y^{4}=x^{2}+y^{2}$.

Sec. 8. The Arc Length of a Curve

1°. The arc length in rectangular coordinates. The arc length s of a curve $y=f(x)$ contained between two points with abscissas $x=a$ and $x=b$ is

$$
\mathrm{s}=\int_{a}^{b} \sqrt{1+y^{\prime 2}} d x
$$

Example 1. Find the length of the astroid $x^{2 / 9}+y^{2 / 9}=a^{2 / 3}$ (Fig. 49).
Solution. Differentiating the equation of the astroid, we get

$$
y^{\prime}=-\frac{y^{1 / 3}}{x^{1 / 3}}
$$

For this reason, we have for the arc length of a quarter of the astroid:

$$
\frac{1}{4} s=\int_{0}^{a} \sqrt{1+\frac{y^{2 / s}}{x^{2 / 3}}} d x=\int_{0}^{a} \frac{a^{1 / 3}}{x^{1 / 3}} d x=\frac{3}{2} a .
$$

Whence $s=6 a$.
2°. The arc length of a curve represented parametrically. If a curve is represented by equations in parametric form, $x=\varphi(t)$ and $y=\psi(t)$, then the arc length s of the curve is

$$
\mathrm{s}=\int_{i_{1}}^{t_{2}} \sqrt{x^{\prime 2}+y^{\prime 2}} d t
$$

where t_{1} and t_{2} are values of the parameter that correspond to the extremities of the arc.

Fig 49

Fig. 50

Example 2. Find the length of one arc of the cycloid (Fig. 50)

$$
\left\{\begin{array}{l}
x=a(t-\sin t), \\
y=a(1-\cos t) .
\end{array}\right.
$$

Solution. We have $\frac{d x}{d t}=a(1-\cos t)$ and $\frac{d y}{d t}=a \sin t$. Therefore,

$$
s=\int_{0}^{2 \pi} \sqrt{a^{2}(1-\cos t)^{2}+a^{2} \sin ^{2} t} d t=2 a \int_{0}^{2 \pi} \sin \frac{t}{2} d t=8 a
$$

The limits of integration $t_{1}=0$ and $t_{2}=2 \pi$ correspond to the extreme poinfs of the arc of the cycloid.

If a curve is defined by the equation $r=f(\varphi)$ in polar coordinates, then the arc length s is

$$
s=\int_{\alpha}^{\beta} \sqrt{r^{2}+r^{\prime 2}} d \varphi
$$

where α and β are the values of the polar angle at the extreme points of the arc.

Example 3. Find the length of the entire curve $r=a \sin ^{2} \frac{\varphi}{3}$ (Fig. 51). The entire curve is described by a point as φ ranges from 0 to 3π.

Fig. 51
Solution. We have $r^{\prime}=a \sin ^{2} \frac{\varphi}{3} \cos \frac{\varphi}{3}$, therefore the enfire arc length of the curve is

$$
s=\int_{0}^{3 \pi} \sqrt{a^{2} \sin ^{\varphi} \frac{\varphi}{3}+a^{2} \sin ^{4} \frac{\varphi}{3} \cos ^{2} \frac{\varphi}{3}} d \varphi=a \int_{0}^{3 \pi} \sin ^{2} \frac{\varphi}{3} d \varphi=\frac{3 \pi a}{2} .
$$

1665. Compute the arc length of the semicubical parabola $y^{2}=x^{5}$ from the coordinate origin to the point $x=4$.

1666*. Find the length of the catenary $y=a \cosh \frac{x}{a}$ from the vertex $A(0, a)$ to the point $B(b, h)$.
1667. Compute the arc length of the parabola $y=2 \sqrt{x}$ from $x=0$ to $x=1$.
1668. Find the arc length of the curve $y=e^{x}$ lying between the points $(0,1)$ and $(1, e)$.
1669. Find the arc length of the curve $y=\ln x$ from $x=\sqrt{\overline{3}}$ to $x=\sqrt{8}$.
1670. Find the arc length of the curve $y=\operatorname{arc} \sin \left(e^{-x}\right)$ from $x=0$ to $x=1$.
1671. Compute the arc length of the curve $x=\ln \sec y$, lying between $y=0$ and $y=\frac{\pi}{3}$.
1672. Find the arc length of the curve $x=\frac{1}{4} y^{2}-\frac{1}{2} \ln y$ from $y=1$ to $y=e$.
1673. Find the length of the right branch of the tractrix

$$
x=\sqrt{a^{2}-y^{2}}+a \ln \left|\frac{a+\sqrt{a^{2}-u^{2}}}{y}\right| \text { from } y=a \text { to } y=b(0<b<a) .
$$

1674. Find the length of the closed part of the curve $9 a y^{2}=$ $=x(x-3 a)^{2}$.
1675. Find the length of the curve $y=\ln \left(\operatorname{coth} \frac{x}{a}\right)$ from $x=a$ to $x=b(0<a<b)$.

1676*. Find the arc length of the involute of the circle

$$
\left.\begin{array}{l}
x=a(\cos t+t \sin t), \\
y=a(\sin t-t \cos t)
\end{array}\right\} \text { from } t=0 \text { to } t=T
$$

1677. Find the length of the evolute of the ellipse

$$
x=\frac{c^{2}}{a} \cos ^{3} t ; \quad y=\frac{c^{2}}{b} \sin ^{2} t \quad\left(c^{2}=a^{2}-b^{2}\right) .
$$

1678. Find the length of the curve

$$
\left.\begin{array}{l}
x=a(2 \cos t-\cos 2 t), \\
y=a(2 \sin t-\sin 2 t) .
\end{array}\right\}
$$

1679. Find the length of the first turn of Archimedes' spiral $r=a \psi$.
1680. Find the entire length of the cardioid $r=a(1+\cos \varphi)$.
1681. Find the arc length of that part of the parabola $r=a \sec ^{2} \frac{\varphi}{2}$ which is cut off by a vertical line passing through the pole.
1682. Find the length of the hyperbolic spiral $r \varphi=1$ from the point $(2,1 / 2)$ to the point $(1 / 2,2)$.
1683. Find the arc length of the logarithmic spiral $r=a e^{m \varphi}$, lying inside the circle $r=a$.
1684. Find the arc length of the curve $\varphi=\frac{1}{2}\left(r+\frac{1}{r}\right)$ from $r=1$ to $r=3$.

Sec. 9. Volumes of Solids

1^{1}. The volume of a solid of revolution. The volumes of solids formed by the revolution of a curvilinear trapezoid [bounded by the curve $!f f(x)$, the x-axis and two vertical lines $x=a$ and $x=b]$ about the x - and y-axes are
expressed, respectively, by the formulas:

$$
\text { 1) } \left.V_{X}=\pi \int_{a}^{b} y^{2} d x ; \text { 2) } V_{Y}=2 \pi \int_{a}^{b} x y d x{ }^{*}\right) \text {. }
$$

Example 1. Compute the volumes of solids formed by the revolution of a figure bounded by a single lobe of the sinusoidal curve $y=\sin x$ and by the segment $0 \leqslant x \leqslant \pi$ of the x-axis about: a) the x-axis and b) the y-axis.

Solution.
a) $V_{X}=\pi \int_{0}^{\pi} \sin ^{2} x d x=\frac{\pi^{2}}{2}$;
b) $V_{Y}=2 \pi \int_{0}^{\pi} x \sin x d x=2 \pi(-x \cos x+\sin x)_{0}^{\pi}=2 \pi^{2}$.

The volume of a solid formed by revolution about the y-axis of a figure bounded by the curve $x=g(y)$, the y-axis and by two parallel lines $y=c$ and $y=d$, may be determined from the formula

$$
V_{Y}=\pi \int_{c}^{d} x^{2} d y
$$

obtained from formula (1), given above, by interchanging the coordinates x and y.

If the curve is defined in a different form (parametrically, in polar coordinates, etc.), then in the foregoing formulas we must change the variable of integration in appropriate fashion.

In the more general case, the volumes of solids formed by the revolution about the x - and y-axes of a figure bounded by the curves $y_{1}=f_{1}(x)$ and $y_{2}=f_{2}(x)$ [where $f_{1}(x) \leqslant f_{2}(x)$], and the straight lines $x=a$ and $x=b$ are, respectively, equal to

$$
V_{X}=\pi \int_{a}^{b}\left(y_{2}^{2}-y_{1}^{2}\right) d x
$$

and

$$
V_{Y}=2 \pi \int_{a}^{b} x\left(y_{2}-y_{1}\right) d x
$$

Example 2. Find the volume of a torus formed by the rotation of the circle $x^{2}+(y-b)^{2}=a^{2}(b \geqslant a)$ about the x-axis (Fig. 52).

[^1]Solution. We have
Therefore,

$$
y_{1}=b-\sqrt{a^{2}-x^{2}} \text { and } y_{2}=b+\sqrt{a^{2}-x^{2}}
$$

$$
\begin{aligned}
V_{X} & =\pi \int_{-a}^{a}\left[\left(b+\sqrt{a^{2}-x^{2}}\right)^{2}-\left(b-\sqrt{a^{2}-x^{2}}\right)^{2}\right] d x= \\
& =4 \pi b \int_{-a}^{a} \sqrt{a^{2}-x^{2}} d x=2 \pi^{2} a^{2} b
\end{aligned}
$$

(the latter integral is taken by the substitution $x=a \sin t$).

Fig 52

Fig. 53

The volume of a solid obtained by the rotation, about the polar axis, of a sector formed by an arc of the curve $r=F(p)$ and by two radius vectors $\varphi=\alpha, \varphi=\beta$ may be computed from the formula

$$
V_{P}=\frac{2}{3} \pi \int_{a}^{\beta} r^{3} \sin \varphi d \varphi .
$$

This same formula is conveniently used when seeking the volume obtained by the rotation, about the polar axis, of some closed curve defined in nolar coordinates.

Example 3. Determine the volume formed by the rotation of the curve $r=a \sin 2 \phi$ about the polar axis.

Solution.
\boldsymbol{f}^{*}

$$
\begin{aligned}
V_{P} & =2 \cdot \frac{2}{3} \pi \int_{0}^{\frac{\pi}{2}} r^{2} \sin \varphi d \varphi=\frac{4}{3} \pi a^{2} \int_{0}^{\frac{\pi}{2}} \sin ^{2} 2 \varphi \sin \varphi d \varphi= \\
& =\frac{32}{3} \pi a^{3} \int_{0}^{\frac{\pi}{2}} \sin ^{4} \varphi \cos ^{2} \varphi d \varphi=\frac{64}{105} \pi a^{8} .
\end{aligned}
$$

2°. Computing the volumes of solids from known cross-sections. If $S=S(x)$ is the cross-sectional area cut off by a plane perpendicular to some straight line (which we take to be the x-axis) at a point with abscissa x, then the volume of the solid is

$$
V=\int_{x_{1}}^{x_{2}} S(x) d x,
$$

where x_{1} and x_{2} are the abscissas of the extreme cross-sections of the solid.
Example 4. Ditermine the volume of a wedge cut off a circular cylinder by a plane passing through the diameter of the base and inclined to the base at an angle α. The radius of the base is R (Fig. 53).

Solution. For the x-axis wa take the diamater of the base along which the cutting plane intersects the base, and for the y-axis we take the diameter of the base perpendicular to it. The equation of the circumference of the base is $x^{2}+y^{2}=R^{2}$.

The area of the section $A B C$ at a distance x from the origin O is
$S(x)=$ area $\triangle A B C=\frac{1}{2} A B \cdot B C=\frac{1}{2} y y \tan \alpha=\frac{y^{2}}{2} \tan \alpha$. Therefore, the sought. for volume of the wedge is

$$
V=2 \cdot \frac{1}{2} \int_{0}^{R} y^{2} \tan \alpha d x=\tan \alpha \int_{0}^{R}\left(R^{2}-x^{2}\right) d x=\frac{2}{3} \tan \alpha R^{2}
$$

1685. Find the volume of a solid formed by rotation, about the x-axis, of an area bounded by the x-axis and the parabola $y=a x-x^{2}(a>0)$.
1686. Find the volume of an ellipsoid formed by the rotation of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the x-axis.
1687. Find the volume of a solid formed by the rotation, about the x-axis, of an area bounded by the catenary $y=a \cosh \frac{x}{a}$, the x-axis, and the straight lines $x= \pm a$.
1688. Find the volume of a solid formed by the rotation, about the x-axis, of the curve $y=\sin ^{2} x$ in the interval between $x=0$ and $x=\pi$.
1689. Find the volume of a solid formed by the rotation, about the x-axis, of an area bounded by the semicubical parabola $y^{2}=x^{3}$, the x-axis, and the straight line $x=1$.
1690. Find the volume of a solid formed by the rotation of the same area (as in Problem 1689) about the y-axis.
1691. Find. the volumes of the solids formed by the rotation of an area bounded by the lines $y=e^{x}, x=0, y=0$ about: a) the x-axis and b) the y-axis.
1692. Find the volume of a solid formed by the rotation, about the y-axis, of that part of the parabola $y^{2}=4 a x$ which is cut off by the straight line $x=a$.
1693. Find the volume of a solid formed by the rotation, about the straight line $x=a$, of that part of the parabola $b^{2}=4 a x$ which is cut of by this line.
1694. Find the volume of a solid formed by the rotation, about the straight line $y=-p$, of a figure bounded by the parabola $y^{2}=2 p x$ and the straight line $x=\frac{p}{2}$.
1695. Find the volume of a solid formed by the rotation, about the x-axis, of the area contained between the parabolas $y=x^{2}$ and $y=\sqrt{x}$.
1696. Find the volume of a solid formed by the rotation, about the x-axis, of a loop of the curve $(x-4 a) y^{2}=a x(x-3 x)$ ($a>0$).
1697. Find the volume of a solid generated by the rotation of the cyssoid $y^{2}=\frac{x^{3}}{2 a-x}$ about its asymptote $x=2 a$.
1698. Find the volume of a paraboloid of revolution whose base has radius R and whose altitude is H.
1699. A right parabolic segment whose base is $2 a$ and altitude h is in rotation about the base. Deiermine the volume of the resulting solid of revolution (Cavalieri's "lemon").
1700. Show that the volume of a part cut by the plane $x=2 a$ off a solid formed by the rotation of the equilateral hyperbola $x^{2}-y^{2}=a^{2}$ about the x-axis is equal to the volume of a sphere of radius a.
1701. Find the volume of a solid formed by the rotation of a figure bounded by one arc of the cycloid $x=a(t-\sin t)$, $y=a(1-\cos i)$ and the x-axis, about: a) the x-axis, b) the y-axis, and c) the axis of symmetry of the figure.
1702. Find the volume of a solid formed by the rotation of the astroid $x=a \cos ^{3} t, y=b \sin ^{3} t$ about the y-axis.
1703. Find the volume of a solid obtained by rotating the cardioid $r=a(1+\cos \varphi)$ about the polar axis.
1704. Find the volume of a solid formed by rotation of the curve $r=a \cos ^{2} \varphi$ about the polar axis.
1705. Find the volume of an obelisk whose parallel bases are rectangles with sides A, B and a, b, and the altitude is h.
1706. Find the volume of a right elliptic cone whose base is an ellipse with semi-axes a and b, and altitude h.
1707. On the chords of the astroid $x^{2 / 2}+y^{2 / s}=a^{2 / 3}$, which are parallel to the x-axis, are constructed squares whose sides are equal to the lengths of the chords and whose planes are perpendicular to the $x y$-plane. Find the volume of the solid formed by these squares.
1708. A circle undergoing deformation is moving so that one of the points of its circumference lies on the y-axis, the centre describes an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and the plane of the circle is perpendicular to the $x y$-plane. Find the volume of the solid generated by the circle.
1709. The plane of a moving triangle remains perpendicular to the stationary diameter of a circle of radius a. The base of the triangle is a chord of the circle, while its vertex slides along a straight line parallel to the stationary diameter at a distance h from the plane of the circle. Find the volume of the solid (called a conoid) formed by the motion of this triangle from one end of the diameter to the other.
1710. Find the volume of the solid bounded by the cylinders $x^{2}+z^{2}=a^{2}$ and $y^{2}+z^{2}=a^{2}$.
1711. Find the volume of the segment cut off from the elliptic paraboloid $\frac{y^{2}}{2 p}+\frac{z^{2}}{2 q}=x$ by the plane $x=a$.
1712. Find the volume of the solid bounded by the hyperboloid of one sheet $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ and the planes $z=0$ and $z=h$. 1713. Find the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Sec. 10. The Area of a Surface of Revolution

The area of a surface formed by the rotation, about the x-axis, of an arc of the curve $y=f(x)$ between the points $x=a$ and $x=b$, is expressed by the formula

$$
\begin{equation*}
S_{X}=2 \pi \int_{a}^{b} y \frac{d s}{d x} d x=2 \pi \int_{u}^{b} y \sqrt{1+y^{\prime 2}} d x \tag{I}
\end{equation*}
$$

($d s$ is the differential of the arc of the curve).

If the equation of the curve is represented differently, the area of the surface S_{X} is cbtained from formula (1) by an appropriate change of variables.

Example 1. Find the area of a surface formed by rotation, about the x-axis, of a loop of the curve $9 y^{2}=x(3-x)^{2}$ (Fig. 54).

Solution. For the upper part of the curve, when $0 \leqslant x \leqslant 3$, we have $y=\frac{1}{3}(3-x) \sqrt{x}$. Whence the differential of the arc $d s=\frac{x+1}{2 \sqrt{x}} d x$. From formula (1) the area of the surface

$$
S=2 \pi \int_{0}^{\frac{1}{3}} \frac{1}{3}(3-x) \sqrt{-} \frac{x+1}{2 \sqrt{x}} d x=3 \pi
$$

Example 2. Find the area of a surface formed by the rotation of one are of the cycloid $x=a(t-\sin t) ; y=a(1-\cos t)$ about its axis of symmetry (Fig. 55).

Solution. The desired surface is formed by rotation of the arc $O A$ about the straight line $A B$, the equation of which is $x=\pi a$. Taking y as the independent variable and noting that the axis of rotation $A B$ is displaced relative to the y-axis a distance πa, we will have

$$
\quad S=2 \pi \int_{0}^{2 a}(\pi a-x) \frac{d s}{d y} \cdot d y
$$

Passing to the variable t, we obtain

$$
\begin{gathered}
S=2 \pi \int_{0}^{\pi}(\pi a-a t+a \sin t) \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t= \\
=2 \pi \int_{0}^{\pi}(\pi a-a t+a \sin t) 2 a \sin \frac{t}{2} d t= \\
=4 \pi a^{2} \int_{0}^{\pi}\left(\pi \sin \frac{t}{2}-t \sin \frac{t}{2}+\sin t \sin \frac{t}{2}\right) d t= \\
=4 \pi a^{2}\left[-2 \pi \cos \frac{t}{2}+2 t \cos \frac{t}{2}-4 \sin \frac{t}{2}+\frac{4}{3} \sin ^{2} \frac{t}{2}\right]_{0}^{\pi}=8 \pi\left(\pi-\frac{4}{3}\right) a^{2} .
\end{gathered}
$$

1714. The dimensions of a parabolic mirror $A O B$ are indicated in Fig. 56. It is required to find the area of its surface.
1715. Find the area of the surface of a spindle obtained by rotation of a lobe of the sinusoidal curve $y=\sin x$ about the x-axis.
1716. Find the area of the surface formed by the rotation of a part of the tangential curve $y=\tan x$ from $x=0$ to $x=\frac{\pi}{4}$, about the x-axis.
1717. Find the area of the surface formed by rotation, about the x-axis, of an arc of the curve $y=e^{-x}$, from $x=0$ to $x=+\infty$.
1718. Find the area of the surface (called a catenoid) formed by the rotation of a catenary $y=a \cosh \frac{x}{a}$ about the x-axis from $x=0$ to $x=a$.
1719. Find the area of the surface of rotation of the astroid $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$ about the y-axis.
1720. Find the area of the surface of rotation of the curve $x=\frac{1}{4} y^{2}-\frac{1}{2} \ln y$ about the x-axis from $y=1$ to $y=e$.
1721^{*}. Find the surface of a torus formed by rotation of the circle $x^{2}+(y-b)^{2}=a^{2}$ about the x-axis $(b>a)$.
1722. Find the area of the surface formed by rotation of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about: 1) the x-axis, 2) the y-axis $(a>b)$.
1723. Find the area of the surface formed by rotation of one arc of the cycloid $x=a(t-\sin t)$ and $y=a(1-\cos t)$ about: a) the x-axis, b) the y-axis, c) the tangent to the cycloid at its highest point.
1724. Find the area of the surface formed by rotation, about the x-axis, of the cardioid

$$
\left.\begin{array}{l}
x=a(2 \cos t-\cos 2 t) \\
y=a(2 \sin t-\sin 2 t)
\end{array}\right\}
$$

1725. Determine the area of the surface formed by the rotation of the lemniscate $r^{2}=a^{2} \cos 2 \varphi$ about the polar axis.
1726. Determine the area of the surface formed by the rotation of the cardioid $r=2 a(1+\cos \varphi)$ about the polar axis.

Sec. 11. Moments. Centres of Gravity. Guldin's Theorems

1°. Static moment. The static moment relative to the l-axis of a material point A having mass m and at a distance d from the l-axis is the quantity $M_{l}=m d$.

The static moment relative to the l-axis of a system of n material roints with masses $m_{1}, m_{2}, \ldots, m_{n}$ lying in the plane of the axis and at distances $d_{1}, d_{2}, \ldots, d_{n}$ is the sum

$$
\begin{equation*}
M_{l}=\sum_{i=1}^{n} m_{i} d_{i} \tag{1}
\end{equation*}
$$

where the distances of points lying on one side of the l-axis have the plus sign, those on the other side have the minus sign. In a similar manner we define the static moment of a syslem of points relative to a plane.

If the masses continuously flll the line or figure of the $x y$-plane, then the static momerits M_{X} and M_{Y} about the x - and y-axes are expressed (respectivejy) as integrals and not as the sums (1). For the cases of geometric figures, the density is considered equal to unity.

In particular: 1) for the curve $x=x(s) ; y=y(s)$, whare the parameter s is the arc length, we have

$$
\begin{equation*}
M_{X}=\int_{0}^{L} y(s) d s ; \quad M_{Y}=\int_{0}^{L} x(s) d s \tag{2}
\end{equation*}
$$

$\left(d s=\sqrt{(d x)^{2}+(d y)^{2}}\right.$ is the differential of the arc);

2) for a plane figure bounded by the curve $y=y(x)$, the x-axis and two vertical lines $x=a$ and $y=b$, we obtain

$$
\begin{equation*}
M_{X}=\frac{1}{2} \int_{a}^{b} y|y| d x ; \quad M_{Y}=\int_{a}^{b} x|y| d x . \tag{3}
\end{equation*}
$$

Example 1. Find the static moments about the x - and y-axes of a triangle bounded by the straight lines: $\frac{x}{a}+\frac{y}{b}=1, x=0, y=0$ (Fıg. 57)

Solution. Here, $y=b\left(1-\frac{x}{a}\right)$. Applyirg formula (3), we obtain

$$
M_{X}=\frac{b^{2}}{2} \int_{0}^{a}\left(1-\frac{x}{a}\right)^{2} d x=\frac{a b^{2}}{6}
$$

and

$$
M_{Y}=b \int_{0}^{a} x\left(1-\frac{x}{a}\right) d x=\frac{a^{2} b}{6}
$$

2°. Moment of inertia. The moment of inertia, about an l-axis, of a maferial point of mass m at a distance d from the l-axis, is the number $I_{t}=m d^{2}$.

The moment of tnertia, about an 1 -axis, of a system of n material points with masses $m_{1}, m_{2}, \ldots, m_{n}$ is the sum

$$
I_{i}=\sum_{i=1}^{n} m_{i} d_{i}^{2}
$$

where $d_{1}, d_{2} \ldots, d_{n}$ are the distances of the points from the l-axis. In the case of a continuous mass, we get an appropriate integral in place of a sum.

Example 2. Find the moment of inertia of a triangle with base b and altitude h about its base.

Solution. For the base of the triangle we take the x-axis, for its altitude, the y-axis (Fig 58).

Divide the triangle into infinitely narrow horizontal strips of width $d y$, which play the role of elementary masses $d m$. Utilizing the similarity of triangles, we obtain

$$
d m=b \frac{h-y}{h} d y
$$

and

$$
d I_{X}=y^{2} d m=\frac{b}{h} y^{2}(h-y) d y
$$

Whence

$$
I_{X}=\frac{b}{h} \int_{0}^{h} y^{2}(h-y) d y=\frac{1}{12} b h^{3}
$$

3°. Centre of gravity. The coordinates of the centre of gravity of a plane figure (arc or area) of mass M are computed from the formulas

$$
\bar{x}=\frac{M_{Y}}{\bar{M}}, \quad \bar{y}=\frac{M_{X}}{M}
$$

where M_{X} and M_{Y} are the static moments of the mass. In the case of geometric fligures, the mass M is numerically equal to the corresponding arc or area.

For the coordinates of the centre of gravity (\bar{x}, \bar{y}) of an arc of the plane curve $y=f(x)(a \leqslant x \leqslant b)$, connecting the points $A[a, f(a)]$ and $B[b, f(b)]$, we have

$$
\bar{y}=\frac{\int_{A}^{B} y d s}{s}=\frac{\int_{a}^{b} y \sqrt{1+\left(y^{\prime}\right)^{2}} d x}{\int_{u}^{b} \sqrt{1+\left(y^{\prime}\right)^{2}} d x}
$$

The coordinates of the centre of gravity (\bar{x}, \bar{y}) of the curvilinear trapezoid $a \leqslant x \leqslant b, 0 \leqslant y \leqslant f(x)$ may be computed from the formulas

$$
\bar{x}=\frac{\int_{a}^{b} x y d x}{S}, \quad \bar{y}=\frac{\frac{1}{2} \int_{a}^{b} y^{2} d x}{S}
$$

where $S=\int_{a}^{b} y d x$ is the area of the ngure.
There are similar formulas for the coordinates of the centre of gravity of a volume.

Example 3. Find the centre of gravity of an arc of the semicircle $x^{2}+y^{2}=a^{2} ;(y \geqslant 0)$ (Fig. 59).

Solution. We have

$$
y=\sqrt{a^{2}-x^{2}} ; \quad y^{\prime}=\frac{-x}{\sqrt{a^{2}-x^{2}}}
$$

and

$$
d s=\sqrt{1+\left(y^{\prime}\right)^{2}} d x=\frac{a d x}{\sqrt{a^{2}-x^{2}}} .
$$

Whence

$$
\begin{gathered}
M_{Y}=\int_{-a}^{a} x d s=\int_{-a}^{a} \frac{a x}{\sqrt{a^{2}-x^{2}}} d x=0, \\
M_{X}=\int_{-a}^{a} y d s \cdots \int_{-a}^{a} \sqrt{a^{2}-x^{2}} \frac{a d x}{\sqrt{a^{2}-x^{2}}}=2 a^{2}, \\
M-\int_{-a}^{a} \frac{a d x}{\sqrt{a^{2}-x^{2}}} \pi a .
\end{gathered}
$$

Hence,

$$
\bar{x}=0 ; \bar{y}=\frac{2}{\bar{x}} a .
$$

4°. Guldin's theorems.
Theorem 1. The area of a surface obtanned by the rotation of an arc of a plane curve about some axis lying in the same plane as the curve and not intersecting it is equal to the product of the length of the curve by the circumference of the circle described by the centre of gravity of the arc of the curve.

Theorem 2. The volume of a solid obtained by rotation of a plane figure about some axis lying in the plane of the figure and not intersecting it is equal to the product of the area of this figure by the circumference of the circle described by the centre of gravity of the figure.

Fig. 59
1727. Find the static moments about the coordinate axes of a segment of the straight line

$$
\frac{x}{a}+\frac{y}{b}=1
$$

lying between the axes.
1728. Find the static moments of a rectangle, with sides a and b, about its sides.
1729. Find the static moments, about the x - and y-axes, and the coordinates of the cenire of gravity of a triangle bounded by the straight lines $x+y=a, x=0$, and $y=0$.
1730. Find the static moments, about the x - and y-axes, and the coordinates of the centre of gravity of an arc of the astroid

$$
x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}
$$

lying in the first quadrant.
1731. Find the static moment of the circle

$$
r=2 a \sin \varphi
$$

about the polar axis.
1732. Find the coordinates of the centre of gravity of an arc of the catenary

$$
y=a \cosh \frac{x}{a}
$$

from $x=-a$ to $x=a$.
1733. Find the centre of gravity of an arc of a circle of radius a subtending an angle 2α.
1734. Find the coordinates of the centre of gravity of the arc of one arch of the cycloid

$$
x=a(t-\sin t) ; y=a(1-\cos t)
$$

1735. Find the coordinates of the centre of gravity of an area bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the coordinate axes $(x \geqslant 0$, $y \geqslant 0$).
1736. Find the coordinates of the centre of gravity of an area bounded by the curves

$$
y=x^{2}, y=\sqrt{x}
$$

1737. Find the coordinates of the centre of gravity of an area bounded by the first arch of the cycloid

$$
x=a(t-\sin t), y=a(1-\cos t)
$$

and the x-axis.
1738**. Find the centre of gravity of a hemisphere of radius a lying above the $x y$-plane with centre at the origin.

1739**. Find the centre of gravity of a homogeneous right circular cone with base radius r and altitude h.

1740**. Find the centre of gravity of a homogeneous hemisphere of radius a lying above the $x y$-plane with centre at the origin.
1741. Find the moment of inertia of a circle of radius a about its diame!er.
1742. Find the moments of inertia of a rectangle with sides a and b about its sides.
1743. Find the moment of inertia of a right parabolic segment with base $2 b$ and altitude h about its ax is of symmetry.
1744. Find the moments of inertia of the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about its principal axes.

1745**. Find the polar moment of inertia of a circular ring with radii R_{1} and $R_{2}\left(R_{1}<R_{2}\right)$, that is, the moment of inertia about the axis passing through the centre of the ring and perpendicular to its plane.

1746**. Find the moment of inertia of a homogeneous right circular cone with base radius R and altitude H about its axis.

1747**. Find the moment of inertia of a homogeneous sphere of radius a and of mass M about its diameter.
1748. Find the surlace and volume of a torus obtained by rotating a circle of radus a about an axis lying in its plane and at a distance $b(b>a)$ from its centre.
1749. a) Determine the position of the centre of gravity of an arc of the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ lying in the first quadrant.
b) Find the cenire of gravity of an area bounded by the curves $y^{2}=2 p x$ and $x^{2}=2 p y$.

1750**. a) Find the centre of gravity of a senicircle using Guldin's theorem.
b) Prove by Guldin's theorem that the centre of gravity of a triangle is distant from its base by one third of its altitude

Sec. 12. Applying Definite Integrals to the Solution of Physical Problems

1°. The path traversed by a point. If a point is in motion along some curve and the absolute value of the velocity $v=\gamma(t)$ is 9 known funcion of the lime t, then the palh traversed by the point in an interval of time $\left[t_{1}, t_{2}\right]$ is

$$
s=\int_{t_{1}}^{t_{2}} f(t) d t
$$

Example 1. The velocity of a point is

$$
v=0.11^{3} \mathrm{~m} / \mathrm{sec} .
$$

Find the path s covered by the point in the interval of time $T=10 \mathrm{sec}$ following the commencement of motion. What is the mean velucity if motion during this interval?

Solution. We have:

$$
s=\int_{0}^{10} 0.1 t^{3} d t=\left.0.1 \frac{t^{4}}{4}\right|_{0} ^{10}=250 \text { metres }
$$

and

$$
v_{\text {mean }}=\frac{s}{T}=25 \mathrm{~m} / \mathrm{sec}
$$

2°. The work of a force. If a variable force $X=f(x)$ acts in the direction of the x-axis, then the work of this force over an interval $\left[x_{1}, x_{2}\right]$ is

$$
A=\int_{x_{1}}^{x_{2}} f(x) d x .
$$

Example 2. What work has to be performed to stretch a spring 6 cm , if a force of 1 kgf stretches it by 1 cm ?

Solution. According to Hook's law the force X kgf stretching the spring by x_{m} is equal to $X=k x$, where k is a proportionality constant.

Putting $x=0.01 \mathrm{~m}$ and $X=1 \mathrm{kgf}$, we get $k=100 \mathrm{and}$, hence, $X=100 \mathrm{r}$.
Whence the sought-for work is

$$
A=\int_{0}^{0.06} 100 x d x=\left.50 x^{2}\right|_{0} ^{0.06}=0.18 \mathrm{kgm}
$$

3°. KInetic energy. The kinetic energy of a material point of mass m and velocity v is defined as

$$
K=\frac{m v^{2}}{2} .
$$

The kinetic energy of a system of n material points with masses $m_{1}, m_{2}, \ldots, m_{n}$ having respective velocities $v_{1}, v_{2}, \ldots, v_{n}$, is equal to

$$
\begin{equation*}
K=\sum_{i=1}^{n} \frac{m_{i} v_{l}^{2}}{2} . \tag{1}
\end{equation*}
$$

To compute the kinetic energy of a solid, the latter is appropriately partitioned into elementary particles (which play the part of material points); then by summing the kinetic energies of these particles we get, in the limit, an integral in place of the sum (1).

Example 3. Find the kinetic energy of a homogeneous circular cylinder of density δ with base radius R and altitude h rotating about its axis with angular velocity ω.

Solution. For the elementary mass $d m$ we take the mass of a hollow cylinder of altitude h with inner radius r and wall thickness $d r$ (Fig. 60). We have:

$$
d m=2 \pi r \cdot h \delta d r .
$$

Since the linear velocity of the mass $d m$ is equal to $v=r \omega$, the elementary kinetic energy is

$$
d K=\frac{v^{2} d m}{2}=\pi r^{3} \omega^{2} h \delta d r
$$

Whence

$$
K=\pi \omega^{2} h \delta \int_{0}^{R} r^{2} d r=\frac{\pi \omega^{2} \delta R^{4} h}{4} .
$$

4°. Pressure of a liquid. To compute the force of liquid pressure we use Pascal's law, which states that the force of pressure of a liquid on an area S at a depth of immersion h is

$$
p=\gamma h S,
$$

where γ is the specific weight of the liquid.

Fig. 60

Fis 61

Example 4. Find the force of pressure experienced by a semicircle of radius r submerged vertically in water so that its diameter is flush with the water surface (Fig 61).

Solution, We partition the area of the semicircle into elements-strips parallel to the surface of the water. The area of one such element (ignoring higher-order infinitesimals) located at a distance h from the surface is

$$
d s=2 x d h=2 \sqrt{r^{2}-h^{2}} d h .
$$

The pressure experienced by this element is

$$
d P=\gamma h d s=2 \gamma h \sqrt{r^{2}-h^{2}} d h,
$$

where γ is the specific weight of the water equal to unity.
Whence the entire pressure is

$$
P=2 \int_{0}^{r} h \sqrt{r^{2}-h^{2}} d h=-\left.\frac{2}{3}\left(r^{2}-h^{2}\right)^{\frac{3}{2}}\right|_{0} ^{r}=\frac{2}{3} r^{2} .
$$

1751. The velocity of a body thrown vertically upwards with initial velocity v_{0} (air resistance neglected), is given by the
formula

$$
v=v_{0}-g t,
$$

where t is the time that elapses and g is the acceleration of gravity. At what distance from the iniiial position will the body be in t seconds from the time it is thrown?
1752. The velocity of a body thrown vertically upwards with initial velocity v_{0} (air resistance allowed for) is given by the formula

$$
v=c \cdot \tan \left(-\frac{g}{c} t+\arctan \frac{v_{0}}{c}\right)
$$

where t is the time, g is the acceleration of gravity, and c is a constant. Find the altitude reached by the body.
1753. A point on the x-axis performs harmonic oscillations about the coordinate origin; its velocity is given by the formula

$$
v=v_{0} \cos \omega t,
$$

where t is the time and v_{0}, ω are constants.
Find the law of oscillation of a point if when $t=0$ it had an abscissa $x=0$. What is the mean value of the absolute magnitude of the velocity of the point during one cycle?
1754. The velocity of motion of a point is $v=t e^{-0.01 t} \mathrm{~m} / \mathrm{sec}$. Find the path covered by the point from the commencement of motion to full stop.
1755. A rocket rises vertically upwards. Considering that when the rocket thrust is constant, the acceleration due to decreasing weight of the rocket increases by the law $1=\frac{A}{a-b t} \quad(a-b t>0)$, find the velocity at any instant of time t, if the initial velocity is zero. Find the altitude reached at time $t=t_{1}$.

1756*. Calculate the work that has to be done to pump the water out of a verical cylindrical barrel with base radius R and altitude H.
1757. Calculate the work that has to be done in order to pump the water out of a conical vessel with verlex downwards, the radius of the base of which is R and the allitude H.
1758. Calculate the work to be done in order to pump water out of a semispherical boiler of radius $R=10 \mathrm{~m}$.
1759. Calculate the work needed to pump oil out of a tank through an upjer opening (the tank has the shape of a cylinder with horizontal axis) if the specific weight of the oil is γ, the length of the tank H and the radius of the base R.
$1760^{* *}$. What work has to be done to raise a body of mass m from the earth's surface (radius R) to an altitude h? What is the work if the body is removed to infinity?

1761**. Two electric charges $e_{0}=100$ CGSE and $e_{1}=200$ CGSE lie on the x-axis at points $x_{0}=0$ and $x_{1}=1 \mathrm{~cm}$, respectively. What work will be done if the second charge is moved to point $x_{2}=10 \mathrm{~cm}$?

1762**. A cylinder with a movable piston of diameter $D=20 \mathrm{~cm}$ and length $l=80 \mathrm{~cm}$ is filled with steam at a pressure $p=10 \mathrm{kgf} \mathrm{cm}{ }^{2}$. What work must be done to halve the volume of the steam with temperature kept constant (isothermic process)?

1763**. De'ermine the work performed in the adiabatic expansion of air (having initial volume $v_{0}=1 \mathrm{~m}^{3}$ and pressure $p_{0}=1 \mathrm{~kg} / \mathrm{cm}^{2}$) to volume $v_{1}=10 \mathrm{~m}^{3}$?

1764**. A vertical shaft of weight P and radius a rests on a bearing $A B$ (Fig. 62). The frictional force between a small part σ of the base of the shaft and the surface of the support in contact with it is $F=\mu p \sigma$, where $p=$ const is the pressure of the shaft on the surface of the support referred to unit area of the support, while μ is the coefficient of friction. Find the work done by the frictional force during one revolution of the shaft.

1765**. Calculate the kinetic energy of a

Fig. 62 disk of mass M and radius R rotating with angular velocity ω about an axis that passes through its centre perpendicular to its plane.
1766. Calculate the kinetic energy of a right circular cone of mass M rotating with angular velocity ω about its axis, if the radius of the base of the cone is R and the altitude is H.

1767*. What work has to be done to stop an iron sphere of radius $R=2$ me'res rotating with angular velocity $\omega=1,000 \mathrm{rpm}$ about its diameter? (Specific weight of iron, $\gamma=7.8 \mathrm{~g} / \mathrm{cm}^{J}$.)
1768. A verical triangle with base b and altitude h is sub. merged vertex downwards in water so that its base is on the surface of the water. Find the pressure of the water.
1769. A vertical dam has the shape of a trapezoid. Calculate the water pressure on the dam if we know that the upper base $a=70 \mathrm{~m}$. the lower base $b=50 \mathrm{~m}$, and the height $h=20 \mathrm{~m}$.
1770. Find the pressure of a liquid, whose specific weight is γ. on a vertical cllipse (with axes $2 a$ and $2 b$) whose centre is submerged in the liquid to a distance h, while the major axis $2 a$ of the ellipse is parallel to the level of the liquid $(h \geqslant b)$.
1771. Find the water piessure on a verlical circular cone with radius of base R and altitude H submarged in wa:eı verlex downwards so that its base is on the surface of the water.

Miscellaneous Problems

1772. Find the mass of a rod of length $l=100 \mathrm{~cm}$ if the linear density of the rod at a distance $x \mathrm{~cm}$ from one of its ends is

$$
\delta=2+0.001 x^{2} \mathrm{~g} / \mathrm{cm}
$$

1773. According to empirical data the specific thermal capacity of water at a temperature $t^{\circ} \mathrm{C}\left(0 \leqslant t \leqslant 100^{\circ}\right)$ is

$$
c=0.9983-5.184 \times 10^{-5} t+6.912 \times 10^{-7} t^{2}
$$

What quantity of heat has to be expended to heat 1 g of water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?
1774. The wind exerts a uniform pressure $\mathrm{pg} / \mathrm{cm}^{2}$ on a door of width $b \mathrm{~cm}$ and height $h \mathrm{~cm}$. Find the moment of the pressure of the wind striving to turn the door on its hinges.
1775. What is the force of attraction of a material rod of length l and mass M on a material point of mass m lying on a slraight line with the rod at a distance a from one of its ends?

1776**. In the case of steady-state laminar flow of a liquid through a pipe of circular cross-section of radius a, the velocity of flow v at a point distant r from the axis of the pipe is given by the formula

$$
v=\frac{p}{4 \mu l}\left(a^{2}-r^{2}\right),
$$

where p is the pressure difference at the ends of the pipe, μ is the coefficient of viscosity, and l is the length of the pipe. Determine the discharge of liquid Q (that is, the quantity of liquid flowing through a cross-section of the pipe in unit time).

1777*. The conditions are the same as in Problem 1776, but the pipe has a rectangular cross-section, and the base a is great compared with the altitude $2 b$. Here the rate of flow v at a point $M(x, y)$ is defined by the formula

$$
v=\frac{p}{2 \mu l}\left[b^{2}-(b-y)^{2}\right] .
$$

Determine the discharge of liquid Q.
1778**. In studies of the dynamic qualities of an automobile, use is frequently made of special types of diagrams: the velocities v are laid off on the x-axis, and the reciprocals of corresponding accelerations a, on the y-axis. Show that the area S bounded by an arc of this graph, by two ordinates $v=v_{1}$ and $v=v_{2}$, and by the x-axis is numerically equal to the time needed to increase the velocity of motion of the automobile from v_{1} to v_{2} (acceleration time).
1779. A horizontal beam of length l is in equilibrium due to a downward vertical load uniformly distributed over the length of the beam, and of support reactions A and $B\left(A=B=\frac{Q}{2}\right)$, directed vertically upwards. Find the bending moment M_{x} in a cross-section x, that is, the moment about the point P with abscissa x of all forces acting on the portion of the beam $A P$.
1780. A horizontal beam of length l is in equilibrium due to support reactions A and B and a load distributed along the length of the beam with intensity $q=k x$, where x is the distance from the left support and k is a constant factor. Find the bending moment M_{x} in cross-section x.

Note. The intensity of load distribution is the load (force) referred to unit length.

1781*. Find the quantity of heat released by an alternating sinusoidal current

$$
I=I_{0} \sin \left(\frac{2 \pi}{T} t-\varphi\right)
$$

during a cycle T in a conductor with resistance R.

Chapter VI

FUNCTIONS OF SEVERAL VARIABLES

Sec. 1. Pailc Notions

1°. The concept of a function of several variables. Functional notation. A variable quantity z is called a single-valued function of two variables x, y, if to each set of their values (x, y) in a given range there corresponds a unique value of z The variables x and y are calledarguments or independent variables. The functional relation is denoted by

$$
z=f(x, y)
$$

Similarly, we define functions of three or more arguments.
Fxample 1. Express the volume of a cone V as a function of its generatrix x and of its base radius y

- Solution. From geometry we know that the volume of a cone is

$$
V=\frac{1}{3} \pi y^{2} h
$$

where h is the altitude of the cone. But $h=\sqrt{x^{2}-y^{2}}$. Hence,

Fig. 63

$$
V=\frac{1}{3} \pi y^{2} \sqrt{\lambda^{2}-y^{2}} .
$$

This is the desired functional relation.
The value of the function $z=f(x, y)$ at a poont $P(a . b)$, that is, when $x=a$ and $y=b$, is denoted by $f(a, b)$ or $f(P)$ Generally speakins, the ceometric rerresentation of a function like $z=f(x, y)$ in a rectangular coordinate system \dot{X}, Y, Z is a surface (Fig. 63).

Example 2. Find $f(2,-3)$ and $f\left(1, \frac{y}{x}\right)$ it

$$
f(x, y)=\frac{x^{2}+y^{2}}{2 x y}
$$

Solution. Substituting $x=2$ and $y=-3$, we find

$$
f(2,-3)=\frac{2^{2}+(-3)^{2}}{2 \cdot 2 \cdot(-3)}=-\frac{13}{12}
$$

Putting $x=1$ and replacing y by $\frac{y}{x}$, we will have

$$
f\left(1, \frac{y}{x}\right)=\frac{1+\left(\frac{y}{x}\right)^{2}}{2 \cdot 1\left(\frac{u}{x}\right)}=\frac{x^{2}+y^{2}}{2 x y}
$$

that is, $f\left(1, \frac{y}{x}\right)=f(x, y)$.
2°. Domain of deflnition of a function. By the domain of definition of a function $z=f(x, y)$ we understand a set of points (x, y) in an $x y$-plane in which the given function is defined (that is to say, in which it takes on definite real values) in the simplest cases, the domain of definition of a function is a finite or infinite part of the $x y$-plane bounded by one or several curves (the boundar, of the domain).

Similarly, for a funtion of three variables $u=f(x, y, z)$ the domain of definition of the function is a volume in $x y z$-space.

Example 3. Find the domain of definition of the function

$$
z=\frac{1}{\sqrt{4-\lambda^{2}-y^{2}}} .
$$

Solution. The function has real values if $4-x^{2}-y^{2}>0$ or $x^{2}+y^{2}<4$. The latter incquality is satisfied by the coordinates of points lying inside a circle of radia 2 with centre at the coordinate orgen. The domain of definition of the function is the interior of the circle (Fig 64).

Fig. 64

$\mathrm{F}_{1 \mathrm{~g}} 65$

Example 4. Find the domain of definition of the function

$$
z=\arcsin \frac{x}{2}+\sqrt{x y}
$$

Solution. The first term of the function is defined for $-1 \leqslant \frac{x}{2} \leqslant 1$ or $-2 \leqslant x \leqslant 2$. The second term has real values if $x y \geqslant 0$, i.e., in two cases: when $\left\{\begin{array}{l}x \geq 0, \\ y \geqslant 0\end{array}\right.$ or when $\left\{\begin{array}{l}x \leqslant 0 \\ y \leqslant 0\end{array}\right.$. The doman of definition of the entire function is shown in Fig. 65 and includes the boundaries of the domain.
3°. Level lines and level surfaces of a function. The level line of a function $z=f(x, y)$ is a line $f(x, y)=C$ (in an $x y$-plane) at the points of which the function takes on one and the same value $z=C$ (usually labelled in drawings).

The level surface of a function of three arguments $u=f(x, y, z)$ is a surface $f(x, y, z)=C$, at the points of which the function takes on a constant value $u=C$.

Example 5. Construct the level lines of

Fig. 66 the function $z=x^{2} y$.
Solution. The equation of the level lines has the form $x^{2} y=C$ or $y=\frac{c}{x^{2}}$.
Putting $C=0, \pm 1, \pm 2, \ldots$, we get a family of level lines (Fig. 66).
1782. Express the volume V of a regular tetragonal pyramid as a function of its altitude x and lateral edge y.
1783. Express the lateral surface S of a regular hexagonal truncated pyramid as a function of the sides x and y of the bases and the altitude z.
1784. Find $f(1 / 2,3), f(1,-1)$, if

$$
f(x, y)=x y+\frac{x}{y}
$$

1785 Find $f(y, x), f(-x,-y), f\left(\frac{1}{x}, \frac{1}{y}\right), \frac{1}{f(x, y)}$, if $f(x, y)=\frac{x^{2}-y^{2}}{2 x y}$.
1786. Find the values assumed by the function

$$
f(x, y)=1+x-y
$$

at points of the parabola $y=x^{2}$, and construct the graph of the function

$$
F(x)=f\left(x, x^{2}\right)
$$

1787. Find the value of the function

$$
z=\frac{x^{4}+2 x^{2} y^{2}+y^{4}}{1-x^{2}-y^{2}}
$$

at points of the circle $x^{2}+y^{2}=R^{2}$.
1788*. Determine $f(x)$, if

$$
f\left(\frac{y}{x}\right)=\frac{\sqrt{x^{2}+y^{2}}}{y}(y>0) .
$$

1789*. Find $f(x, y)$ if

$$
f(x+y, x-y)=x y+y^{2}
$$

1790*. Let $z=\sqrt{y}+f(\sqrt{x}-1)$. Determine the functions f and z if $z=x$ when $y=1$.

1791**. Let $z=x f\left(\frac{y}{x}\right)$. Determine the functions f and z if $z=\sqrt{1+y^{2}}$ when $x=1$.
1792. Find and sketch the domains of definition of the following functions:
a) $z=\sqrt{1-x^{2}-y^{2}}$;
b) $z=1+\sqrt{-(x-y)^{2}}$;
c) $z=\ln (x+y)$;
d) $z=x+\arccos y$;
e) $z=\sqrt{1-x^{2}}+\sqrt{1-y^{2}}$;
f) $z=\arcsin \frac{y}{x}$;
g) $z=\sqrt{x^{2}-4}+\sqrt{4-y^{2}}$;
i) $z=\sqrt{y \sin x}$;
j) $z=\ln \left(x^{2}+y\right)$;
k) $z=\operatorname{arctang} \frac{x-y}{1+x^{2} y^{2}}$;

1) $z=\frac{1}{x^{2}+y^{2}}$;
h) $z=\sqrt{\left(x^{2}+y^{2}-a^{2}\right)\left(2 a^{2}-x^{2}-y^{2}\right)}$
m) $z=\frac{1}{\sqrt{y-\sqrt{x}}}$;
n) $z=\frac{1}{x-1}+\frac{1}{y}$;
o) $z \sqrt{\sin \left(x^{2}+y^{2}\right)}$.
1793. Find the domains of the following functions of three arguments:
а) $u=\sqrt{\prime} \bar{x}+\sqrt{\bar{y}}+\sqrt{\bar{z}}$;
c) $u=\arcsin x+\arcsin y+\arcsin z$;
b) $u=\ln (x y z)$:
d) $u=\sqrt{1-x^{2}-y^{2}-z^{2}}$.
1794. Construct the level lines of the given functions and determine the character of the surfaces depicted by these functions:
a) $z=x+y$;
b) $z=x^{2}+y^{2}$;
c) $z=x^{2}-y^{2}$;
d) $z=\sqrt{x y}$;
e) $z=(1+x+y)^{2}$;
f) $z=1-|x|-|y| ;$
g) $z=\frac{y}{x^{2}}$;
h) $z=\frac{y}{\sqrt{x}}$;
i) $z=\frac{2 x}{x^{2}+y^{2}}$.
1795. Find the level lines of the following functions:
a) $z=\ln \left(x^{2}+y\right)$;
b) $z=\arcsin x y$;
c) $z=f\left(\sqrt{x^{2}+y^{2}}\right)$;
d) $z=f(y-a x)$;
e) $z=f\left(\frac{y}{x}\right)$.
1796. Find the level surfaces of the functions of three independent variables:
a) $u=x+y+-z$;
b) $u=x^{2}+y^{2}+z^{2}$;
c) $u=x^{2}+y^{2}-z^{2}$.

Sec. 2. Continuity

10. The limit of a function. A number A is called the limit of a function $z=f(\dot{x}, y)$ as the point $P^{\prime}(x, y)$ approaches the point $P(a, b)$. if for any $\varepsilon>0$ there is a $\delta>0$ such that when $0<0<\delta$, where $0=\sqrt{(x-a)^{2}+(y-b)^{2}}$ is the distance between P and P^{\prime}, we have the inequality

$$
||(x, y)-A|<\varepsilon
$$

In this case we write

$$
\lim _{\substack{x \rightarrow a \\ y \rightarrow b}} f(x, y)=A
$$

2°. Continuity and points of discontinuity. A function $z=f(x, y)$ is called continuous at a point $P(a, b)$ if

$$
\lim _{\substack{x \rightarrow a \\ y \rightarrow b}} f(x, y)=f(a, b)
$$

A function that is continuous at all points of a given range is called continuous over this range

A function $f(x, y)$ may cease to be continuous either at separate points (isolated point of discontinuity) or at points that form one or several lines (lines of discontinuity) or (at times) more complex geometric objects.

Example 1. Find the discontinuities of the function

$$
z=\frac{x y+1}{\lambda^{2}-y}
$$

Solution. The function will be meaningless if the denominator becomes zero. But $x^{2}-y=0$ or $y=x^{2}$ is the equation of a parabola. Hence, the given function has for its discontinuity the parabola $y=x^{2}$.

1797*. Find the following limits of functions:
a) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}}\left(x^{2}+y^{2}\right) \sin \frac{1}{x y}$;
b) $\lim _{\substack{x \rightarrow \infty \\ u \rightarrow \infty}} \frac{x+y}{x^{2}+y^{2}}$;
c) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 2}} \frac{\sin x y}{x}$;
d) $\lim _{\substack{x \rightarrow \infty \\ y \rightarrow k}}\left(1+\frac{y}{x}\right)^{x} ;$
e) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x}{x+y}$;

1) $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
1798. Test the following function for continuity:

$$
f(x, y)=\left\{\begin{array}{cc}
\sqrt{1-x^{2}-y^{2}} & \text { when } x^{2}+y^{2} \leqslant 1, \\
0 & \text { when } x^{2}+y^{2}>1 .
\end{array}\right.
$$

1799. Find points of discontinuity of the functions:
a) $z=\ln \sqrt{x^{2}+y^{2}}$;
b) $z=\frac{1}{(x-y)^{2}}$;
c) $z=\frac{1}{1-x^{2}-y^{2}}$;
d) $z=\cos \frac{1}{\lambda y}$.

1800*. Show that the function

$$
z=\left\{\begin{array}{cl}
\frac{2 x y}{x^{2}+y^{2}} & \text { when } x^{2}+y^{2} \neq 0 \\
0 & \text { when } x=y=0
\end{array}\right.
$$

is continuous with respect to each of the variables x and y separately, but is not continuous at the point $(0,0)$ with respect to these variables together.

Sec. 3. Partial Derivatives

1°. Definition of a partial derivative. If $z=f(x, y)$, then assuming, for example, y constant, we get the derivative

$$
\frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}=f_{x}^{\prime}(x, y),
$$

which is called the partial derivative of the function z with respect to the variable x. In similar fachion we define and denote the partial derivative of the function z with respect to the variable y it is obvious that to find partial derivatives, one can use the ordinary formulas of differentiation.

Example 1. Find the partial derivatives of the function

$$
z=\ln \tan \frac{x}{y} .
$$

Solution. Regarding y as constant, we get

$$
\frac{\partial z}{\partial x}=\frac{1}{\tan \frac{x}{y}}-\frac{1}{\cos ^{2} \frac{x}{y}} \cdot \frac{1}{y}=\frac{2}{y \sin \frac{2 x}{y}} .
$$

Similarly, holding x constant, we will have

$$
\frac{\partial z}{\partial y}=\frac{1}{\tan \frac{x}{y}} \cdot \frac{1}{\cos ^{2} \frac{x}{y}}\left(-\frac{x}{y^{2}}\right)=-\frac{2 x}{y^{2} \sin \frac{2 x}{u}} .
$$

Example 2. Find the partial derivatives of the following function of three arguments:

$$
u=x^{3} y^{2} z+2 x-3 y+z+5
$$

Solution. $\quad \frac{\partial u}{\partial x}=3 x^{2} y^{2} z+2$,

$$
\frac{\partial u}{\partial y}=2 x^{3} y z-3,
$$

$$
\frac{\partial u}{\partial z}=x^{3} y^{2}+1
$$

2°. Euler's theorem. A function $f(x, y)$ is called a homo eneous function of degree n if for every real factor k we have the equality

$$
f(k x, k y)=k^{n} f(x, y)
$$

A rational integral function will be homogeneous if all its terms are of one and the same degree.

The following relationship holds for a homogeneous differentiable function of degree n (Euler's theorem):

$$
x f_{x}^{\prime}(x, y)+y f_{y}^{\prime}(x, y)=n f(x, y) .
$$

Find the partial derivatives of the following functions:
1801. $z=x^{2}+y^{3}-3 a x y$. 1808. $z=x^{y}$.
1802. $z=\frac{x-y}{x+y}$.
1809. $z=e^{\sin \frac{y}{x}}$.
1803. $z=\frac{y}{x}$.
1810. $z=\arcsin \sqrt{\frac{x^{2}-y^{2}}{x^{2}+y^{2}}}$.
1804. $z=\sqrt{x^{2}-y^{2}}$.
1811. $z=\ln \sin \frac{x+a}{\sqrt{y}}$.
1805. $z=\frac{x}{\sqrt{x^{2}+y^{2}}}$.
1812. $u=(x y)^{z}$.
1806. $z=\ln \left(x+\sqrt{x^{2}+y^{2}}\right)$.
1813. $u=z^{x y}$.
1807. $z=\arctan \frac{y}{x}$.
1814. Find $f_{x}^{\prime}(2,1)$ and $f_{y}^{\prime}(2,1)$ if $f(x, y)=\sqrt{x y+\frac{x}{y}}$.
1815. Find $f_{x}^{\prime}(1,2,0), f_{y}^{\prime}(1,2,0), f_{z}^{\prime}(1,2,0)$ if

$$
f(x, y, z)=\ln (x y+z)
$$

Verify Euler's theorem on homogeneous functions in Examples 1816 to 1819:
1816. $f(x, y)=A x^{2}+2 B x y-C y^{2}$. 1818. $f(x, y)=\frac{x+y}{\sqrt[3]{x^{2}+y^{2}}}$.
1817. $z=\frac{x}{x^{2}+y^{2}}$.
1819. $f(x, y)=\ln \frac{y}{x}$.
1820. Find $\frac{\partial}{\partial x}\left(\frac{1}{r}\right)$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
1821. Calculate $\left|\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \varphi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \varphi}\end{array}\right|$, if $x=r \cos \varphi$ and $y=r \sin \varphi$.
1822. Show that $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=2$, if $z=\ln \left(x^{2}+x y+y^{2}\right)$.
1823. Show that $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=x y+z$, if $z=x y+x e^{\frac{y}{x}}$.
1824. Show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$, if $u=(x-y)(y-z)(z-x)$.
1825. Show that $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=1$, if $u=x+\frac{x-y}{y-z}$.
1826. Find $z=z(x, y)$, it $\frac{\partial z}{\partial y}=\frac{x}{x^{2}+y^{2}}$.
1827. Find $z=z(x, y)$ knowing that

$$
\frac{\partial z}{\partial x}=\frac{x^{2}+y^{2}}{x} \text { and } z(x, y)=\sin y \text { when } x=1 .
$$

1828. Through the point $M(1,2,6)$ of a surface $z=2 x^{2}+y^{2}$ are drawn planes parallel to the coordinate surfaces $X O Z$ and $Y O Z$. Determine the angles formed with the coordinate axes by the tangent lines (to the resulting cross-sections) drawn at their common point M.
1829. The area of a trapezoid with bases a and b and altitude h is equal to $S=1_{2}(a+b) h$. Find $\frac{\partial S}{\partial a}, \frac{\partial S}{\partial b}, \frac{\partial S}{\partial h}$ and, using the drawing, determine their geometrical meaning.

1830*. Show that the function

$$
f(x, y)=\left\{\begin{array}{c}
\frac{2 x y}{x^{2}+y^{2}}, \text { if } x^{2}+y^{2} \neq 0 \\
0, \text { if } x=y=0
\end{array}\right.
$$

has partial derivatives $f_{x}^{\prime}(x, y)$ and $f_{y}^{\prime}(x, y)$ at the point $(0,0)$, although it is discontinuous at this point. Construct the geometric image of this function near the point $(0,0)$.

Sec. 4. Total Differential of a Function

1°. Total increment of a function. The total increment of a function $z=f(x, y)$ is the difference

$$
\Delta z=\Delta f(x, y)=f(x+\Delta x, y+\Delta y)-f(x, y) .
$$

2°. The total differential of a function. The total (or exact) differential of a function $z=f(x, y)$ is the principal part of the total increment Δz, which is linear with respect to the increments in the arguments Δx and Δy.

The difference between the total increment and the total differential of the function is an infinitesimal of higher order compared with $\varrho=\sqrt{\Delta x^{2}+\Delta y^{2}}$.

A function definitely has a total differential if its partial derivatives are continuous. If a function has a total differential, then it is called differentiable. The differentials of independent variables coincide with their increments, that is, $d x=\Delta x$ and $d y=\Delta y$. The total differential of the function $z=f(x, y)$ is computed by the formula

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

Similarly, the total differential of a function of three arguments $u=f(x, y, z)$ is computed from the formula

$$
d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z .
$$

Example 1. For the function

$$
f(x, y)=x^{2}+x y-y^{2}
$$

find the total increment and the total differental.

Solution. $f(x+\Delta x, y+\Delta y)=(x+\Delta x)^{2}+(x+\Delta x)(y+\Delta y)-(y+\Delta y)^{2}$;
$\Delta f(x, y)=\left[(r+\Delta x)^{2}+(x+\Delta x)(y+\Delta y)-(y+\Delta y)^{2}\right]-\left(x^{2}+x y-y^{2}\right)=$

$$
\begin{aligned}
& =\left[\left(x-\Delta x+\Delta x^{2}+x \cdot \Delta y+y \cdot \Delta x+\Delta x \cdot \Delta y-2 y \cdot \Delta y-\Delta y^{2}=\right.\right. \\
& =2(2 x+y) \Delta x+(x-2 y) \Delta y]+\left(\Delta x^{2}+\Delta x \cdot \Delta y-\Delta y^{2}\right) . \\
& =\left[\begin{array}{l}
\text { and }
\end{array}\right.
\end{aligned}
$$

Here, the expression $d f=(2 x+y) \Delta x+(x-2 y) \Delta y$ is the total differential of the function, while ($\Delta x^{2}+\Delta x \cdot \Delta y-\Delta y^{2}$) is an infinitesimal of higher order compared with $\sqrt{\Delta x^{2}+\Lambda y^{2}}$.

Example 2. Find the total differential of the function

$$
z=\sqrt{x^{2}+y^{2}} .
$$

Solution. $\frac{\partial z}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}}} ; \frac{\partial z}{\partial y}=\frac{y}{\sqrt{\lambda^{2}+y^{2}}}$.

$$
d z=\frac{x}{\sqrt{x^{2}+y^{2}}} d x+\frac{y}{\sqrt{x^{2}+y^{2}}} d y=\frac{x d x+y d y}{\sqrt{x^{2}+y^{2}}} .
$$

3°. Applying the total differential of a function to approximate calculations. For sufficien'ly small $|\Delta x|$ and $|\Delta y|$ and, hence, for sufficiently small $\mathrm{e}=\sqrt{\Delta \Delta^{2}+\Delta y^{2}}$, we have for a differentiable function $z=f(x, y)$ the approximate equality $\Delta z \approx d z$ or

$$
\Delta z \approx \frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial y} \Delta y .
$$

Example 3. The altitude of a cone is $H=30 \mathrm{~cm}$, the radius of the base $R=10 \mathrm{~cm}$. How will the volume of the cone change, if we increase H by 3 mm and diminish R by 1 mm ?

Solution. The volume of the cone is $V=\frac{1}{3} \pi R^{2} H$. The change in volume we replace approximately by the differential

$$
\begin{aligned}
\Delta V \approx d V= & \frac{1}{3} \pi\left(2 R H d R+R^{2} d H\right)= \\
& \quad=\frac{1}{3} \pi(-2 \cdot 10 \cdot 30 \cdot 0.1+100 \cdot 0.3)=-10 \pi \approx-31.4 \mathrm{~cm}^{2} .
\end{aligned}
$$

Example 4. Compute $1.02^{3.01}$ approximately.
Solution. We consider the function $z=x^{y}$. The desired number may be considered the increased value of this function when $x=1, y=3, \Delta x=0.02$, $\Delta y=0.01$. The initial value of the function $z=1^{s}=1$,

$$
\Delta z \approx d z=y x^{y-1} \Delta x+x^{y} \ln x \Delta y=3 \cdot 1 \cdot 0.02+1 \cdot \ln 1 \cdot 0.01=0.06 .
$$

Hence, $1.02^{3.01} \approx 1+0.06=1.06$.
1831. For the function $f(x, y)=x^{2} y$ find the total increment and the total difierential at the point (1,2); compare them if
a) $\Delta x=1, \Delta y=2 ;$ b) $\Delta x=0.1, \Delta y=0.2$.
1832. Show that for the functions u and v of several (for example, two) variables the ordinary rules of differentiation holds
а) $d(u+v)=d u+d v ; \quad$ b) $d(u v)=u d v+v d u$;
c) $d\left(\frac{u}{v}\right)=\frac{v d u-u d v}{v^{2}}$.

Find the total differentials of the following functions:
1833. $z=x^{3}+y^{3}-3 x y$.
1834. $z=x^{2} y^{3}$.
1835. $z=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
1836. $z=\sin ^{2} x+\cos ^{2} y$.
1837. $z=y x^{y}$.
1838. $z=\ln \left(x^{2}+y^{2}\right)$.
1839. $f(x, y)=\ln \left(1+\frac{x}{y}\right)$.
1840. $z=\arctan \frac{y}{x}+$
$+\arctan \frac{x}{y}$.
1841. $z=\ln \tan \frac{y}{x}$.
1842. Find $d f(1,1)$, if

$$
f(x, y)=\frac{x}{y^{2}}
$$

1843. $u=x y z$.
1844. $u=\sqrt{x^{2}+y^{2}+z^{2}}$.
1845. $u=\left(x y+\frac{x}{y}\right)^{z}$.
1846. $u=\arctan \frac{x y}{z^{2}}$.
1847. Find $d f(3,4,5)$ if
$f(x, y, z)=\frac{2}{\sqrt{\lambda^{2}+y^{2}}}$.
1848. One side of a rectangle is $a=10 \mathrm{~cm}$, the ot her $b=24 \mathrm{~cm}$. How will a diagonal l of the rectangle change if the side a is increased by 4 mm and b is shortened by 1 mm ? Approximate the change and compare it with the exact value.
1849. A closed box with outer dimensions $10 \mathrm{~cm}, 8 \mathrm{~cm}$, and 6 cm is made of 2 -mm-thick plywood. Approximate the volume of material used in making the box.

1850*. The central angle of a circular sestor is 80°; it is desired to reduce it by 1°. By how much should the radius of the sector be increased so that the area will remain unchanged, if the original leng:h of the radius is 20 cm ?
1851. Approx imate:
a) $(1.02)^{3} \cdot(0.97)^{2} ;$ b) $\sqrt{(4.05)^{2}+(2.93)^{2}}$;
c) $\sin 32^{\circ} \cdot \cos 59^{\circ}$ (when converting degrees into radius and calculating $\sin 60^{\circ}$ take three significant figures; round off the last digit).
1852. Show that the relative error of a product is approximately equal to the sum of the relative errors of the factors.
1853. Measurements of a triangle $A B C$ yielded the following data: side $a=100 \mathrm{~m} \pm 2 \mathrm{~m}$. side $b=200 \mathrm{~m} \pm 3 \mathrm{~m}$, angle $C=60^{\circ} \pm 1^{\circ}$. To what degree of accuracy can we compute the side c ?
1854. The oscillation period T of a pendulum is computed from the formula

$$
T=2 \pi \sqrt{-\frac{l}{g}}
$$

where l is the length of the pendulum and g is the acceleration of gravity. Find the error, when determining T, obtained as a result of small errors $\Delta l=\alpha$ and $\Delta g=\beta$ in measuring l and g.
1855. The distance between the points $P_{0}\left(x_{0}, y_{0}\right.$) and $P(x, y)$ is equal to ϱ, while the angle formed by the vector $\overline{P_{0} P}$ with the x-axis is α. By how much will the angle α change if the point $P\left(P_{0}\right.$ is fixed $)$ moves to $P_{1}(x+d x, y+d y)$?

Sec. 5. Differentiation of Composite Functions

$\mathbf{1}^{\circ}$. The case of one independent variable. If $z=f(x, y)$ is a differentiable function of the arguments x and y, which in turn are differentiable functions of an independent variable t,

$$
x=\varphi(t), y=\psi(t)
$$

then the derivative of the composite function $z=f[\varphi(t), \Psi(t)]$ may be computed from the formula

$$
\begin{equation*}
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t} . \tag{1}
\end{equation*}
$$

In particular, if t coincides with one of the arguments, for instance x, then the "total" derivative of the function z with respect to x will be:

$$
\begin{equation*}
\frac{d z}{d x}=\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y} \frac{d y}{d x} \tag{2}
\end{equation*}
$$

Example 1. Find $\frac{d z}{d t}$, if

$$
z=e^{3 x+2 y}, \text { where } x=\cos t, y=t^{2} .
$$

Solution. From formula (1) we have:

Example 2. Find the partial derivative $\frac{\partial z}{\partial x}$ and the total derivative $\frac{d z}{d x}$, if

$$
z=e^{x y}, \text { where } y=\varphi(x)
$$

Solution. $\frac{\partial z}{\partial x}=y e^{x y}$.
From formula (2) we obtain

$$
\frac{d z}{d x}=y e^{x y}+x e^{x y} \varphi^{\prime}(x)
$$

2°. The case of several independent variables. If z is a composite function of several independent variables, for instance, $z=f(x, y)$, where $x=\varphi(u, v)$, $y=\psi(u, v)$ (u and v are independent variables). then the partial derivatives z with respect to u and v are expressed as

$$
\begin{equation*}
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v} . \tag{4}
\end{equation*}
$$

In all the cases considered the following formula holds:

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

(the invariance property of a total differential).
Example 3. Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$, if

$$
z=f(x, y), \quad \text { where } \quad x=u v, y=\frac{u}{v} .
$$

Solution. Applying formulas (3) and (4), we get:

$$
\frac{\partial z}{\partial u}=f_{x}^{\prime}(x, y) \cdot v+f_{y}^{\prime}(x, y) \frac{1}{v}
$$

and

$$
\frac{\partial z}{\partial v}=f_{x}^{\prime}(x, y) \quad u-f_{y}^{\prime}(x, y) \frac{u}{v^{2}} .
$$

Example 4. Show that the function $z=\varphi\left(x^{2}+y^{2}\right)$ satisfies the equation

$$
y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=0 .
$$

Solution. The function φ depends on x and y via the intermediate argument $x^{2}+y^{2}=t$, therefore,

$$
\frac{\partial z}{\partial x}=\frac{d z}{d t} \frac{\partial t}{\partial x}=\varphi^{\prime}\left(x^{2}+y^{2}\right) 2 x
$$

and

$$
\frac{\partial z}{\partial y}=\frac{d z}{d t} \frac{\partial t}{\partial y}=\varphi^{\prime}\left(x^{2}+y^{2}\right) 2 y .
$$

Substituting the partial derivatives into the left-hand side of the equation, we get
$y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=y \varphi^{\prime}\left(x^{2}+y^{2}\right) 2 x-x \varphi^{\prime}\left(x^{2}+y^{2}\right) 2 y=2 x y \varphi^{\prime}\left(x^{2}+y^{2}\right)-2 x y \varphi^{\prime}\left(x^{2}+y^{2}\right) \equiv 0$, that is, the function z satisfies the given equation.
1856. Find $\frac{d z}{d t}$ if

$$
z=\frac{x}{y}, \text { where } x=e^{t}, y=\ln t
$$

1857. Find $\frac{d u}{d t}$ if

$$
u=\ln \sin \frac{x}{\sqrt{y}}, \text { where } x=3 t^{2}, y=\sqrt{t^{2}+1}
$$

1858. Find $\frac{d u}{d t}$ if

$$
u=x y z, \text { where } x=t^{2}+1, y=\ln t, z=\tan t
$$

1859. Find $\frac{d u}{d t}$ if
$u=\frac{z}{\sqrt{x^{2}+y^{2}}}$, where $x=R \cos t, y=R \sin t, z=H$.
1860. Find $\frac{d z}{d x}$ if
$z=u^{0}$, where $u=\sin x, v=\cos x$.
1861. Find $\frac{\partial z}{\partial x}$ and $\frac{d z}{d x}$ if

$$
z=\arctan \frac{y}{x} \text { and } y=x^{2} .
$$

1862. Find $\frac{\partial z}{\partial x}$ and $\frac{d z}{d x}$ if

$$
z=x^{y} \text {, where } y=\varphi(x) \text {. }
$$

1863. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
z=f(u, v) \text {, where } u=x^{2}-y^{2}, v=e^{x y} .
$$

1864. Find $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ if

$$
z=\arctan \frac{x}{y}, \text { where } x=u \sin v, y=u \cos v .
$$

1865. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
z=f(u), \text { where } u=x y+\frac{y}{x} .
$$

1866. Show that if

$$
\begin{gathered}
u=\Phi\left(x^{2}+y^{2}+z^{2}\right), \text { where } x=R \cos \varphi \cos \psi \\
y=R \cos \varphi \sin \psi, \quad z=R \sin \varphi,
\end{gathered}
$$

then

$$
\frac{\partial u}{\partial \varphi}=0 \text { and } \frac{\partial u}{\partial \psi}=0 .
$$

1867. Find $\frac{d u}{d x}$ if

$$
u=f(x, y, z) \text {, where } y=\varphi(x), z=\psi(x, y) .
$$

1868. Show that if

$$
z=f(x+a y)
$$

where f is a differentiable function, then

$$
\frac{\partial z}{\partial y}=a \frac{\partial z}{\partial x} .
$$

1869. Show that the function

$$
w=f(u, v),
$$

where $u=x+a t, v=y+b t$ satisfy the equation

$$
\frac{\partial w}{\partial t}=a \frac{\partial w}{\partial x}+b \frac{\partial w}{\partial y}
$$

1870. Show that the function

$$
z=y \varphi\left(x^{2}-y^{2}\right)
$$

satisfies the equation $\frac{1}{x} \frac{\partial z}{\partial x}+\frac{1}{y} \frac{\partial z}{\partial y}=\frac{z}{y^{2}}$.
1871. Show that the function

$$
z=x y+x \varphi\left(\frac{y}{x}\right)
$$

satisfies the equation $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=x y+z$.
1872. Show that the function

$$
z=e^{y} \varphi\left(y e^{\frac{x^{2}}{2 y^{2}}}\right)
$$

satisfies the equation $\left(x^{2}-y^{2}\right) \frac{\partial z}{\partial x}+x y \frac{\partial z}{\partial y}=x y z$.
1873. The side of a rectangle $x \rightarrow 20 \mathrm{~m}$ increases at the rate of $5 \mathrm{~m} / \mathrm{sec}$, the other side $y=30 \mathrm{~m}$ decreases at $4 \mathrm{~m} / \mathrm{sec}$. What is the rate of change of the perimeter and the area of the rectangle?
1874. The equations of motion of a material point are

$$
x=t, y=t^{2}, z=t^{3} .
$$

What is the rate of recession of this point from the coordinate origin?
1875. Two boats start out from A at one time; one moves northwards, the other in a northeasterly direction. Their velocities are respectively $20 \mathrm{~km} / \mathrm{hr}$ and $40 \mathrm{~km} / \mathrm{hr}$. At what rate does the distance between them increase?

Sec. 6. Derivative in a Given Direction and the Gradient of a Function
1°. The derivative of a function in a given direction. The derivative of a function $z=f(x, y)$ in a given direction $l=\vec{P}_{P}$ is

$$
\frac{\partial z}{\partial \overline{\partial l}}=\lim _{P_{1} P \rightarrow 0} \frac{f\left(P_{1}\right)-f(P)}{P_{1} P}
$$

7. 1900
where $f(P)$ and $f\left(P_{1}\right)$ are values of the function at the points P and P_{1}. If the function z is differentiable, then the following formula holds:

$$
\begin{equation*}
\frac{\partial z}{\partial l}=\frac{\partial z}{\partial x} \cos \alpha+\frac{\partial z}{\partial y} \sin \alpha \tag{1}
\end{equation*}
$$

where α is the angle formed by the vector l with the x-axis (Fig. 67).

Fig. 67
In similar fashion we define the derivative in a given direction l for a function of three arguments $u=f(x, y, z)$. In this case

$$
\begin{equation*}
\frac{\partial u}{\partial l}=\frac{\partial u}{\partial x} \cos \alpha+\frac{\partial u}{\partial y} \cos \beta+\frac{\partial u}{\partial z} \cos \gamma, \tag{2}
\end{equation*}
$$

where α, β, γ are the angles between the direction l and the corresponding coordinate axes. The directional derivative characterises the rate of change of the function in the given direction.

Example 1. Find the derivative of the function $2=2 x^{2}-3 y^{2}$ at the point $P(1,0)$ in a direction that makes a 120° angle with the x-axis.

Solution. Find the partial derivatives of the given function and their values at the point P :

$$
\begin{gathered}
\frac{\partial z}{\partial x}=4 x ; \quad\left(\frac{\partial z}{\partial x}\right)_{P}=4 ; \\
\frac{\partial z}{\partial y}=-6 y ; \quad\left(\frac{\partial z}{\partial y}\right)_{P}=0
\end{gathered}
$$

Here,

$$
\begin{aligned}
& \cos \alpha=\cos 120^{\circ}=-\frac{1}{2} \\
& \sin \alpha=\sin 120^{\circ}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Applying formula (1), we get

$$
\frac{\partial z}{\partial l}=4\left(-\frac{1}{2}\right)+0 \cdot \frac{\sqrt{3}}{2}=-2 .
$$

The minus sign indicates that the function diminishes at the given point and in the given direction.
2°. The gradient of a function. The gradient of a function $z=f(x, y)$ is a vector whose projections on the coordinate axes are the corresponding par-
tial derivatives of the given function:

$$
\begin{equation*}
\operatorname{grad} z=\frac{\partial z}{\partial x} i+\frac{\partial z}{\partial y} j . \tag{3}
\end{equation*}
$$

The derivative of the given function in the direction l is connected with the gradient of the function by the following formula:

$$
\frac{\partial z}{\partial l}=\operatorname{proj} \boldsymbol{j} \mathrm{grad} z
$$

That is. the derivative in a given direction is equal to the projection of the gradient of the function on the direction of differentiation.

The gradient of a function at each point is directed along the normal to the corresponding level line of the function. The direction of the gradient of the function at a given point is the direction of the maximum rate of increase of the function at this point, thât is, when $t=\operatorname{grad} z$ the derivative $\frac{\partial z}{\partial l}$ on its greatest value, equal to

$$
\sqrt{\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}
$$

In similar fashion we define the gradient of a function of three variables, $u=f(x, y, z)$:

$$
\begin{equation*}
\operatorname{grad} u=\frac{\partial u}{\partial x} t+\frac{\partial u}{\partial y} j+\frac{\partial u}{\partial z} k . \tag{4}
\end{equation*}
$$

The gradient of a function of three variables at each point is directed along the normal to the level surface passing through this point.

Example 2. Find and construct the gradient of the function $z=x^{2} y$ at the point $P(1,1)$.

Fig. 68
Solution. Compute the partial derivatives and their values at the poinf P.

$$
\begin{array}{ll}
\frac{\partial z}{\partial x}=2 x y ; & \left(\frac{\partial z}{\partial x}\right)_{P}=2 ; \\
\frac{\partial z}{\partial y}=x^{2} ; & \left(\frac{\partial z}{\partial y}\right)_{P}=1 .
\end{array}
$$

Hence, grad $z=2 i+j$ (Fig. 68).
7*
1876. Find the derivative of the function $z=x^{2}-x y-2 y^{2}$ at the point $P(1,2)$ in the direction that produces an angle of 60° with the x-axis.
1877. Find the derivative of the function $z=x^{3}-2 x^{2} y+x y^{2}+1$ at the point $M(1,2)$ in the direction from this point to the point $N(4,6)$.
1878. Find the derivative of the function $z=\ln \sqrt{x^{2}+y^{2}}$ at the point $P(1,1)$ in the direction of the bisector of the first quadrantal angle.
1879. Find the derivative of the function $u=x^{2}-3 y z+5$ at the point $M(1,2,-1)$ in the direction that forms identical angles with all the coordinate axes.
1880. Find the derivative of the function $u=x y+y z+z x$ at the point $M(2,1,3)$ in the direction from this point to the point $N(5,5,15)$.
1881. Find the derivative of the function $u=\ln \left(e^{x}+e^{y}+e^{z}\right)$ at the origin in the direction which forms with the coordinate axes x, y, z the angles α, β, γ, respectively.
1882. The point at which the derivative of a function in any direction is zero is called the stationary point of this function. Find the stationary points of the following functions:
a) $z=x^{2}+x y+y^{2}-4 x-2 y$;
b) $z=x^{3}+y^{3}-3 x y$;
c) $u=2 y^{2}+z^{2}-x y-y z+2 x$.
1883. Show that the derivative of the function $z=\frac{y^{2}}{x}$ taken at any point of the ellipse $2 x^{2}+y^{2}=C^{2}$ along the normal to the ellipse is equal to zero.
1884. Find grad z at the point $(2,1)$ if

$$
z=x^{3}+y^{3}-3 x y
$$

1885. Find grad z at the point $(5,3)$ if

$$
z=\sqrt{x^{2}-y^{2}}
$$

1886. Find grad u at the point $(1,2,3)$, if $u=x y z$.
1887. Find the magnitude and direction of grad u at the point $(2,-2,1)$ if

$$
u=x^{2}+y^{2}+z^{2}
$$

1888. Find the angle between the gradients of the function $z=\ln \frac{y}{x}$ at the points $A(1 / 2,1 / 4)$ and $B(1,1)$.
1889. Find the steepest slope of the surface

$$
z=x^{2}+4 y^{2}
$$

at the point $(2,1,8)$.
1890. Construct a vector field of the gradient of the following functions:
a) $z=x+y$:
b) $z=x y$;
c) $z=x^{2}+y^{2}$;
d) $u=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$.

Sec. 7. Higher-Order Derivatives and Differentials

1°. Higher-order partial derivatives. The second partial derivatives of a function $z=f(x, y)$ are the partial derivatives of its first partial derivatives.

For second derivatives we use the notations

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(\frac{z}{\partial x}\right)=\frac{\partial^{2} z}{\partial x^{2}}=f_{x x}^{\prime \prime}(x, y) ; \\
& \frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=\frac{\partial^{2} z}{\partial x \partial y}=f_{x y}^{\prime \prime}(x, y) \text { and so forth. }
\end{aligned}
$$

Derivatives of order higher than second are similarly deflned and denoted.
If the partial derivatives to be evaluated are continuous, then the result of repeated differentiation is independent of the order in which the differentiation is performed.

Example 1. Find the second partial derivatives of the function

$$
z=\arctan \frac{x}{y} .
$$

Solution. First tind the first partial derivatives:

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{1}{1+\frac{x^{2}}{y^{2}}} \cdot \frac{1}{y}=\frac{y}{\lambda^{2}+y^{2}} \\
& \frac{\partial z}{\partial y}=\frac{1}{1+\frac{x^{2}}{y^{2}}}\left(-\frac{x}{y^{2}}\right)=-\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Now differentiate a second time:

$$
\begin{aligned}
& \frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{y}{x^{2}+y^{2}}\right)=-\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, \\
& \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(-\frac{x}{x^{2}+y^{2}}\right)=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} . \\
& \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{y}{x^{2}+y^{2}}\right)=\frac{1 \cdot\left(x^{2}+y^{2}\right)-2 y \cdot y}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
\end{aligned}
$$

We note that the so-called "mixed" partial derivative may be found in a different way, namely:

$$
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial x}\left(-\frac{x}{x^{2}+y^{2}}\right)=-\frac{1 \cdot\left(x^{2}+y^{2}\right)-2 x \cdot x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

2°. Higher-order differentials. The second differential of a function $z=f(x, y)$ is the differential of the differential (first-order) of this function:

$$
d^{2} z=d(d z)
$$

We similarly define the differentials of a function z of order higher than two, for instance:

$$
d^{3} z=d\left(d^{2} z\right)
$$

and, generally,

$$
d^{n} z=d\left(d^{n-1} z\right) .
$$

If $z=f(x, y)$, where x and y are independent variables, then the second differential of the function z is computed from the formula

$$
\begin{equation*}
d^{2} z=\frac{\partial^{2} z}{\partial x^{2}} d x^{2}+2 \frac{\partial^{2} z}{\partial x \partial y} d x d y+\frac{\partial^{2} z}{\partial y^{2}} d y^{2} . \tag{1}
\end{equation*}
$$

Generally, the following symbolic formula holds true:

$$
d^{n} z=\left(d x \frac{\partial}{\partial x}+d y \frac{\partial}{\partial y}\right)^{n} z ;
$$

it is formally expanded by the binomial law.
If $z=f(x, y)$, where the arguments x and y are functions of one or several independent variables, then

$$
\begin{equation*}
d^{2} z=\frac{\partial^{2} z}{\partial x^{2}} d x^{2}+2 \frac{\partial^{2} z}{\partial x \partial y} d x d y+\frac{\partial^{2} z}{\partial y^{2}} d y^{2}+\frac{\partial z}{\partial x} d^{2} x+\frac{\partial z}{\partial y} d^{2} y \tag{2}
\end{equation*}
$$

If x and y are independent variables, then $d^{2} x=0, d^{2} y=0$, and formula (2) becomes identical with formula (1).

Example 2. Find the total differentials of the first and second orders of the function

$$
z=2 x^{2}-3 x y-y^{2} .
$$

Solution. First method. We have

$$
\frac{\partial z}{\partial x}=4 x-3 y, \quad \frac{\partial z}{\partial y}=-3 x-2 y .
$$

Therefore,

$$
\partial z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y=(4 x-3 y) d x-(3 x+2 y) d y .
$$

Further we have

$$
\frac{\partial^{2} z}{\partial x^{2}}=4, \frac{\partial^{2} z}{\partial x \partial y}=-3, \frac{\partial^{2} z}{\partial y^{2}}=-2
$$

whence it follows that

$$
d^{2} z=\frac{\partial^{2} z}{\partial x^{2}} d x^{2}+2 \frac{\partial^{2} z}{\partial x \partial y} d x d y+\frac{\partial^{2} z}{\partial y^{2}} d y^{2}=4 d x^{2}-6 d x d y-2 d y^{2} .
$$

Second method. Differentiating we find

$$
d z=4 x d x-3(y d x+x d y)-2 y d y=(4 x-3 y) d x-(3 x+2 y) d y .
$$

Differentiating again and remembering that $d x$ and $d y$ are not dependent on x and y, we get

$$
d^{2} z=(4 d x-3 d y) d x-(3 d x+2 d y) d y=4 d x^{2}-6 d x d y-2 d y^{2} .
$$

1891. Find $\frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial x \partial y}, \frac{\partial^{2} z}{\partial y^{2}}$ if

$$
z=c \sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}}
$$

1892. Find $\frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial x \partial y}, \frac{\partial^{2} z}{\partial y^{2}}$ if

$$
z=\ln \left(x^{2}+y\right)
$$

1893. Find $\frac{\partial^{2} z}{\partial x \partial y}$ if

$$
z=\sqrt{2 x y+y^{2}}
$$

1894. Find $\frac{\partial^{2} z}{\partial x \partial y}$ if

$$
z=\arctan \frac{x+y}{1-x y}
$$

1895. Find $\frac{\partial^{2} r}{\partial x^{2}}$ if

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

1896. Find all second partial derivatives of the function

$$
u=x y+y z+z x
$$

1897. Find $\frac{\partial^{3} u}{\partial x \partial y \partial z}$ if

$$
u=x^{\mathrm{a}} y^{3} z^{1}
$$

1898. Find $\frac{\partial^{2} z}{\partial x \partial y^{2}}$ if

$$
z=\sin (x y)
$$

1899. Find $f_{x x}^{\prime \prime}(0,0), f_{x i}^{\prime \prime}(0,0), f_{y \prime \prime}^{\prime \prime}(0,0)$ if

$$
f(x, y)=(1+x)^{m}(1+y)^{n} .
$$

1900. Show that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$ if

$$
z=\arcsin \sqrt{\frac{x-y}{x}} .
$$

1901. Show that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$ if

$$
z=x^{y} .
$$

1902*. Show that for the function

$$
f(x, y)=x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

[provided that $f(0,0)=0$] we have

$$
f_{x y}^{\prime \prime}(0,0)=-1, f_{y x}^{\prime \prime}(0,0)=+1
$$

1903. Find $\frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial x \partial y}, \frac{\partial^{2} z}{\partial y^{2}}$ if

$$
z=f(u, v)
$$

where $u=x^{2}+y^{2}, v=x y$.
1904. Find $\frac{\partial^{2} u}{\partial x^{2}}$ if $u=f(x, y, z)$, where $z=\varphi(x, y)$.
1905. Find $\frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial x \partial y}, \frac{\partial^{2} z}{\partial y^{2}}$ if

$$
z=f(u, v) \text {, where } u=\varphi(x, y), v=\psi(x, y) .
$$

1906. Show that the function

$$
u=\arctan \frac{y}{x}
$$

satisfies the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

1907. Show that the function

$$
u=\ln \frac{1}{r},
$$

where $r=\sqrt{(x-a)^{2}+(y-b)^{2}}$, satisfies the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 .
$$

1908. Show that the function

$$
u(x, t)=A \sin (a \lambda t+\varphi) \sin \lambda x
$$

satisfies the equation of oscillations of a string

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} .
$$

1909. Show that the function

$$
u(x, y, z, t)=\frac{1}{(2 a \sqrt{\pi} \pi)^{2}} e^{-\frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(2-z_{0}\right)^{2}}{4 a^{2} t}}
$$

(where x_{0}, y_{0}, z_{0}, a are constants) satisfies the equation of heat conduction

$$
\frac{\partial u}{\partial t}=a^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right) .
$$

1910. Show that the function

$$
u=\varphi(x-a t)+\psi(x+a t),
$$

where φ and ψ are arbitrary twice differentiable functions, satisfies the equation of oscillations of a string

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} .
$$

1911. Show that the function

$$
z=x \psi\left(\frac{y}{x}\right)+\psi\left(\frac{y}{x}\right)
$$

satisfies the equation

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}+2 x y \frac{\partial^{2} z}{\partial x \partial y}+y^{2} \frac{\partial^{2} z}{\partial y^{2}}=0 .
$$

1912. Show that the function

$$
u=\varphi(x y)+\sqrt[\gamma]{x y} \psi\left(\frac{y}{x}\right)
$$

satisfies the equation

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}-y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0
$$

1913. Show that the function $z=f[x+\varphi(y)]$ satisfies the equaion

$$
\frac{\partial z}{\partial x} \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial z}{\partial y} \frac{\partial^{2} z}{\partial x^{2}} .
$$

1914. Find $u=u(x, y)$ if

$$
\frac{\partial^{2} u}{\partial x \partial y}=0 .
$$

1915. Determine the form of the function $u=u(x, y)$, which satisfies the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=0 .
$$

1916. Find $d^{2} z$ if

$$
z=e^{x y}
$$

1917. Find $d^{2} u$ if

$$
u=x y z .
$$

1918. Find $d^{2} z$ if

$$
z=\varphi(t), \text { where } t=x^{2}+y^{2}
$$

1919. Find $d z$ and $d^{2} z$ if

$$
z=u^{v} \text { where } u=\frac{x}{y}, v=x y
$$

1920. Find $d^{2} z$ if

$$
z=f(u, v), \text { where } u=a x, v=b y
$$

1921. Find $d^{2} z$ if
$z=f(u, v)$, where $u=x e^{y}, v=y e^{x}$.
1922. Find $d^{3} z$ if

$$
z=e^{x} \cos y
$$

1923. Find the third differential of the function

$$
z=x \cos y+y \sin x
$$

Determine all third partial derivatives.
1924. Find $d f(1,2)$ and $d^{2} f(1,2)$ if

$$
f(x, y)=x^{2}+x y+y^{2}-4 \ln x-10 \ln y .
$$

1925. Find $d^{2} f(0,0,0)$ if

$$
f(x, y, z)=x^{2}+2 y^{2}+3 z^{2}-2 x y+4 x z+2 y z
$$

Sec. 8. Integration of Total Differentials
1°. The condition for a total differential. For an expression $P(x, y) d x+$ $+Q(x, y) d y$, where the functions $P(x, y)$ and $Q(x, y)$ are continuous in a simply connected region D together with their first partial derivatives, to be (in D) the total differential of some function $u(x, y)$, it is necessary and sufficient that

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} .
$$

Example 1. Make sure that the expression

$$
(2 x+y) d x+(x+2 y) d y
$$

is a total differential of some function, and find that function.
Solution. In the given case, $P=2 x+y, Q=x+2 y$. Therefore, $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}=$ $=1$, and, hence,

$$
(2 x+y) d x+(x+2 y) d y=d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y
$$

where u is the desired function.
It is given that $\frac{\partial u}{\partial x}=2 x+y$; therefore,

$$
u=\int(2 x+y) d x=x^{2}+x y+\varphi(y)
$$

But on the other hand $\frac{\partial u}{\partial y}=x+\varphi^{\prime}(y)=x+2 y$, whence $\varphi^{\prime}(y)=2 y, \varphi(y)=y^{2}+C$ and

$$
u=x^{2}+x y+y^{2}+C .
$$

Finally we have

$$
(2 x+y) d x+(x+2 y) d y=d\left(x^{2}+x y+y^{2}+C\right)
$$

2°. The case of three variables. Similarly, the expression

$$
P(x, y, z) d x+Q(x, y, z) d y+R(x, y, z) d z,
$$

where $P(x, y, z), Q(x, y, z), R(x, y, z)$ are, together with their first partial derivatives, continuous functions of the variables x, y and z, is the total differential of some function $u(x, y, z)$ if and only if the following conditions are fulfilled:

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}, \frac{\partial R}{\partial y} \equiv \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} \equiv \frac{\partial R}{\partial x} .
$$

Example 2. Be sure that the expression

$$
\left(3 x^{2}+3 y-1\right) d x+\left(z^{2}+3 x\right) d y+(2 y z+1) d z
$$

is the total differential of some function, and find that function.
Solution. Here, $P=3 x^{2}+3 y-1, Q=z^{2}+3 x, R=2 y z+1$. We establish the fact that

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}=3, \frac{\partial R}{\partial y}=\frac{\partial Q}{\partial z}=2 z, \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}=0
$$

and, hence,

$$
\left(3 x^{2}+3 y-1\right) d x+\left(z^{2}+3 x\right) d y+(2 y z+1) d z=d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z,
$$

where u is the sought-for function.
We have

$$
\frac{\partial u}{\partial x}=3 x^{2}+3 y-1,
$$

hence,

$$
u=\int\left(3 x^{2}+3 y-1\right) d x=x^{3}+3 x y-x+\varphi(y, z) .
$$

On the other hand,

$$
\begin{aligned}
& \frac{\partial u}{\partial y}=3 x+\frac{\partial \varphi}{\partial y}=z^{2}+3 x, \\
& \frac{\partial u}{\partial z}=\frac{\partial \varphi}{\partial z}=2 y z+1,
\end{aligned}
$$

whence $\frac{\partial \varphi}{\partial y}=z^{2}$ and $\frac{\partial \varphi}{\partial z}=2 y z+1$. The problem reduces to finding the function of two variables $\varphi(y, z)$ whose partial derivatives are known and the condition for total differential is fulfilled.

We find φ :

$$
\begin{aligned}
& \varphi(y, z)=\int z^{2} d y=y z^{2}+\psi(z), \\
& \frac{\partial \varphi}{\partial z}=2 y z+\psi^{\prime}(z)=2 y z+1, \\
& \psi^{\prime}(z)=1, \psi(z)=z+C,
\end{aligned}
$$

that is, $\varphi(y, z)=y z^{2}+z+C$. And finally,

$$
u=x^{2}+3 x y-x+y z^{2}+z+C .
$$

Having convinced yourself that the expressions given below are total differentials of certain functions, find these functions.
1926. $y d x+x d y$.
1927. $\left(\cos x+3 x^{2} y\right) d x+\left(x^{3}-y^{2}\right) d y$.
1928. $\frac{(x+2 y) d x+y d y}{(x+y)^{2}}$.
1929. $\frac{x+2 y}{x^{2}+y^{2}} d x-\frac{2 x-y}{x^{2}+y^{2}} d y$.
1930. $\frac{1}{y} d x-\frac{x}{y^{2}} d y$.
1931. $\frac{x}{\sqrt{x^{2}+y^{2}}} d x+\frac{y}{\sqrt{x^{2}+y^{2}}} d y$.
1932. Determine the constants a and b in such a manner that the expression

$$
\frac{\left(a x^{2}+2 x y+y^{2}\right) d x-\left(x^{2}+2 x y+b y^{2}\right) d y}{\left(x^{2}+y^{2}\right)^{2}}
$$

should be a total differential of some function z, and find that function.

Convince yourself that the expressions given below are total differentials of some functions and find these functions.
1933. $(2 x+y+z) d x+(x+2 y+z) d y+(x+y+2 z) d z$.
1934. $\left(3 x^{2}+2 y^{2}+3 z\right) d x+(4 x y+2 y-z) d y+(3 x-y-2) d z$.
1935. $\left(2 x y z-3 y^{2} z+8 x y^{2}+2\right) d x+$

$$
+\left(x^{2} z-6 x y z+8 x^{2} y+1\right) d y+\left(x^{2} y-3 x y^{2}+3\right) d z
$$

1936. $\left(\frac{1}{y}-\frac{z}{x^{2}}\right) d x+\left(\frac{1}{z}-\frac{x}{y^{2}}\right) d y+\left(\frac{1}{x}-\frac{y}{z^{2}}\right) d z$.
1937. $\frac{x d x+y d y+z d z}{\sqrt{x^{2}+y^{2}+z^{2}}}$.

1938*. Given the projections of a force on the coordinate axes

$$
X=\frac{y}{(x+y)^{2}}, \quad Y=\frac{\lambda x}{(x+y)^{2}},
$$

where λ is a constant. What must the coefficient λ be for the force to have a potential?
1939. What condition must the function $f(x, y)$ satisfy for the expression

$$
f(x, y)(d x+d y)
$$

to be a total differential?
1940. Find the function u if

$$
d u=f(x y)(y d x+x d y)
$$

Sec. 9. Differentiation of Implicit Functions

1^{1}. The case of one independent variable. If the equation $f(x, y)=0$, where $f(x, y)$ is a differentiable function of the variables x and y, defines y as a function of x, then the derivative of this implicitly defined function, provided that $f_{y}^{\prime}(x, y) \neq 0$, may be found from the formula

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{f_{x}^{\prime}(x, y)}{f_{y}^{\prime}(x, y)} \tag{1}
\end{equation*}
$$

Higher-order derivatives are found by successive differentiation of formula (1)

Example 1. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ if

$$
\left(x^{2}+y^{2}\right)^{3}-3\left(x^{2}+y^{2}\right)+1=0 .
$$

Solution. Denoting the left-hand side of this equation by $f(x, y)$, we find the partial derivatives

$$
\begin{aligned}
& f_{r}^{\prime}(x, y)=3\left(x^{2}+y^{2}\right)^{2} \cdot 2 x-3 \cdot 2 x=6 x\left[\left(x^{2}+y^{2}\right)^{2}-1\right], \\
& f_{l \prime}^{\prime}(x, y)=3\left(x^{2}+y^{2}\right)^{2} \cdot 2 y-3 \cdot 2 y=6 y\left[\left(x^{2}+y^{2}\right)^{2}-1\right] .
\end{aligned}
$$

Whence, applying formula (1), we get

$$
\frac{d y}{d x}=-\frac{f_{x}^{\prime}(x, y)}{f_{y}^{\prime}(x, y)}=-\frac{6 x\left[\left(x^{2}+y^{2}\right)^{2}-1\right]}{6 y\left[\left(x^{2}+y^{2}\right)^{2}-1\right]}=-\frac{x}{y} .
$$

To find the second derivative, differentiate with respect to x the first derivative which we have found, taking into consideration the fact that y is a function of x.

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(-\frac{x}{y}\right)=-\frac{1 \cdot y-x \frac{d y}{d x}}{y^{2}}=-\frac{y-x\left(-\frac{x}{y}\right)}{y^{2}}=-\frac{y^{2}+x^{2}}{y^{3}} .
$$

2^{2}. The case of several independent variables. Similarly, if the equation $F(x, y, z)=0$, where $F(x, y, z)$ is a differentiable function of the variables x, y and z, defines z as a function of the independent variables x and y and $F_{z}^{\prime}(x, y, z) \neq 0$, then the partial derivatives of this implicitly represented function can, generally speaking, be found from the formulas

$$
\begin{equation*}
\frac{\partial z}{\partial x}=-\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}, \quad \frac{\partial z}{\partial y}=-\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)} . \tag{2}
\end{equation*}
$$

Here is another way of finding the derivatives of the function z : differentiating the equation $F(x, y, z)=0$, we find

$$
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial z} d z=0 .
$$

Whence it is possible to determine $d z$, and, therefore,

$$
\frac{\partial z}{\partial x} \text { and } \frac{\partial z}{\partial y}
$$

Example 2. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
x^{2}-2 y^{2}+3 z^{2}-y z+y=0 .
$$

Solution. First method. Denoting the left side of this equation by $F(x, y, z)$, we find the partial derivatives

$$
F_{x}^{\prime}(x, y, z)=2 x, F_{y}^{\prime}(x, y, z)=-4 y-z+1, F_{z}^{\prime}(x, y, z)=6 z-y
$$

Applying formulas (2), we get

$$
\frac{\partial z}{\partial x}=-\frac{F_{x}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}=-\frac{2 x}{6 z-y} ; \quad \frac{\partial z}{\partial y}=-\frac{F_{y}^{\prime}(x, y, z)}{F_{z}^{\prime}(x, y, z)}=-\frac{1-4 y-z}{6 z-y} .
$$

Second method. Differentiating the given equation, we obtain

$$
2 x d x-4 y d y+6 z d z-y d z-z d y+d y=0
$$

Whence we determine $d z$, that is, the total differential of the implicit function:

$$
d z=\frac{2 x d x+(1-4 y-z) d y}{y-6 z} .
$$

Comparing with the formula $d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y$, we see that

$$
\frac{\partial z}{\partial x}=\frac{2 x}{y-6 z}, \frac{\partial z}{\partial y}=\frac{1-4 y-z}{y-6 z} .
$$

3°. A system of implicit functions. If a system of two equations

$$
\left\{\begin{array}{l}
F(x, y, u, v)=0, \\
G(x, y, u, v)=0
\end{array}\right.
$$

defines u and v as functions of the variables x and y and the Jacobian

$$
\frac{D(F, G)}{D(u, v)}=\left|\begin{array}{l}
\frac{\partial F}{\partial u} \frac{\partial F}{\partial v} \\
\frac{\partial G}{\partial u} \frac{\partial G}{\partial v}
\end{array}\right| \neq 0,
$$

then the differentials of these functions (and hence their partial derivatives as well) may be found from the following set of equations

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial u} d u+\frac{\partial F}{\partial v} d v=0 \tag{3}\\
\frac{\partial G}{\partial x} d x+\frac{\partial G}{\partial y} d y+\frac{\partial G}{\partial u} d u+\frac{\partial G}{\partial v} d v=0
\end{array}\right.
$$

Example 3. The equations

$$
u+v=x+y, x u+y v=1
$$

define u and v as functions of x and y; find $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$.

Solution. First method. Differentiating both equations with respect to x, we obtain

$$
\begin{gathered}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}=1, \\
u+x \frac{\partial u}{\partial x}+y \frac{\partial v}{\partial x}=0,
\end{gathered}
$$

whence

$$
\frac{\partial u}{\partial x}=-\frac{u+y}{x-y}, \frac{\partial v}{\partial x}=\frac{u+x}{x-y} .
$$

Similarly we find

$$
\frac{\partial u}{\partial y}=-\frac{v+y}{x-y}, \frac{\partial v}{\partial y}=\frac{v+x}{x-y} .
$$

Second method. By differentiation we find two equations that connect the differentials of all four variables:

$$
\begin{gathered}
d u+d v=d x+d y \\
x d u+u d x+y d v+v d y=0 .
\end{gathered}
$$

Solving this system for the differentials $d u$ and $d v$, we obtain

$$
d u=-\frac{(u+y) d x+(v+y) d y}{x-y}, \quad d v=\frac{(u+x) d x+(v+x) d y}{x-y} .
$$

Whence

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=-\frac{u+y}{x-y}, \frac{\partial u}{\partial y}=-\frac{v+y}{x-y}, \\
& \frac{\partial v}{\partial x}=\frac{u+x}{x-y}, \frac{\partial v}{\partial y}=\frac{v+x}{x-y} .
\end{aligned}
$$

4°. Parametric representation of a function. If a function z of the variables x and y is represented parametrically by the equations

$$
x=x(u, v), y=y(u, v), z=z(u, v)
$$

and

$$
\frac{D(x, y)}{D(u, v)}=\left|\begin{array}{l}
\frac{\partial x}{\partial u} \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} \frac{\partial y}{\partial v}
\end{array}\right| \neq 0
$$

then the differential of this function may be found from the following sysfem of equations

$$
\left\{\begin{array}{l}
d x-\frac{\partial x}{\partial u} d u+\frac{\partial x}{\partial v} d v \tag{4}\\
d y=\frac{\partial y}{\partial u} d u+\frac{\partial y}{\partial v} d v \\
d z=\frac{\partial z}{\partial u} d u-1+\frac{\partial z}{\partial v} d v
\end{array}\right.
$$

Knowing the differential $d z=p d x+q d y$, we find the partial derivatives $\frac{\partial z}{\partial x}=p$ and $\frac{\partial z}{\partial y}=q$.

Example 4. The function z of the arguments x and y is defined by the equations

$$
x=u+v, \quad y=u^{2}+v^{2}, \quad z=u^{8}+v^{5} \quad(u \neq v) .
$$

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
Solution. First method. By differentiation we find three equations that connect the differentials of all five variables:

$$
\left\{\begin{array}{l}
d x=d u+d v \\
d y=2 u d u+2 v d v \\
d z=3 u^{2} d u+3 v^{2} d v .
\end{array}\right.
$$

From the first two equations we determine $d u$ and $d v:$

$$
d u=\frac{2 v d x-d y}{2(v-u)}, \quad d v=\frac{d y-2 u d x}{2(v-u)} .
$$

Substituting into the third equation the values of $d u$ and $d v$ just found, we have:

$$
\begin{aligned}
d z=3 u^{2} \frac{2 v d x-d y}{2(v-u)}+ & 3 v^{2} \frac{d y-2 u d x}{2(v-u)}= \\
& =\frac{6 u v(u-v) d x+3\left(v^{2}-u^{2}\right) d y}{2(v-u)}=-3 u v d x+\frac{3}{2}(u+v) d y .
\end{aligned}
$$

$$
\frac{\partial z}{\partial x}=-3 u v, \quad \frac{\partial z}{\partial y}=\frac{3}{2}(u+v) .
$$

Second method. From the third given equation we can find

$$
\begin{equation*}
\frac{\partial z}{\partial x}=3 u^{2} \frac{\partial u}{\partial x}+3 v^{2} \frac{\partial v}{\partial x} ; \quad \frac{\partial z}{\partial y}=3 u^{2} \frac{\partial u}{\partial y}+3 v^{2} \frac{\partial v}{\partial y} . \tag{5}
\end{equation*}
$$

Differentiate the first two equations first with respect to x and then with respect to y :

$$
\begin{cases}1=\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}, & 0=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}, \\ 0=2 u \frac{\partial u}{\partial x}+2 v \frac{\partial v}{\partial x}, & 1=2 u \frac{\partial u}{\partial y}+2 v \frac{\partial v}{\partial y}\end{cases}
$$

From the first system we find

$$
\frac{\partial u}{\partial x}=\frac{v}{v-u}, \quad \frac{\partial v}{\partial x}=\frac{u}{u-v} .
$$

From the second system we find

$$
\frac{\partial u}{\partial y}=\frac{1}{2(u-v)}, \quad \frac{\partial v}{\partial y}=\frac{1}{2(v-u)} .
$$

Substituting the expressions $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ into formula (5), we obtain

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=3 u^{2} \frac{v}{v-u}+3 v^{2} \frac{u}{u-v}=-3 u v, \\
& \frac{\partial z}{\partial y}=3 u^{2} \frac{1}{2(u-v)}+3 v^{2} \cdot \frac{1}{2(v-u)}=\frac{3}{2}(u+v) .
\end{aligned}
$$

1941. Let y be a function of x defined by the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
$$

Find $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ and $\frac{d^{3} y}{d x^{3}}$.
1942. y is a function defined by the equation

$$
x^{2}+y^{2}+2 a x y=0 \quad(a>1)
$$

Show that $\frac{d^{2} y}{d x^{2}}=0$ and explain the result obtained.
1943. Find $\frac{d y}{d x}$ if $y=1+y^{x}$.
1944. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ if $y=x+\ln y$.
1945. Find $\left(\frac{d y}{d x}\right)_{x=1}$ and $\left(\frac{d^{2} y}{d x^{2}}\right)_{x=1}$ if

$$
x^{2}-2 x y+y^{2}+x+y-2=0
$$

Taking advantage of the results obtained, show approximately the portions of the given curve in the neighbourhood of the point $x=1$.
1946. The function y is defined by the equation

$$
\ln \sqrt{x^{2}+y^{2}}=a \arctan \frac{y}{x}(a \neq 0)
$$

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$.
1947. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ if

$$
1+x y-\ln \left(e^{x y}+e^{-x y}\right)=0
$$

1948. The function z of the variables x and y is defined by the equation

$$
x^{3}+2 y^{3}+z^{3}-3 x y z-2 y+3=0
$$

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
1949. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if

$$
x \cos y+y \cos z+z \cos x=1
$$

1950. The function z is defined by the equation

$$
x^{2}+y^{2}-z^{2}-x y=0
$$

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the system of values $x=-1, y=0, z=1$.
1951. Find $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^{2} z}{\partial x^{2}}, \frac{\partial^{2} z}{\partial x \partial y}, \frac{\partial^{2} z}{\partial y^{2}}$ if

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

1952. $f(x, y, z)=0$. Show that $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=-1$.
1953. $z=\varphi(x, y)$, where y is a function of x defined by the equation $\psi(x, y)=0$. Find $\frac{d z}{d x}$.
1954. Find $d z$ and $d^{2} z$, if

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

1955. z is a function of the variables x and y defined by the equation

$$
2 x^{2}+2 y^{2}+z^{2}-8 x z-z+8=0 .
$$

Find $d z$ and $d^{2} z$ for the values $x=2, y=0, z=1$.
1956. Find $d z$ and $d^{2} z$, if $\ln z=x+y+z-1$. What are the first- and second-order derivatives of the function z ?
1957. Let the function z be defined by the equation

$$
x^{2}+y^{2}+z^{2}=\varphi(a x+b y+c z)
$$

where φ is an arbitrary differentiable function and a, b, c are constants. Show that

$$
(c y-b z) \frac{\partial z}{\partial x}+(a z-c x) \frac{\partial z}{\partial y}=b x-a y .
$$

1958. Show that the function z defined by the equation

$$
F(x-a z, y-b z)=0,
$$

where F is an arbitrary differentiable function of two arguments, satisfies the equation

$$
a \frac{\partial z}{\partial x}+b \frac{\partial z}{\partial y}=1
$$

1959. $F\left(\frac{x}{z}, \frac{y}{z}\right)=0$. Show that $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z$.
1960. Show that the function z defined by the equation $y=x \varphi(z)+\psi(z)$ satisfies the equation

$$
\frac{\partial^{2} z}{\partial x^{2}}\left(\frac{\partial z}{\partial y}\right)^{2}-2 \frac{\partial z}{\partial x} \frac{\partial z}{\partial y} \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}\left(\frac{\partial z}{\partial x}\right)^{2}=0 .
$$

1961. The functions y and z of the independent variable x are defined by a system of equations $x^{2}+y^{2}-z^{2}=0, x^{2}+2 y^{2}+3 z^{2}=4$. Find $\frac{d y}{d x}, \frac{d z}{d x}, \frac{d^{2} y}{d x^{2}}, \frac{d^{2} z}{d x^{2}}$ for $x=1, y=0, z=1$.
1962. The functions y and z of the independent variable x are defined by the following system of equations:

$$
x y z=a, x+y+z=b
$$

Find $d y, d z, d^{2} y, d^{2} z$.
1963. The functions u and v of the independent variables x and y are defined implicitly by the system of equations

$$
u=x+y, \quad u v=y
$$

Calculate

$$
\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial x \partial y}, \frac{\partial^{2} u}{\partial y^{2}}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}, \frac{\partial^{2} v}{\partial x^{2}}, \frac{\partial^{2} v}{\partial x \partial y}, \frac{\partial^{2} v}{\partial y^{2}}
$$

for $x=0, y=1$.
1964. The functions u and v of the independent variables x and y are defined implicitly by the system of equations

$$
u+v=x, \quad u-y v=0 .
$$

Find $d u, d v, d^{2} u, d^{2} v$.
1965. The functions u and v of the variables x and y are defined implicitly by the system of equations

$$
x=\varphi(u, v), y=\psi(u, v)
$$

Find $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$.
1966. a) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $x=u \cos v, y=u \sin v, z=c v$.
b) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $x=u+v, y=u-v, z=u v$.
c) Find $d z$, if $x=e^{u+v}, y=e^{u-v}, z=u v$.
1967. $z=F(r, \varphi)$ where r and φ are functions of the variables x and y defined by the system of equations

$$
x=r \cos \varphi, y=r \sin \varphi
$$

Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
1968. Regarding z as a function of x and y, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $x=a \cos \varphi \cos \psi, y=b \sin \varphi \cos \psi, z=c \sin \psi$.

Sec. 10. Change of Variables

When changing variables in differential expressions, the derivatives in them should be expressed in terms of other derivatives by the rules of differentiation of a composite function.
1°. Change of variables in expressions containing ordinary derivatives.
Example 1. Transform the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+\frac{a^{2}}{x^{2}} y=0
$$

putting $x=\frac{1}{t}$.
Solution. Express the derivatives of y with respect to x in terms of the derivatives of y with respect to t. We have

$$
\begin{gathered}
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{d y}{d t}}{-\frac{1}{t^{2}}}=-t^{2} \frac{d y}{d t}, \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=-\left(2 t \frac{d y}{d t}+t^{2} \frac{d^{2} y}{d t^{2}}\right)\left(-t^{2}\right)=2 t^{3} \frac{d y}{d t}+t^{4} \frac{d^{2} y}{d t^{2}} .
\end{gathered}
$$

Substituting the expressions of the derivatives just found into the given equation and replacing x by $\frac{1}{t}$, we get
or

$$
\frac{1}{t^{2}} \cdot t^{3}\left(2 \frac{d y}{d t}+t \frac{d^{2} y}{d t^{2}}\right)+2 \cdot \frac{1}{t}\left(-t^{2} \frac{d y}{d t}\right)+a^{2} t^{2} y=0
$$

$$
\frac{d^{2} y}{d t^{2}}+a^{2} y=0
$$

Example 2. Transform the equation

$$
x \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{s}-\frac{d y}{d x}=0
$$

taking y for the argument and x for the function.
Solution. Express the derivatives of y with respect to x in terms of the derivatives of x with respect to y.

$$
\begin{gathered}
\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}} ; \\
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{1}{\frac{d x}{d y}}\right)=\frac{d}{d y}\left(\frac{1}{\frac{d x}{d y}}\right) \frac{d y}{d x}=-\frac{\frac{d^{2} x}{d y^{2}}}{\left(\frac{d x}{d y}\right)^{2}} \cdot \frac{1}{\frac{d x}{d y}}=-\frac{\frac{d^{2} x}{\left(\frac{d y^{2}}{d y}\right)^{3}}}{(} .
\end{gathered}
$$

Substituting these expressions of the derivatives into the given equation, we will have

$$
x\left[-\frac{\frac{d^{2} x}{d y^{2}}}{\left(\frac{d x}{d y}\right)^{3}}\right]+\frac{1}{\left(\frac{d x}{d y}\right)^{3}}-\frac{1}{\frac{d x}{d y}}=0,
$$

or, finally,

$$
x \frac{d^{2} x}{d y^{2}}-1+\left(\frac{d x}{d y}\right)^{2}=0
$$

Example 3. Transform the equation

$$
\frac{d y}{d x}=\frac{x+y}{x-y},
$$

by passing to the polar coordinates

$$
\begin{equation*}
x=r \cos \varphi, \quad y=r \sin \varphi \tag{1}
\end{equation*}
$$

Solution. Considering r as a function of φ, from formula (1) we have $d x=\cos \varphi d r-r \sin \varphi d \varphi, \quad d y=\sin \varphi d r+r \cos \varphi d \varphi$,
whence

$$
\frac{d y}{d x}=\frac{\sin \varphi d r+r \cos \varphi d \varphi}{\cos \varphi d r-r \sin \varphi d \varphi}=\frac{\sin \varphi \frac{d r}{d \varphi}+r \cos \varphi}{\cos \varphi \frac{d r}{d \varphi}-r \sin \varphi}
$$

Putting into the given equation the expressions for x, y, and $\frac{d y}{d x}$, we will have

$$
\frac{\sin \varphi \frac{d r}{d \varphi}+r \cos \varphi}{\cos \varphi \frac{d r}{d \varphi}-r \sin \varphi}=\frac{r \cos \varphi+-r \sin \varphi}{r \cos \varphi-r \sin \varphi}
$$

or, after simplifications,

$$
\frac{d r}{d \varphi}=r .
$$

2° Change of variables in expressions containing partial derivatives.
Example 4. Take the equation of oscillations of a string

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad(a \neq 0)
$$

and change it to the new independent variables α and β, where $\alpha=x-a t$, $\beta=x+a t$.

Solution. Let us express the partial derivatives of u with respect to x and t in terms of the partial derivatives of u with respect to α and β. Applying the formulas for differentiating a composite function

$$
\frac{\partial u}{\partial t}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial t}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial t}, \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \alpha} \frac{\partial \alpha}{\partial x}+\frac{\partial u}{\partial \beta} \frac{\partial \beta}{\partial x},
$$

we get

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial u}{\partial \alpha}(-a)+\frac{\partial u}{\partial \beta} a=a\left(\frac{\partial u}{\partial \beta}-\frac{\partial u}{\partial \alpha}\right), \\
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \alpha} \cdot 1+\frac{\partial u}{\partial \beta} \cdot 1=\frac{\partial u}{\partial \alpha}+\frac{\partial u}{\partial \beta} .
\end{aligned}
$$

Differentiate again using the same formulas:

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial}{\partial t}\left(\frac{\partial u}{\partial t}\right) & =\frac{\partial}{\partial \alpha}\left(\frac{\partial u}{\partial t}\right) \frac{\partial a}{\partial t}+\frac{\partial}{\partial \beta}\left(\frac{\partial u}{\partial t}\right) \frac{\partial \beta}{\partial t}= \\
& =a\left(\frac{\partial^{2} u}{\partial \alpha \partial \beta}-\frac{\partial^{2} u}{\partial \alpha^{2}}\right)(-a)+a\left(\frac{\partial^{2} u}{\partial \beta^{2}}-\frac{\partial^{2} u}{\partial \alpha \partial \beta}\right) a= \\
& =a^{2}\left(\frac{\partial^{2} u}{\partial \alpha^{2}}-2 \frac{\partial^{2} u}{\partial a \partial \beta}+\frac{\partial^{2} u}{\partial \beta^{2}}\right) ; \\
\frac{\partial^{2} u}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)
\end{aligned}=\frac{\partial}{\partial \alpha}\left(\frac{\partial u}{\partial x}\right) \frac{\partial \alpha}{\partial x}+\frac{\partial}{\partial \beta}\left(\frac{\partial u}{\partial x}\right) \frac{\partial \beta}{\partial x}=1
$$

Substituting into the given equation, we will have

$$
a^{2}\left(\frac{\partial^{2} u}{\partial \alpha^{2}}-2 \frac{\partial^{2} u}{\partial \alpha \partial \beta}+\frac{\partial^{2} u}{\partial \beta^{2}}\right)=a^{2}\left(\frac{\partial^{2} u}{\partial \alpha^{2}}+2 \frac{\partial^{2} u}{\partial \alpha \partial \beta}+\frac{\partial^{2} u}{\partial \beta^{2}}\right)
$$

or

$$
\frac{\partial^{2} u}{\partial a \partial \beta}=0 .
$$

Example 5. Transform the equation $x^{2} \frac{\partial z}{\partial x}+y^{2} \frac{\partial z}{\partial y}=z^{2}$, taking $u=x, v=$ $=\frac{1}{y}-\frac{1}{x}$ for the new independent variables, and $w=\frac{1}{2}-\frac{1}{x}$ for the new function.

Solution. Let us express the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ in terms of the partial derivatives $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$. To do this, differentiate the given relationslups between the old and new variables:

$$
d u=d x, \quad d v=\frac{d x}{x^{2}}-\frac{d y}{y^{2}}, \quad d w=\frac{d x}{x^{2}}-\frac{d z}{z^{2}} .
$$

On the other hand,

$$
d w=\frac{\partial w}{\partial u} d u+\frac{\partial w}{\partial v} d v .
$$

Therefore,

$$
\frac{\partial w}{\partial u} d u+\frac{\partial w}{\partial v} d v=\frac{d x}{x^{2}}-\frac{d z}{z^{2}}
$$

or

Whence

$$
\frac{\partial w}{\partial u} d x+\frac{\partial w}{\partial v}\left(\frac{d x}{x^{2}}-\frac{d y}{y^{2}}\right)=\frac{d x}{x^{2}}-\frac{d z}{z^{2}} .
$$

and, consequently,

$$
d z=z^{2}\left(\frac{1}{x^{2}}-\frac{\partial w}{\partial u}-\frac{1}{x^{2}} \frac{\partial w}{\partial v}\right) d x+\frac{z^{2}}{y^{2}} \frac{\partial w}{\partial v} d y
$$

$$
\frac{\partial z}{\partial x}=z^{2}\left(\frac{1}{x^{2}}-\frac{\partial w}{\partial u}-\frac{1}{x^{2}} \frac{\partial w}{\partial v}\right)
$$

and

$$
\frac{\partial z}{\partial y}=\frac{z^{2}}{y^{2}} \frac{\partial w}{\partial v} .
$$

Substituting these expressions into the given equation, we get

$$
x^{2} z^{2}\left(\frac{1}{x^{2}}-\frac{\partial w}{\partial u}-\frac{1}{x^{2}} \frac{\partial w}{\partial v}\right)+z^{2} \frac{\partial w}{\partial v}=z^{2}
$$

$$
\frac{\partial w}{\partial u}=0 .
$$

1969. Transform the equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+2 x \frac{d y}{d x}+y=0
$$

putting $x=e^{t}$.
1970. Transform the equation

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d \lambda^{2}}-x \frac{d y}{d x}=0
$$

putting $x=\cos t$.

1971 Transiorm the following equations, taking y as the argument:
a) $\frac{d^{2} y}{d x^{2}}+2 y\left(\frac{d y}{d x}\right)^{2}=0$,
b) $\frac{d y}{d x} \frac{d^{3} y}{d x^{3}}-3\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=0$.
1972. The tangent of the angle μ formed by the tangent line $M T$ and the radius vector $O M$ of the point of tangency (Fig. 69) is expressed as follows:

$$
\tan \mu==\frac{y^{\prime}-\frac{y}{x}}{1+\frac{y}{x} y^{\prime}} .
$$

Transform this expression by passing to polar coordinates: $x=r \cos \varphi, y=r \sin \varphi$.
1973. Express, in the polar coordinates $x=r \cos \varphi, y=r \sin \varphi$, the formula of the curvature of the curve

$$
K=\frac{y^{\prime \prime}}{\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}} .
$$

1974. Transform the following equation to new independent variables u and v :

$$
y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=0
$$

if $u=x, v=x^{2}+y^{2}$.
1975. Transform the following equation to new independent variables u and v :

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}-z=0
$$

if $u=x, v=\frac{y}{x}$.
1976. Transform the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

to the polar coordinates

$$
x=r \cos \varphi, \quad y=r \sin \varphi .
$$

1977. Transform the equation

$$
x^{2} \frac{\partial^{2} z}{\partial x^{2}}-y^{2} \frac{\partial^{2} z}{\partial y^{2}}=0
$$

putting $u=x y$ and $v=\frac{x}{y}$.
1978. Transform the equation

$$
y \frac{\partial z}{\partial x}-x \frac{\partial z}{\partial y}=(y-x) z
$$

by introducing new independent variables

$$
u=x^{2}+y^{2}, \quad v=\frac{1}{x}+\frac{1}{y}
$$

and the new function $w=\ln z-(x+y)$.
1979. Transform the equation

$$
\frac{\partial^{2} z}{\partial x^{2}}-2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0,
$$

taking $u=x+y, v=\frac{y}{x}$ for the new independent variables and $w=\frac{z}{x}$ for the new function.
1980. Transform the equation

$$
\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0
$$

putting $u=x+y, v=x-y, w=x y-z$, where $w=w(u, v)$.

Sec. 11. The Tangent Plane and the Normal to a Surface

1°. The equations of a tangent plane and a normal for the case of explicit representation of a surface. The tangent plane to a surface at a point M (point of tangency) is a plane in which lie all the tangents at the point M to various curves drawn on the surface through this point.

The normal to the surface is the perpendicular to the tangent plane at the point of tangency

If the equation of a surface, in a rectangular coordinate system, is given in explicit form, $z=f(x, y)$, where $f(x, y)$ is a differentiable function, then the equation of the tangent plane at the point $M\left(x_{0}, y_{0}, z_{0}\right)$ of the surface is

$$
\begin{equation*}
Z-z_{0}=f_{x}^{\prime}\left(x_{0}, y_{0}\right)\left(X-x_{0}\right)+f_{y}^{\prime}\left(x_{0}, y_{0}\right)\left(Y-y_{0}\right) \tag{1}
\end{equation*}
$$

Here, $z_{0}=f\left(x_{0}, y_{0}\right)$ and X, Y, Z are the current coordinates of the point of the tangent plane.

The equations of the normal are of the form

$$
\begin{equation*}
\frac{X-x_{0}}{f_{\lambda}^{\prime}\left(x_{0}, y_{0}\right)}=\frac{Y-y_{0}}{f_{y}^{\prime}\left(x_{0}, y_{0}\right)}=\frac{Z-z_{0}}{-1}, \tag{2}
\end{equation*}
$$

where X, Y, Z are the current coordinates of the point of the normal.
Example 1. Write the equations of the tangent plane and the normal to the surface $z=\frac{x^{2}}{2}-y^{2}$ at the point $M(2,-1,1)$.

Solution. Let us tind the partial derivatives of the given function and their values at the point M

$$
\begin{array}{ll}
\frac{\partial z}{\partial x}=x, & \left(\frac{\partial z}{\partial x}\right)_{M}=2, \\
\frac{\partial z}{\partial y}=-2 y, & \left(\frac{\partial z}{\partial y}\right)_{M}=2 .
\end{array}
$$

Whence, applying formulas (1) and (2), we will have $z-1=2(x-2)+2(y+1)$ or $2 x-1-2 y-z-1=0$ which is the equation of the tangent plane and $\frac{x-2}{2}=$ $=\frac{y+1}{2}=\frac{z-1}{-1}$, which is the equation of the normal.
2°. Equations of the tangent plane and the normal for the case of implicit representation of a surface. When the equation of a surface is represented implicitly,

$$
F(x, y, z)=0,
$$

and $F\left(x_{0}, y_{0}, z_{0}\right)=0$, the corresponding equations will have the form

$$
F_{x}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)\left(X-x_{0}\right)+F_{y}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)\left(Y-y_{0}\right)+F_{z}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)\left(Z-z_{0}\right)=0
$$

which is the equation of the tangent plane, and

$$
\begin{equation*}
\frac{X-x_{0}}{F_{x}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{Y-y_{0}}{F_{y}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{Z-z_{0}}{F_{z}^{\prime}\left(x_{0}, y_{0}, z_{0}\right)} \tag{4}
\end{equation*}
$$

which are the equations of the normal.
Example 2. Write the equations of the tangent plane and the normal to the surface $3 x y z-z^{2}=a^{3}$ at a point for which $x=0, y=a$.

Solution. Find the z-coordinate of the point of tangency, putting $x=0$, $y=a$ into the equation of the surface: $-z^{2}=a^{8}$, whence $z=-a$. Thus, the point of tangency is $M(0, a,-a)$.

Denoting by $F(x, y, z)$ the left-hand side of the equation, we find the partial derivatives and their values at the point M :

$$
\begin{array}{ll}
F_{x}^{\prime}=3 y z, & \left(F_{z}^{\prime}\right)_{M}=-3 a^{2}, \\
F_{y}^{\prime}=3 x z, & \left(F_{y}^{\prime}\right)_{M}=0, \\
F_{z}^{\prime}=3 x y-3 z^{2}, & \left(F_{z}^{\prime}\right)_{M}=-3 a^{2} .
\end{array}
$$

Applying formulas (3) and (4), we get

$$
-3 a^{2}(x-0)+0(y-a)-3 a^{2}(z+a)=0
$$

or $x+z+a=0$, which is the equation of the tangent plane,

$$
\frac{x-0}{-3 a^{2}}=\frac{y-a}{0}=\frac{z+a}{-3 a^{2}}
$$

or $\frac{x}{1}=\frac{y-a}{0}=\frac{z+a}{1}$, which are the equations of the normal.
1981. Write the equation of the tangent plane and the equations of the normal to the following surfaces at the indicated points:
a) to the paraboloid of revolution $z=x^{2}+y^{2}$ at the point (1. $-2,5$);
b) to the cone $\frac{x^{2}}{16}+\frac{y^{2}}{9}-\frac{z^{2}}{8}=0$ at the point $(4,3,4)$;
c) to the sphere $x^{2}+y^{2}+z^{2}=2 R z$ at the point $(R \cos \alpha$, $R \sin \alpha, R)$.
1982. At what point of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{u^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

does the normal to it form equal angles with the coordinate axes?
1983. Planes perpendicular to the x - and y-axes are drawn through the point $M(3,4,12)$ of the sphere $x^{2}+y^{2}+z^{2}=169$. Write the equation of the plane passing through the tangents to the obtained sections at their common point M.
1984. Show that the equation of the tangent plane to the central surface (of order two)

$$
a x^{2}+b y^{2}+c z^{2}=k
$$

at the point $M\left(x_{0}, y_{0}, z_{0}\right)$ has the form

$$
a x_{0} x+b y_{0} y+c z_{0} z=k .
$$

1985. Draw to the surface $x^{2}+2 y^{2}+3 z^{2}=21$ tangent planes parallel to the plane $x+4 y+6 z=0$.
1986. Draw to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ a tangent plane which cuts off equal segments on the coordinate axes.
1987. On the surface $x^{2}+y^{2}-z^{2}-2 x=0$ find points at which the tangent planes are parallel to the coordinate planes.
1988. Prove that the tangent planes to the surface $x y z=m^{3}$ form a tetrahedron of constant volume with the planes of the coordinates.
1989. Show that the tangent planes to the surface $\sqrt{x}+\sqrt{y}+$ ${ }^{-1} V \bar{z}=\sqrt{a}$ cut off, on the coordinate axes, segments whose sum is constant.
1990. Show that the cone $\frac{x^{2}}{a^{2}}+\frac{y}{b^{2}}=\frac{z^{2}}{c^{2}}$ and the sphere

$$
x^{2}+y^{2}+\left(z-\frac{b^{2}+c^{2}}{c}\right)^{2}=\frac{b^{2}}{c^{2}}\left(b^{2}+c^{2}\right)
$$

are tangent at the points $(0, \pm b, c)$.
1991. The angle between the tangent planes drawn to given surfaces at a point under consideration is called the angle between two surfaces at the point of their intersection.
Λ t what angle does the cylinder $x^{2}+y^{2}=R^{2}$ and the sphere $(x-R)^{2}-y^{2}+z^{2}=R^{2}$ intersect at the point $M\left(\frac{R}{2}, \frac{R \sqrt{3}}{2}, 0\right)$?
1992. Surfaces are called orthogonal if they intersect at right angles at each point of the line of their intersection.

Show that the surfaces $x^{2}+y^{2}+z^{2}=r^{2}$ (sphere), $y=x \tan \psi$ (plane), and $z^{2}=\left(x^{2}+y^{2}\right) \tan ^{2} \psi$ (cone), which are the coordinate surfaces of the spherical coordinates r, φ, ψ, are mutually orthogonal.
1993. Show that all the planes tangent to the conical surface $z=x f\left(\frac{y}{x}\right)$ at the point $M\left(x_{0}, y_{0}, z_{0}\right)$, where $x_{0} \neq 0$, pass through the coordinate origin.

1994*. Find the projections of the ellipsoid

$$
x^{2}+y^{2}+z^{2}-x y-1=0
$$

on the coordinate planes.
1995. Prove that the normal at any point of the surface of revolution $z=f\left(\sqrt{x^{2}+y^{2}}\right)\left(f^{\prime} \neq 0\right)$ intersect the axis of rotation.

Sec. 12. Taylor's Formula for a Function of Several Variables

Let a function $f(x, y)$ have continuous partial derivatives of all orders up to the $(n+1)$ th inclusive in the neighbourhood of a point (a, b). Then Taylor's formula will hold in the neighbourhood under consideration:
$f(x, y)=f(a, b)+\frac{1}{1!}\left[f_{x}^{\prime}(a, b)(x-a)+f_{y}^{\prime}(a, b)(y-b)\right]+$

$$
\begin{array}{r}
+\frac{1}{2!}\left[f_{x x}^{\prime \prime}(a, b)(x-a)^{2}+2 f_{x y}^{\prime \prime}(a, b)(x-a)(y-b)+f_{y y}^{\prime \prime}(a, b)(y-b)^{2}\right]+\ldots \\
\ldots+\frac{1}{n!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{n} f(a, b)+R_{n}(x, y) \tag{1}
\end{array}
$$

where

$$
R_{n}(x, y)=\frac{1}{(n+1)!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{n+1} f[a+\theta(x-a), b+\theta(y-b)]
$$

In other notation,
$f(x+h, y+k)=f(x, y)+\frac{1}{1!}\left[h f_{x}^{\prime}(x, y)+k f_{y}^{\prime}(x, y)\right]+\frac{1}{2!}\left[h^{2} f_{x \lambda}^{\prime \prime}(x, y)+\right.$

$$
\begin{array}{r}
\left.+2 h k f_{x y}^{\prime \prime}(x, y)+k^{2} f_{y y}^{\prime \prime}(x, y)\right]+\ldots+\frac{1}{n!}\left[h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right]^{n} f(x, y)+ \\
+\frac{1}{(n+1)!}\left[h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right]^{n+1} f(x+\theta h ; y+\theta k) \tag{2}
\end{array}
$$

or
$\Delta f(x, y)=\frac{1}{1!} d f(x, y)+\frac{1}{2!} d^{2} f(x, y)+\ldots$

$$
\begin{equation*}
\ldots+\frac{1}{n!} d^{n} f(x, y)+\frac{1}{(n+1)!} d^{n+1} f(x+\theta h ; y+0 k) \tag{3}
\end{equation*}
$$

The particular case of formula (1), when $a=b=0$, is called Maclaurm's formula.

Similar formulas hold for functions of three and a larger number of variables.

Example. Find the increment obtained by the function $f(x, y)=\lambda^{3}$ -$-2 y^{3}+3 x y$ when passing from the values $x=1, y=2$ to the values $x_{1}=1+h$, $y_{1}=2+k$.

Solution. The desired increment may be found by applying formula (2). First calculate the successive partial derivatives and their values at the given point (1, 2):

$$
\begin{array}{ll}
f_{x}^{\prime}(x, y)=3 x^{2}+3 y, & f_{x}^{\prime}(1,2)=3 \cdot 1+3 \cdot 2=9 \\
f_{y}^{\prime}(x, y)=-6 y^{2}+3 x, & f_{y}^{\prime}(1,2)=-6 \cdot 4+3 \cdot 1=-21, \\
f_{x x}^{\prime \prime}(x, y)=6 x, & f_{x x}^{\prime \prime}(1,2)=6 \cdot 1=6, \\
f_{x y}^{\prime \prime}(x, y)=3, & f_{x y}^{\prime \prime}(1,2)=3, \\
f_{y y}^{\prime \prime}(x y)=-12 y, & f_{y y}^{\prime \prime}(1,2)=-12 \cdot 2=-24, \\
f_{x x x}^{\prime \prime}(x, y)=6, & f_{x x x}^{\prime \prime}(1,2)=6, \\
f_{x x y}^{\prime \prime}(x, y)=0, & f_{x x y}^{\prime \prime}(1,2)=0, \\
f_{x y}^{\prime \prime}(x, y)=0, & f_{x y y}^{\prime \prime}(1,2)=0, \\
f_{y y y}^{\prime \prime \prime}(x, y)=-12, & f_{y y y}^{\prime \prime \prime}(1,2)=-12 .
\end{array}
$$

All subsequent derivatives are identically zero. Putting these results into formula (2), we obtain:

$$
\begin{aligned}
\Delta f(x, y)=f(1+h, 2+k)-f(1,2)= & \frac{1}{1!}[h \cdot 9+k(-21)]+ \\
+\frac{1}{2!}\left[h^{2} \cdot 6+2 h k \cdot 3+k^{2}(-24)\right]+\frac{1}{3!} & {\left[h^{3} \cdot 6+3 h^{2} k \cdot 0+3 h k^{2} \cdot 0+k^{3}(-12)\right]=} \\
& =9 h-21 k+3 h^{2}+3 h k-12 k^{2}+h^{8}-2 k^{2} .
\end{aligned}
$$

1996. Expand $f(x+h, y+k)$ in a series of positive integral powers of h and k if

$$
f(x, y)=a x^{2}+2 b x y+c y^{2}
$$

1997. Expand the function $f(x, y)=-x^{2}+2 x y+3 y^{2}-6 x-$ $-2 y-4$ by Taylor's formula in the neighbourhood of the point (-2,1).
1998. Find the increment received by the function $f(x, y)=$ $=x^{2} y$ when passing from the values $x=1, y=1$ to

$$
x_{1}=1+h, y_{1}=1+k .
$$

1999. Expand the function $f(x, y, z)=x^{2}+y^{2}+z^{2}+2 x y-y z-$ $-4 x-3 y-z+4$ by Taylor's formula in the neighbourhood of the point $(1,1,1)$.
2000. Expand $f(x, h, y+k, z+l)$ in a series of positive integral powers of h, k, and l, if

$$
f(x, y, z)=x^{2} \cdot y^{2}+z^{2}-2 x y-2 x z-2 y z .
$$

2001. Expand the following function in a Maclaurin's series up to terms of the thard order inclusive:

$$
f(x, y)=e^{x} \sin y
$$

2002. Expand the following function in a Maclaurin's series up to terms of order four inclusive:

$$
f(x, y)=\cos x \cos y
$$

2003. Expand the following function in a Taylor's series in the neighbourhood of the point $(1,1)$ up to terms of order two inclusive:

$$
f(x, y)=y^{x}
$$

2004. Expand the following function in a Taylor's series in the neighbourhood of the point $(1,-1)$ up to terms of order three inclusive:

$$
f(x, y)=e^{x+y}
$$

2005. Derive approximate formulas (accurate to second-order terms in α and β) for the expressions
a) $\arctan \frac{1+\alpha}{1-\beta} ;$ b) $\sqrt{\frac{(1+\alpha)^{m}+(1+\beta)^{n}}{2}}$,
if $|\alpha|$ and $|\beta|$ are small compared with unity.
2006*. Using Taylor's formulas up to second-order terms, approximate
а) $\sqrt{1.03} ; \sqrt[3]{0.98} ;$ b) $(0.95)^{2.01}$.
2006. z is an implicit function of x and y defined by the equation $z^{3}-2 x z+y=0$, which takes on the value $z=1$ for $x=1$ and $y=1$. Write several terms of the expansion of the function z in increasing powers of the differences $x-1$ and $y-1$.

Sec. 13. The Extremum of a Function of Several Variables

1°. Definition of an extremum of a function. We say that a function $f(x, y)$ has a maximum (minımum) $f(a, b)$ at the point $P(a, b)$, if for all points $P^{\prime}(x, y)$ different from P in a sufficiently small neighbourhood of P the inequality $f(a, b)>f(x, y)$ [or, accordingly, $f(a, b)<f(x, y)]$ is fulfilled. The generic term for maximum and minimum of a function is extremum. In similar fashion we define the extremum of a function of three or more variables.
2°. Necessary conditions for an extremum. The points at which a differentiable function $f(x, y)$ may attain an extremum (so-called stationary points) are found by solving the following system of equations:

$$
\begin{equation*}
f_{x}^{\prime}(x, y)=0, \quad f_{l /}^{\prime}(x, y)-0 \tag{1}
\end{equation*}
$$

(necessary conditions for an extremum). System (1) is equivalent to a single equation, $d f(x, y)=0$. In the general case, at the point of the extremum $P(a, b)$, the function $f(x, y)$, or $d f(a, b)=0$, or $d f(a, b)$ does not exist.
3°. Sufficient conditions for an extremum. Let $P(a, b)$ be a stationary point of the function $f(x, y)$, that is, $d f(a, b)=0$. Then: a) if $d^{2} f(a, b)<0$ for $d x^{2}+d y^{2}>0$, then $f(a, b)$ is the maximum of the function $f(x, y)$; b) if $d^{2} f(a, b)>0$ for $d x^{2}+d y^{2}>0$, then $f(a, b)$ is the mintmum of the function $f(x, y)$; c) if $d^{2} f(a, b)$ changes sign, then $f(a, b)$ is not an extremum of $f(x, y)$.

The foregoing conditions are equivalent to the following: let $f_{\lambda}^{\prime}(a, b)=$ $=f_{y}^{\prime}(a, b)=0$ and $A=f_{x x}^{\prime \prime}(a, b), B=f_{x y}^{\prime \prime}(a, b), C=f_{y y}^{\prime \prime}(a, b)$. We form the discriminant

$$
\Delta=A C-B^{2} .
$$

Then: 1) if $\Delta>0$, then the function has an extremum at the point $P(a, b)$, namely a maximum, if $A<0$ (or $C<0$), and a minimum, if $A>0$ (or $C>0$); 2) if $\Delta<0$, then there is no extremum at $P(a, b) ; 3$) if $\Delta=0$, then the question of an extremum of the function at $P(a, b)$ remains onen (which is to say, it requires further investigation).
4°. The case of a function of many variables. For a function of three or more variables, the necessary conditions for the existence of an extremum
are similar to conditions (1), while the sufficient conditions are analogous to the conditions a), b), and c) 3°.

Example 1. Test the following function for an extremum:

$$
z=x^{3}+3 x y^{2}-15 x-12 y .
$$

Solution. Find the partial derivatives and form a system of equations (1):

$$
\frac{\partial z}{\partial x}=3 x^{2}+3 y^{2}-15=0 ; \quad \frac{\partial z}{\partial y}=6 x y-12=0
$$

or

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-5=0, \\
x y-2=0 .
\end{array}\right.
$$

Solving the system we get four stationary points:

$$
P_{1}(1,2) ; \quad P_{2}(2,1) ; \quad P_{3}(-1,-2) ; \quad P_{4}(-2,-1)
$$

Let us find the second derivatives

$$
\frac{\partial^{2} z}{\partial x^{2}}=6 x, \quad \frac{\partial^{2} z}{\partial x \partial y}=6 y, \quad \frac{\partial^{2} z}{\partial y^{2}}=6 x
$$

and form the discriminant $\Delta=A C-B^{2}$ for each stationary point.

1) For the point $P_{1}: A=\left(\frac{\partial^{2} z}{\partial x^{2}}\right)_{P_{1}}=6, B=\left(\frac{\partial^{2} z}{\partial x \partial y}\right)_{P_{1}}=12, C=\left(\frac{\partial^{2} z}{\partial y^{2}}\right)_{P_{1}}=$ $=6, \Delta=A C-B^{2}=36-144<0$. Thus, there is no extremum at the point P_{1}.
2) For the point $P_{2}: A=12, B=6, C=12 ; \Delta=144-36>0, A>0$. At P_{2} the function has a minimum. This minimum is equal to the value of the function for $x-2, y=1$.

$$
z_{\min }=8+6-30-12=-28
$$

3) For the point $P_{\mathrm{a}}: A=-6, B=-12, C=-6 ; \Delta=36-144<0$. There is $n o$ extremum.
4) For the point $P_{4}: A=-12, B=-6, C=-12 ; \Delta=144-36>0, A<0$. At the point P_{4} the function has a maximum equal to $z_{\text {max }}=-8-6+30+$ $+12=28$
5°. Conditional extremum. In the simplest case, the conditional extremum of a function $f(x, y)$ is a maximum or minimum of this function which is attained on the condition that its arguments are related by the equation $\varphi(x, y)=0$ (coupling equation). To find the conditional extremum of a function $f(x, y)$, given the relationship $\varphi(x, y)=0$ we form the socalled Lagrauge function

$$
F(x, y)=f(x, y)+\lambda \cdot \varphi(x, y),
$$

where λ is an undetermmed multiplier, and we seek the ordinary extremum of this auxiliary function. The necessary conditions for the extremum reduce to a system of three equations:

$$
\left\{\begin{array}{c}
\frac{\partial F}{\partial x}=\frac{\partial f}{\partial x}+\lambda \frac{\partial \varphi}{\partial x}=0, \tag{2}\\
\frac{\partial F}{\partial y}=\frac{\partial f}{\partial y}+\lambda \frac{\partial \varphi}{\partial y}=0, \\
\varphi(x, y)=0
\end{array}\right.
$$

with three unknowns x, y, λ, from which it is, generally speaking, possible to determine these unknowns.

The question of the existence and character of a conditional extremum is solved on the basis of a study of the sign of the second differential of the Lagrange function:

$$
d^{2} F(x, y)=\frac{\partial^{2} F}{\partial x^{2}} d x^{2}+2 \frac{\partial^{2} F}{\partial x \partial y} d x d y+\frac{\partial^{2} F}{\partial y^{2}} d y^{2}
$$

for the given system of values of x, y, λ obtained from (2) or the condition that $d x$ and $d y$ are related by the equation

$$
\frac{\partial \varphi}{\partial x} d x+\frac{\partial \varphi}{\partial y} d y=0 \quad\left(d x^{2}+d y^{2} \neq 0\right)
$$

Namely, the function $f(x, y)$ has a conditional maximum, if $d^{2} F<0$, and a conditional minimum, if $d^{2} F>0$. As a particular case, if the discriminant Δ of the function $F(x, y)$ at a stationary point is positive, then at this point there is a conditional maximum of the function $f(x, y)$, if $A<0$ (or $C<0$), and a conditional minimum, if $A>0$ (or $C>0$)

In similar fashion we find the conditional extremum of a function of three or more variables provided there is one or several coupling equations (the number of which, however, nust be less than the number of the variables) Here, we have to introduce into the Lagrange function as many undetermmed multipliers factors as there are coupling equations.

Example 2. Find the extremum of the function

$$
z=6-4 x-3 y
$$

provided the variables x and y satisfy the equation

$$
x^{2}+y^{2}=1
$$

Solution. Geometrically, the problem reduces to finding the greatest and least values of the z-coordinate of the plane $z=6-4 x-3 y$ for points of its intersection with the cylinder $x^{2}+y^{2}=1$

We form the Lagrange function

$$
F(x, y)=6-4 x-3 y+\lambda\left(x^{2}+y^{2}-1\right) .
$$

We have $\frac{\partial F}{\partial x}=-4+2 \lambda x, \frac{\partial F}{\partial y}=-3+2 \lambda y$. The necessary conditions yield the following system of equations:

$$
\left\{\begin{array}{r}
-4+2 \lambda x=0 \\
-3+2 \lambda y=0 \\
x^{2}+y^{2}=1 .
\end{array}\right.
$$

Solving this system we find

$$
\lambda_{1}=\frac{5}{2}, \quad x_{1}=\frac{4}{5}, \quad y_{1}=\frac{3}{5},
$$

and

$$
\lambda_{2}=-\frac{5}{2}, \quad x_{2}=-\frac{4}{5}, \quad y_{2}=-\frac{3}{5} .
$$

Since

$$
\frac{\partial^{2} F}{\partial x^{2}}=2 \lambda, \quad \frac{\partial^{2} F}{\partial x \partial y}=0, \quad \frac{\partial^{2} F}{\partial y^{2}}=2 \lambda,
$$

it follows that

$$
d^{2} F=2 \lambda\left(d x^{2}+d y^{2}\right) .
$$

If $\lambda=\frac{5}{2}, x=\frac{4}{5}$ and $y=\frac{3}{5}$, then $d^{2} F>0$, and, consequently, the function has a conditional minimum at this point. If $\lambda=-\frac{5}{2}, x=-\frac{4}{5}$ and $y=-\frac{3}{5}$, then $d^{2} F<0$, and, consequently, the function at this point has a conditional maximum.

Thus,

$$
\begin{gathered}
z_{\max }=6+\frac{16}{5}+\frac{9}{5}=11, \\
z_{\min }=6-\frac{16}{5}-\frac{9}{5}=1 .
\end{gathered}
$$

6^{3}. Greatest and smallest values of a function. A function that is differentiable in a limited closed region attains its greatest (smallest) value either at a stationary point or at a point of the boundary of the region.

Example 3. Determine the greatest and smallest values of the function

$$
z=x^{2}+y^{2}-x y+x+y
$$

in the region

$$
x \leqslant 0, y \leqslant 0, x+y \geqslant-3
$$

Solution. The indicated region is a triangle (Fig. 70).

1) Let us find the stationary ponts:

$$
\left\{\begin{array}{l}
z_{x}^{\prime} \equiv 2 x-y+1=0, \\
z_{y}^{\prime} \equiv 2 y-x+1=0 ;
\end{array}\right.
$$

Fig. 70
whence $x=-1, u=-1$; and we get the point $M(-1,-1)$
At M the value of the function $z_{M}=-1$ it is not absolutely necessary to test for an extremum
2) Let us investigate the function on the boundaries of the region.

When $x-0$ we have $z=y^{2}+y$, and the problem reduces to seeking the greatest and smallest values of this function of one argument on the interval $-3 \leqslant y \leqslant 0$. Investigating, we tind that $\left(z_{\mathrm{gr}}\right)_{x=0}=6$ at the point $(0,-3)$; $\left(2_{\sin }\right)_{v=0}=-\frac{1}{4}$ at the point $(0,-1 / 2)$

When $y=0$ we get $z=x^{2}+x$. Similarly, we find that $\left(z_{g r}\right)_{y=0}=6$ at the point $(-3,0) ;\left(z_{\text {sm }}\right)_{y=0}=-\frac{1}{4}$ at the point $(-1 / 2,0)$

When $x+y=-3$ or $y=-3-x$ we will have $z=3 x^{2}+9 x+6$. Similarly we find that $\left(z_{\mathrm{sm}}\right)_{x+y=-3}=-\frac{3}{4}$ at the point $\left(-\frac{3}{2},-\frac{3}{2}\right) ;\left(z_{\mathrm{kr}}\right)_{x+y=-3}=6$ metres coincides with $\left(z_{\mathrm{gr}}\right)_{x=0}$ and $\left(z_{\mathrm{gr}}\right)_{y=0}$. On the straight line $x+y=-3$ we could test the function for a condifional extremum without reducing to a function of one argument.
3) Correlating all the values obtained of the function 2 , we conclude that $z_{\mathrm{gr}}=6$ at the points $(0,-3)$ and $(-3,0) ; z_{\mathrm{sm}}=-1$ at the stationary point ${ }^{\text {g }} \mathrm{M}$.

8-1900

Test for maximum and minimum the following functions of two variables:
2008. $z=(x-1)^{2}+2 y^{2}$.
2009. $z=(x-1)^{2}-2 y^{2}$.
2010. $z=x^{2}+x y+y^{2}-2 x-y$.
2011. $z=x^{3} y^{2}(6-x-y)(x>0, y>0)$.
2012. $z=x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$.
2013. $z=x y \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}}$.
2014. $z=1-\left(x^{2}+y^{2}\right)^{2 / 2}$.
2015. $z=\left(x^{2}+y^{2}\right) e^{-\left(x^{2}+y^{2}\right)}$.
2016. $z=\frac{1+x-y}{\sqrt{1+x^{2}+y^{2}}}$.

Find the extrema of the following functions of three variables:
2017. $u=x^{2}+y^{2}+z^{2}-x y+x-2 z$.
2018. $u=x+\frac{y^{2}}{4 x}+\frac{z^{2}}{y}+\frac{2}{z}(x>0, y>0, z>0)$.

Find the extrema of the following implicitly represented functions:

2019*. $x^{2}+y^{2}+z^{2}-2 x+4 y-6 z-11=0$.
2020. $x^{3}-y^{2}-3 x+4 y+z^{2}+z-8=0$.

Determine the conditional extrema of the following functions:
2021. $z=x y$
2022. $z=x+2 y$
2023. $z=x^{2}+y^{2}$
2024. $z=\cos ^{2} x+\cos ^{2} y$
2025. $u=x-2 y+2 z$
2026. $u=x^{2}+y^{2}+z^{2}$
2027. $u=x y^{2} z^{3}$
2028. $u=x y z$
2029. Prove the inequality

$$
\frac{x+y+z}{3} \geqslant \sqrt[3]{x y z}
$$

if $x \geqslant 0, y \geqslant 0, z \geqslant 0$.
Hint: Seek the maximum of the function $u=x y z$ provided $x+y+z=\mathrm{S}$.
2030. Determine the greatest value of the function $z=1+x+2 y$ in the regions: a) $x \geqslant 0, y \geqslant 0, x+y \leqslant 1$; b) $x \geqslant 0, y \leqslant 0$, $x-y \leqslant 1$.
2031. Determine the greatest and smallest values of the functions a) $z=x^{2} y$ and b) $z=x^{2}-y^{2}$ in the region $x^{2}+y^{2} \leqslant 1$.
2032. Determine the greatest and smallest values of the function $z=\sin x+\sin y+\sin (x+y)$ in the region $0 \leqslant x \leqslant \frac{\pi}{2}$. $0 \leqslant y \leqslant \frac{\pi}{2}$.
2033. Determine the greatest and smallest values of the function $z=x^{3}+y^{3}-3 x y$ in the region $0 \leqslant x \leqslant 2,-1 \leqslant y \leqslant 2$.

Sec. 14. Finding the Greatest and Smallest Values of Functions

Example 1. It is required to break up a positive number a into three nonnegative numbers so that their product should be the greatest possible.

Solution. Let the desired numbers be $x, y, a-x-y$. We seek the maximum of the function $f(x, y)=x y(a-x-y)$.

According to the problem, the function $f(x, y)$ is considered inside a closed triangle $x \geqslant 0, y \geqslant 0, x+y \leqslant a$ (Fig. 71).

Fig. 71
Solving the system of equations

$$
\left\{\begin{array}{l}
f_{x}^{\prime}(x, y) \equiv y(a-2 x-y)=0, \\
f_{y}^{\prime}(x, y) \equiv x(a-x-2 y)=0,
\end{array}\right.
$$

we will have the unique stationary point $\left(\frac{a}{3}, \frac{a}{3}\right)$ for the interior of the triangle. Let us test the sufficiency conditions. We have

$$
f_{x x}^{\prime}(x, y)=-2 y, f_{x y}^{\prime \prime}(x, y)=a-2 x-2 y, f_{y y}^{\prime \prime}(x, y)=-2 x .
$$

8*

Consequently,

$$
\begin{gathered}
A=f_{x x}^{\prime \prime}\left(\frac{a}{3}, \frac{a}{3}\right)=-\frac{2}{3} a, \\
B=f_{x y}^{\prime \prime}\left(\frac{a}{3}, \frac{a}{3}\right)=-\frac{1}{3} a, \\
C=f_{y y}^{\prime \prime}\left(\frac{a}{3}, \frac{a}{3}\right)=-\frac{2}{3} a \text { and } \\
\Delta=A C-B^{2}>0, A<0 .
\end{gathered}
$$

And so at $\left(\frac{a}{3}, \frac{a}{3}\right)$ the function reaches a maximum. Since $f(x, y)=0$ on the contour of the triangle, this maximum will be the greatest value, which is to say that the product will be greatest, if $x=y=a-x-y=\frac{a}{3}$, and the greatest value is equal to $\frac{a^{s}}{27}$.

Note The ploblem can also be solved by the methods of a conditional extremum, by seeking the maximum of the function $u=x y z$ on the condition that $x+y+z=a$.
2034. From among all rectangular parallelepipeds with a given volume V, find the one whose total surface is the least.
2035. For what dimensions does an open rectangular bathtub of a given capacity V have the smallest surface?
2036. Of all triangles of a given perimeter $2 p$, find the one that has the greatest area.
2037. Find a rectangular parallelepiped of a given surface S with greatest volume.
2038. Represent a positive number a in the form of a product of four positive factors which have the least possible sum.
2039. Find a point $M(x, y)$, on an $x y$-plane, the sum of the squares of the distances of which from three straight lines ($x=0, y=0, x-y+1=0$) is the least possible.
2040. Find a triangle of a given perimeter $2 p$, which, upon being revolved about one of its sides, generates a solid of greatest volume.
2041. Given in a plane are three material points $P_{1}\left(x_{1}, y_{1}\right)$, $P_{2}\left(x_{2}, y_{2}\right), P_{3}\left(x_{3}, y_{3}\right)$ with masses m_{1}, m_{2}, m_{3}. For what position of the point $P(x, y)$ will the quadratic moment (the moment of inertia) of the given system of points relative to the point P (i.e., the sum $m_{1} P_{1} P^{2}+m_{2} P_{2} P^{2}+m_{3} P_{3} P^{2}$) be the least?
2042. Draw a plane through the point $M(a, b, c)$ to form a tetrahedron of least volume with the planes of the coordinates.
2043. Inscribe in an ellipsoid a rectangular parallelepiped of greatest volume.
2044. Determine the outer dimensions of an open box with a given wall thickness δ and capacity (internal) V so that the smallest quantity of material is used to make it.
2045. At what point of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

does the tangent line to it form with the coordinate axes a triangle of smallest area?

2046*. Find the axes of the ellipse

$$
5 x^{2}+8 x y+5 y^{2}=9
$$

2047. Inscribe in a given sphere a cylinder having the greatest total surface.
2048. The beds of two rivers (in a certain region) approximately represent a parabola $y=x^{2}$ and a straight line $x-y-2=0$. It is required to connect these rivers by a straight canal of least length. Through what points will it pass?
2049. Find the shortest distance from the point $M(1,2,3)$ to the straight line

$$
\frac{x}{1}=\frac{y}{-3}=\frac{z}{2} .
$$

2050*. The points A and B are situated in different optical media separated by a straight line (Fig. 72). The velocity of

Fis. 72

Fig. 73
light in the first medium is v_{1}, in the second, v_{2}. Applying the Fermat principle, according to which a light ray is propagated along a line $A M B$ which requires the last time to cover, derive the law of refraction of light rays.
2051. Using the Fermat principle, derive the law of reflection of a light ray from a plane in a homogencous medium (Fig. 73).

2052*. If a current I llows in an electric circuit containing a resistance R, then the quantity of heat relcased in unit time is proportional to $I^{2} R$. Determine how to divide the current I into
currents I_{1}, I_{2}, I_{3} by means of three wires, whose resistances are R_{1}, R_{2}, R_{3}, so that the generation of heat would be the least possible?

Sec. 15. Singular Points of Plane Curves

1°. Definition of a singular point. A point $M\left(x_{0}, y_{0}\right)$ of a plane curve $f(x, y)=0$ is called a singular point if its coordinates satisfy three equations at once:

$$
f\left(x_{0}, y_{0}\right)=0, \quad f_{x}^{\prime}\left(x_{0}, y_{0}\right)=0, \quad f_{y}^{\prime}\left(x_{0}, y_{0}\right)=0 .
$$

2°. Basic types of singular points. At a singular point $M\left(x_{0}, y_{0}\right)$, let the second derivatives

$$
\begin{aligned}
& A=f_{x x}^{\prime \prime}\left(x_{0}, y_{0}\right), \\
& B=f_{x y}^{\prime \prime}\left(x_{0}, y_{0}\right), \\
& C=f_{y y}^{\prime \prime}\left(x_{0}, y_{0}\right)
\end{aligned}
$$

be not all equal to zero and

$$
\Delta=A C-B^{2},
$$

then:
a) if $\Delta>0$, then M is an isolated point (Fig. 74);
b) if $\Delta<0$, then M is a node (double point) (F1g. 75);
c) if $\Delta=0$, then M is either a cusp of the first kind (Fig. 76) or of the second kind (Fig. 77), or an isolated point, or a tacnode (Fig. 78).

Fig. 74
Fig. 75
When solving the problems of this section it is always necessary to draw the curves.

Example 1. Show that the curve $y^{2}=a x^{2}+x^{3}$ has a node if $a>0$; an isolated point if $a<0$; a cusp of the first kind if $a=0$.

Solution. Here, $f(x, y) \equiv a x^{2}+x^{3}-y^{2}$. Let us find the partial derivatives and equate them to zero:

$$
\begin{aligned}
& f_{x}^{\prime}(x, y)=2 a x+3 x^{2}=0, \\
& f_{y}^{\prime}(x, y)=-2 y=0 .
\end{aligned}
$$

This system has two solutions: $O(0,0)$ and $N\left(-\frac{2}{3} a, 0\right)$; buit the coordinates of the point N do not satisfy the equation of the given curve. Hence, there is a unique singular point $O(0,0)$.

Fig. 76

Fig. 77

Fig. 78

Let us find the second derivatives and their values at the point 0 :

$$
\begin{array}{ll}
f_{x x}^{\prime \prime}(x, y)=2 a+6 x, & A=2 a, \\
f_{y y}^{\prime}(x, y)=0, & B=0, \\
f_{y u}^{\prime \prime}(x, y)=-2, & C=-2, \\
\Delta=A C-B^{2}=-4 a .
\end{array}
$$

Fig. 79

Fig. 80

Fig. 81

Hence,
if $a>0$, then $\Delta<0$ and the point 0 is a node (Fig. 79);
if $a<0$, then $\Lambda>0$ and O is an isolated point (Fig. 80);
if $a=0$, then $\Delta=0$. The equation of the curve in this case will be $y^{2}=x^{2}$ or $y= \pm \sqrt{x^{3}} ; y=$ exists only when $x \geqslant 0$; the curve is symmetric about the x-axis, which is a tangent. Hence, the point M is a cusp of the first kind (Fig. 81).

Determine the character of the singular points of the following curves:
2053. $y^{2}=-x^{2}+x^{4}$.
2054. $\left(y-x^{2}\right)^{2}=x^{5}$.
2055. $a^{4} y^{2}=a^{2} x^{4}-x^{8}$.
2056. $x^{2} y^{2}-x^{2}-y^{2}=0$.
2057. $x^{3}+y^{2}-3 a x y=0$ (folium of Descartes).
2058. $y^{2}(a-x)=x^{3}$ (cissoid).
2059. $\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$ (lemniscate).
2060. $(a+x) y^{2}=(a-x) x^{2}$ (strophoid).
2061. $\left(x^{2}+y^{2}\right)(x-a)^{2}=b^{2} x^{2} \quad(a>0, b>0)$ (conchoid).

Consider three cases:

1) $a>b$, 2) $a=b, 3) a<b$.
2062. Determine the change in character of the singular point of the curve $y^{2}=(x-a)(x-b)(x-c)$ depending on the values of $a, b, c(a \leqslant b \leqslant c$ are real $)$.

Sec. 16. Envelope

1°. Deflnition of an envelope. The envelope of a family of plane curves is a curve (or a set of several curves) which is tangent to all lines of the given family, and at each point is tangent to some line of the given family.
2°. Equations of an envelope. If a family of curves

$$
f(x, y, \alpha)=0
$$

dependent on a single variable parameter α has an envelope, then the parametric equations of the latter are found from the system of equations

$$
\left\{\begin{array}{l}
f(x, y, \alpha)=0 \tag{1}\\
\dot{f}_{\alpha}(x, y, \alpha)=0
\end{array}\right.
$$

Eliminating the parameter α from the system (1), we get an equation of the form

$$
\begin{equation*}
D(x, y)=0 \tag{2}
\end{equation*}
$$

It should be pointed out that the formally obtained curve (2) (the socalled "discriminant curve") may contain, in addition to an envelope (if there is one), a locus of singular points of the given ramily, which locus is not part of the envelope of this family.

When solving the problems of this section it is advisable to make drawings.

Example. Find the envelope of the family of curves

$$
x \cos \alpha+y \sin \alpha-p=0(p=\text { const }, p>0)
$$

Solution. The given family of curves depends on the parameter a. Form the system of equations (1):

$$
\left\{\begin{aligned}
x \cos \alpha+y \sin \alpha-p & =0, \\
-x \sin \alpha+y \cos \alpha & =0 .
\end{aligned}\right.
$$

Solving the system for x and y, we obtain parametric equations of the envelope

$$
x=p \cos \alpha, \quad y=p \sin \alpha
$$

Squaring both equations and adding, we eliminate the parameter α :

$$
x^{2}+y^{2}=p^{2} .
$$

-1g. 82
Thus, the envelope of this family of straight lines is a circle of radius p with centre at the origin. This particular family of straight lines is a family of tangent lines to this circle (Fig. 82).
2063. Find the envelope of the family of circles

$$
(x-a)^{2}+y^{2}=\frac{a^{2}}{2}
$$

2064. Find the envelope of the family of straight lines

$$
y=k x+\frac{p}{2 k}
$$

(k is a variable parameter).
2065. Find the envelope of a family of circles of the same radius R whose centres lie on the x-axis.
2066. Find a curve which forms an envelope of a section of length l when its end-points slide along the coordinate axes.
2067. Find the envelope of a family of straight lines that form with the coordinate axes a triangle of constant area S.
2068. Find the envelope of ellipses of constant area S whose axes of symmetry coincide.
2069. Investigate the character of the "discriminant curves" of families of the following lines (C is a constant parameter):
a) cubic parabolas $y=(x-C)^{2}$;
b) semicubical parabolas $y^{2}=(x-C)^{8}$;
c) Neile parabolas $y^{3}=(x-C)^{2}$;
d) strophoids $(a+x)(y-C)^{2}=x^{2}(a-x)$.

Fig. 83
2070. The equation of the trajectory of a shell fired from a point O with initial velocity v_{0} at an angle α to the horizon (air resistance disregarded) is

$$
y=x \tan \alpha-\frac{g x^{2}}{2 v_{0}^{2} \cos ^{2} \alpha} .
$$

Taking the angle α as the parameter, find the envelope of all trajectories of the shell located in one and the same vertical plane ("safety parabola") (Fig. 83).

Sec. 17. Arc Length of a Space Curve

The differential of an arc of a space curve in rectangular Cartesian coordinates is equal to

$$
d s=\sqrt{d x^{2}+d y^{2}+d z^{2}}
$$

where x, y, z are the current coordinates of a point of the curve.
If

$$
x=x(t), \quad y=y(t), \quad z=z(t)
$$

are parametric equations of the space curve, then the arc length of a section of it from $t=t_{1}$ to $t=t_{2}$ is

$$
s=\int_{i_{1}}^{t_{2}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t .
$$

In Problems 2071-2076 find the arc length of the curve:
2071. $x=t, y=t^{2}, z=\frac{2 t^{3}}{3} \quad$ from $t=0$ to $t=2$.
2072. $x=2 \cos t, y=2 \sin t, z=\frac{3}{\pi} t \quad$ from $t=0$ to $t=\pi$.
2073. $x=e^{t} \cos t, y=e^{t} \sin t, z=e^{t} \quad$ from $t=0$ to arbitrary t.
2074. $y=\frac{x^{2}}{2}, z=\frac{x^{3}}{6} \quad$ from $x=0$ to $x=6$.
2075. $x^{2}=3 y, 2 x y=9 z \quad$ from the point $O(0,0,0)$ to $M(3,3,2)$.
2076. $y=a \arcsin \frac{x}{a}, z=\frac{a}{4} \ln \frac{a+x}{a-x}$ from the point $O(0,0,0)$ to the point $M\left(x_{0}, y_{0}, z_{0}\right)$.
2077. The position of a point for any time $t(t>0)$ is defined by the equations

$$
x=2 t, \quad y=\ln t, \quad z=t^{2} .
$$

Find the mean velocity of motion between times $t=1$ and $t=10$.

Sec. 18. The Vector Function of a Scalar Argument

1°. The derivative of the vector function of a scalar argument. The vector function $a=a(t)$ may be deflned by specifying three scalar functions $a_{x}(t)$, $a_{y}(t)$ and $a_{z}(t)$, which are its projections on the coordinate axes:

$$
a=a_{x}(t) i+a_{y}(t) j+a_{z}(t) k
$$

The derivative of the vector function $a=a(t)$ with respect to the scalar argument t is a new vector function defined by the equality

$$
\frac{d a}{d t}=\lim _{\Delta t \rightarrow 0} \frac{a(t+\Delta t)-a(t)}{\Delta t}=\frac{d a_{x}(t)}{d t} t+\frac{d a_{y}(t)}{d t} j+\frac{d a_{z}(t)}{d t} k .
$$

The modulus of the derivative of the vector function is

$$
\left|\frac{d a}{d t}\right|=\sqrt{\left(\frac{d a_{x}}{d t}\right)^{2}+\left(\frac{d a_{y}}{d t}\right)^{2}+\left(\frac{d a_{z}}{d t}\right)^{2}}
$$

The end-point of the variable of the radius vector $r=r(t)$ describes in space the curve

$$
\mathbf{r}=x(t) t+y(t) J+z(t) k
$$

which is called the hodograph of the vector r.
The derivative $\frac{d r}{d t}$ is a vector, tangent to the hodograph at the corresponding point; here,

$$
\left|\frac{d r}{d t}\right|=\frac{d s}{d t},
$$

where s is the arc length of the hodograph reckoned from some initial point. For example, $\left|\frac{d r}{d s}\right|=1$.

If the parameter t is the time, then $\frac{d r}{d t}=\boldsymbol{v}$ is the velocity vector of the extremity of the vector r, and $\frac{d^{2} r}{d t^{2}}=\frac{d v}{d t}=w$ is the acceleration vector of the extremity of the vector r.
2°. Basic rules for differentiating the vector function of a scalar argument.

1) $\frac{d}{d t}(a+b-c)=\frac{d a}{d t}+\frac{d b}{d t}-\frac{d c}{d t}$;
2) $\frac{d}{d t}(m a)=m \frac{d a}{d t}$, where m is a constant scalar;
3) $\frac{d}{d t}(\varphi a)=\frac{d \varphi}{d t} a+\varphi \frac{d a}{d t}$, where $\varphi(t)$ is a scalar function of t;
4) $\frac{d}{d t}(a b)=\frac{d a}{d t} b+a \frac{d b}{d t}$;
5) $\frac{d}{d t}(a \times b)=\frac{d a}{d t} \times b+a \times \frac{d b}{d t}$;
6) $\frac{d}{d t} a[\varphi(t)]=\frac{d a}{d \varphi} \cdot \frac{d \varphi}{d t}$;
7) $a \frac{d a}{d t}=0$, if $|a|=$ const.

Example 1. The radius vector of a moving point is at any instant of time defined by the equation

$$
\begin{equation*}
r=t-4 t^{2} j+3 t^{2} k \tag{1}
\end{equation*}
$$

Determine the trajectory of motion, the velocity and acceleration.
Solution. From (1) we have:

$$
x=1, \quad y=-4 t^{2}, \quad z=3 t^{2} .
$$

Eliminating the time t, we find that the trajectory of motion is a straight line:

$$
\frac{x-1}{0}=\frac{y}{-4}=\frac{z}{3} .
$$

From equation (1), differentiating, we find the velocity

$$
\frac{d r}{d t}=-8 t j+6 t k
$$

and the acceleration

$$
\frac{d^{2} r}{d t^{2}}=-8 j+6 k .
$$

The magnitude of the velocity is

$$
\left|\frac{d r}{d t}\right|=\sqrt{(-8 t)^{2}+(6 t)^{2}}=10|t| .
$$

We note that the acceleration is constant and is

$$
\left|\frac{d^{2} r}{d t^{2}}\right|=\sqrt{(-8)^{2}+6^{2}}=10
$$

2078. Show that the vector equation $r-r_{1}=\left(r_{2}-r_{1}\right) t$, where r_{1} and r_{2} are radius vectors of two given points, is the equation of a straight line.
2079. Determine which lines are hodographs of the following vector functions:
a) $r=a t+c$;
b) $\boldsymbol{r}=\boldsymbol{a} t^{2}+\boldsymbol{b} t$;
c) $r=a \cos t+\boldsymbol{b} \sin t$;
d) $\boldsymbol{r}=\boldsymbol{a} \cosh t+\boldsymbol{b} \sinh t$,
where $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} are constant vectors; the vectors \boldsymbol{a} and \boldsymbol{b} are perpendicular to each other.
2080. Find the derivative vector-function of the function $\boldsymbol{a}(t)=a(t) \boldsymbol{a}^{\circ}(t)$, where $\boldsymbol{a}(t)$ is a scalar function, while $\boldsymbol{a}^{\circ}(t)$ is a unit vector, for cases when the vector $a(t)$ varies: 1) in length only, 2) in direction only, 3) in length and in direction (general case). Interpret geometrically the results obtained.
2081. Using the rules of differentiating a vector function with respect to a scalar argument, derive a formula for differentiating a mixed product of three vector functions $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c}.
2082. Find the derivative, with respect to the parameter t, of the volume of a parallelepiped constructed on three vectors:

$$
\begin{aligned}
& a=i+t j+t^{2} k \\
& b=2 t i-j+t^{3} k \\
& c=-t^{2} i+t^{3} j+k
\end{aligned}
$$

2083. The equation of motion is

$$
\boldsymbol{r}=3 i \cos t+4 \boldsymbol{j} \sin t
$$

where t is the time. Determine the trajectory of motion, the velocity and the acceleration. Construct the trajectory of motion and the vectors of velocity and acceleration for times, $t=0$, $t=\frac{\pi}{4}$ and $t=\frac{\pi}{2}$.
2084. The equation of motion is

$$
\boldsymbol{r}=2 \boldsymbol{i} \cos t+2 \boldsymbol{j} \sin t+3 \boldsymbol{k} t
$$

Dctermine the trajectory of motion, the velocity and the acceleration. What are the magnitudes of velocity and acceleration and what directions have they for time $t=0$ and $t=\frac{\pi}{2}$?
2085. The equation of motion is

$$
\boldsymbol{r}=\boldsymbol{i} \cos \alpha \cos \omega t+\boldsymbol{j} \sin \alpha \cos \omega t+\boldsymbol{k} \sin \omega t
$$

where α and ω are constants and t is the time. Determine the trajectory of motion and the magnitudes and directions of the velocity and the acceleration.
2086. The equation of motion of a shell (neglecting air resistance) is

$$
r=v_{0} t-\frac{g t^{2}}{2} k
$$

where $v_{0}\left\{v_{o x}, v_{o y}, v_{o z}\right\}$ is the initial velocity. Find the velocity and the acceleration at any instant of time.
2087. Prove that if a point is in motion along the parabola $y=\frac{x^{2}}{a}, z=0$ in such a manner that the projection of velocity on the x-axis remains constant $\left(\frac{d x}{d t}=\right.$ const $)$, then the acceleration remains constant as well.
2088. A point lying on the thread of a screw being screwed into a beam describes the spiral

$$
x=a \cos \theta, \quad y=a \sin \theta, \quad z=h \theta
$$

where θ is the turning angle of the screw, a is the radius of the screw, and h is the height of rise in a rotation of one radian. Determine the velocity of the point.
2089. Find the velocity of a point on the circumference of a wheel of radius a rotating with constant angular velocity ω so that its centre moves in a straight line with constant velocity v_{0}.

Sec. 19. The Natural Trihedron of a Space Curve

At any nonsingular point $M(x, y, z)$ of a space curve $r=r(i)$ it is possible to construct a natural trihedron consisting of three mutually perpendicular planes (Fig. 84):

1) osculating plane $M M_{1} M_{2}$, containing the vectors $\frac{d r}{d t}$ and $\frac{d^{2} r}{d t^{2}}$;
2) normal plane $M M_{2} M_{2}$, which is perpendicular to the vector $\frac{d r}{d t}$ and
3) rectifying plane $M M_{1} M_{3}$, which is perpendicular to the first two planes.

At the intersection we obtain three straight lines;

1) the tangent $M M_{1} ; 2$) the principal normal $M M_{2} ; 3$) the binormal $M M_{3}$, all of which are defined by the appropriate vectors:
2) $T=\frac{d r}{d t}$ (the vector of the tangent line);
3) $B=\frac{d r}{d t} \times \frac{d^{2} r}{d t^{2}}$ (the vector of the binormal);
4) $\boldsymbol{N}=\boldsymbol{B} \times \boldsymbol{T}$ (the vector of the principal normal);

The corresponding unit vectors

$$
\tau=\frac{T}{|T|} ; \quad \beta=\frac{B}{|B|} ; \quad v=\frac{N}{|N|}
$$

may be computed from the formulas

$$
\tau=\frac{d r}{d s} ; \quad v=\frac{\frac{d \tau}{d s}}{\left|\frac{d \tau}{d s}\right|} ; \quad \beta=\tau \times v
$$

If X, Y, Z are the current coordinates of the point of the tangent, then the equations of the tangent have the form

$$
\begin{equation*}
\frac{X-x}{T_{\xi}}=\frac{Y-y}{T_{v}}=\frac{Z-z}{T_{z}}, \tag{I}
\end{equation*}
$$

Fig. 84
where $T_{x}=\frac{d x}{d t} ; T_{y}=\frac{d y}{d t}, T_{z}=\frac{d z}{d t}$; from the condition of perpendicularity of the line and the plane we get an equation of the normal plane:

$$
\begin{equation*}
T_{x}(X-x)+T_{y}(Y-y)+T_{z}(Z-z)=0 \tag{2}
\end{equation*}
$$

If in equations (1) and (2), we replace T_{x}, T_{y}, T_{z} by $B_{x}, B_{y,} B_{z}$ and N_{x}. N_{y}, N_{z}, we get the equations of the binormal and the principal normal and, respectively, the osculating plane and the rectifying plane.

Example 1. Find the basic unit vectors τ, v and β of the curve

$$
x=t, \quad y=t^{2}, \quad z=t^{3}
$$

at the point $t=1$.
Write the equations of the tangent, the principal normal and the binormal at this point.

Solution. We have
and

$$
r=t i+t^{2} j+t^{3} k
$$

$$
\begin{aligned}
& \frac{d r}{d t}=i+2 t j+3 t^{2} k, \\
& \frac{d^{2} r}{d t^{2}}=2 j+6 t k,
\end{aligned}
$$

Whence, when $t=1$, we get

$$
\begin{gathered}
T=\frac{d r}{d t}=\boldsymbol{i}+2 j+3 k ; \\
B=\frac{d r}{d t} \times \frac{d^{2} r}{d t^{2}}=\left|\begin{array}{ccc}
\boldsymbol{i} & j & \boldsymbol{k} \\
1 & 2 & 3 \\
0 & 2 & 6
\end{array}\right|=6 \boldsymbol{l}-6 j+2 \boldsymbol{k} ; \\
N=B \times T=\left|\begin{array}{rrr}
\boldsymbol{l} & j & \vec{k} \\
6 & -6 & 2 \\
1 & 2 & 3
\end{array}\right|=-22 \boldsymbol{i}-16 j+18 \boldsymbol{k} .
\end{gathered}
$$

Consequently,

$$
\tau=\frac{i+2 j+3 k}{\sqrt{14}}, \quad \beta=\frac{3 i-3 j+k}{\sqrt{19}}, \quad v=\frac{-11 i-8 j+9 k}{\sqrt{266}} .
$$

Since for $t=1$ we have $x=1, y=1, z=1$, it follows that

$$
\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-1}{3}
$$

are the equations of the tangent,

$$
\frac{x-1}{3}=\frac{y-1}{-3}=\frac{z-1}{1}
$$

are the equations of the binormal and

$$
\frac{x-1}{-11}=\frac{y-1}{-8}=\frac{z-1}{9}
$$

are the equations of the principal normal.
If a space curve is represented as an intersection of two surfaces

$$
F(x, y, z)=0, \quad G(x, y, z)=0
$$

then in place of the vectors $\frac{d r}{d t}$ and $\frac{d^{2} r}{d t^{2}}$ we can take the vectors $d r\{d x, d y, d z\}$ and $d^{2} r\left\{d^{2} x, d^{2} y, d^{2} z\right\}$; and one of the variables x, y, z may be considered independent and we can put its second differential equal to zero.

Example 2. Write the equation of the osculating plane of the circle

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=6, \quad x+y+z=0 \tag{3}
\end{equation*}
$$

at its point $M(1,1,-2)$.
Solution. Differentiating the system (3) and considering x an independent varıable, we will have

$$
\begin{gathered}
x d x+y d y+z d z=0 \\
d x+d y+d z=0
\end{gathered}
$$

and

$$
\begin{gathered}
d x^{2}+d y^{2}+y d^{2} y+d z^{2}+z d^{2} z=0 \\
d^{2} y+d^{2} z=0 .
\end{gathered}
$$

Putting $x=1, y=1, z=-2$, we get

$$
\begin{array}{cl}
d y=-d x ; \quad d z=0 \\
d^{2} y=-\frac{2}{3} d x^{2} ; \quad d^{2} z=\frac{2}{3} d x^{2}
\end{array}
$$

Hence, the osculating plane is defined by the vectors

$$
\{d x,-d x, 0\} \quad \text { and } \quad\left\{0,-\frac{2}{3} d x^{2}, \frac{2}{3} d x^{2}\right\}
$$

or

$$
\{1,-1,0\} \text { and }\{0,-1,1\} .
$$

Whence the normal vector of the osculating plane is

$$
B=\left|\begin{array}{rrr}
i & j & k \\
1 & -1 & 0 \\
0 & -1 & 1
\end{array}\right|=-i-j-k
$$

and, therefore, its equation is
that is,

$$
-1(x-1)-(y-1)-(z+2)=0,
$$

$x+y+z=0$,
as it should be, since our curve is located in this plane.
2090. Find the basic unit vectors $\boldsymbol{\tau}, \boldsymbol{v}, \boldsymbol{\beta}$ of the curve

$$
x=1-\cos t, \quad y=\sin t, \quad z=t
$$

at the point $t=\frac{\pi}{2}$.
2091. Find the unit vectors of the tangent and the principal normal of the conic spiral

$$
r=e^{t}(l \cos t+j \sin t+\boldsymbol{k})
$$

at an arbitrary point. Determine the angles that these lines make with the z-axis.
2092. Find the basic unit vectors $\tau, \boldsymbol{v}, \boldsymbol{\beta}$ of the curve

$$
y=x^{2}, \quad z=2 x
$$

at the point $x=2$.
2093. For the screw line

$$
x=a \cos t, \quad y=a \sin t, \quad z=b t
$$

write the equations of the straight lines that form a natural trihedron at an arbitrary point of the line. Determine the direction cosines of the tangent line and the principal normal.
2094. Write the equations of the planes that form the natural trihedron of the curve

$$
x^{2}+y^{2}+z^{2}=6, \quad x^{2}-y^{2}+z^{2}=4
$$

at one of its points $M(1,1,2)$.
2095. Form the equations of the tangent line, the normal plane and the osculating plane of the curve $x=t, y=t^{2}, z=t^{3}$ at the point $M(2,4,8)$.
2096. Form the equations of the tangent, principal normal, and binormal at an arbitrary point of the curve

$$
x=\frac{t^{4}}{4}, \quad y=\frac{t^{2}}{3}, \quad z=\frac{t^{2}}{2} .
$$

Find the points at which the tangent to this curve is parallel to the plane $x+3 y+2 z-10=0$.
2097. Form equations of the tangent, the osculating plane, the principal normal and the binormal of the curve

$$
x=t, \quad y=-t, \quad z=\frac{t^{2}}{2}
$$

at the point $t=2$. Compute the direction cosines of the binormal at this point.
2098. Write the equations of the tangent and the normal plane to the following curves:
a) $x=R \cos ^{2} t, y=R \sin t \cos t, z=R \sin t$ for $t=\frac{\pi}{4}$;
b) $z=x^{2}+y^{2}, x=y$ at the point ($1,1,2$);
c) $x^{2}+y^{2}+z^{2}=25, x+z=5$ at the point $(2,2 \sqrt{3}, 3)$.

2099 Find the equation of the normal plane to the curve $z=x^{2}-y^{2}, y=x$ at the coordinate origin.
2100. Find the equation of the osculating plane to the curve $x=e^{t}, y=e^{-t}, z=t \sqrt{2}$ at the point $t=0$.
2101. Find the equations of the osculating plane to the curves:
a) $x^{2}+y^{2}+z^{2}=9, x^{2}-y^{2}=3$ at the point $(2,1,2)$;
b) $x^{2}=4 y, x^{3}=24 z$ at the point $(6,9,9)$;
c) $x^{2}+z^{2}=a^{2}, y^{2}+z^{2}=b^{2}$ at any point of the curve $\left(x_{0}, y_{0}, z_{0}\right)$.
2102. Form the equations of the osculating plane, the principal normal and the binormal to the curve

$$
y^{2}=x, x^{2}=z \text { at the point }(1,1,1)
$$

2103. Form the equations of the osculating plane, the principal normal and the binormal to the conical screw-line $x=t \cos t$, $y=t \sin t, z=b t$ at the origin. Find the unit vectors of the tangent, the principal normal, and the binormal at the origin.

Sec. 20. Curvature and Torsion of a Space Curve

1°. Curvature. By the curvature of a curve at a point M we mean the number

$$
K=\frac{1}{R}=\lim _{\Delta s \rightarrow 0} \frac{\varphi}{\Delta s},
$$

where φ is the angle of turn of the tangent line (angle of contingence) on a segment of the curve $\widehat{M N}, \Delta s$ is the arc length of this segment of the curve. R is called the radius of curvature. If a curve is defined by the equation $\boldsymbol{r}=\boldsymbol{r}(s)$, where s is the arc length, then

$$
\frac{1}{R}=\left|\frac{d^{2} r}{d s^{2}}\right| .
$$

For the case of a general parametric representation of the curve we have

$$
\begin{equation*}
\frac{1}{R}=\frac{\left|\frac{d r}{d t} \times \frac{d^{2} r}{d t^{2}}\right|}{\left|\frac{d r}{d t}\right|^{2}} \tag{I}
\end{equation*}
$$

2°. Torsion. By torsion (second curvature) of a curve at a point M we mean the number

$$
T=\frac{1}{\mathbf{Q}}=\lim _{\Delta s \rightarrow 0} \frac{0}{\Delta s},
$$

where 0 is the angle of turn of the binormal (angle of contingence of the second kind) on the segment of the curve $\bar{M} . V$. The quantity e is called the radus of torsion or the radius of second curvature. If $r=r(s)$, then

$$
\frac{1}{0}= \pm\left|\frac{d \beta}{d s}\right|=\frac{\frac{d r}{d s} \frac{d^{2} r s^{2} r}{d s^{2} r}}{\left(\frac{d^{2} r}{d s^{2}}\right)^{2}}
$$

where the minus sign is taken when the vectors $\frac{d \beta}{d s}$ and v have the same direction, and the plus sign, when not the same.

If $r=r(t)$, where t is an arbitrary parameter, then

$$
\begin{equation*}
\frac{1}{\mathrm{e}}=\frac{\frac{d r}{\bar{d} t} \frac{d^{2} r}{d t^{2}} \frac{d^{3} r}{d t^{2}}}{\left(\frac{d r}{d t} \times \frac{d^{2} r}{d t^{2}}\right)^{2}} \tag{2}
\end{equation*}
$$

Example 1. Find the curvature and the torsion of the screw-line

$$
r=t a \cos t+j a \sin t+k b t \quad(a>0) .
$$

Solution. We have

$$
\begin{aligned}
& \frac{d r}{d t}=-t a \sin t+j a \cos t+k b \\
& \frac{d^{2} r}{d t^{2}}=-i a \cos t-j a \sin t \\
& \frac{d^{r} r}{d t^{3}}=-i a \sin t-j a \cos t
\end{aligned}
$$

Whence

$$
\frac{d r}{d t} \times \frac{d^{2} r}{d t^{2}}=\left|\begin{array}{ccc}
t & j & k \\
-a \sin t & a \cos t & b \\
-a \cos t & -a \sin t & 0
\end{array}\right|=i a b \sin t-j a b \cos t+a^{2} k
$$

and

$$
\frac{d r}{d t} \frac{d^{2} r}{d t^{2}} \frac{d^{3} r}{d t^{3}}=\left|\begin{array}{rrr}
-a \sin t & a \cos t & b \\
-a \cos t & -a \sin t & 0 \\
a \sin t & -a \cos t & 0
\end{array}\right|=a^{2} b .
$$

Hence, on the basis of formulas (1) and (2), we get

$$
\frac{1}{R}=\frac{a \sqrt{a^{2}+b^{2}}}{\left(a^{2}+b^{2}\right)^{3 / 2}}=\frac{a}{a^{2}+b^{2}}
$$

and

$$
\frac{1}{Q}=\frac{a^{2} b}{a^{2}\left(a^{2}+b^{2}\right)}=\frac{b}{a^{2}+b^{2}} .
$$

Thus, for a screw-line, the curvature and torsion are constants.
3° Frenet formulas:

$$
\frac{d \tau}{d s}=\frac{\boldsymbol{v}}{R}, \quad \frac{d \boldsymbol{v}}{d s}=-\frac{\boldsymbol{\tau}}{R}+\frac{\boldsymbol{\beta}}{\varrho}, \quad \frac{d \boldsymbol{\beta}}{d s}=-\frac{\boldsymbol{v}}{\varrho} .
$$

2104. Prove that if the curvature at all points of a line is zero, then the line is a straight line.
2105. Prove that if the torsion at all points of a curve is zero, then the curve is a plane curve.
2106. Prove that the curve

$$
x=1+3 t+2 t^{2}, y=2-2 t+5 t^{2}, z=1-t^{2}
$$

is a plane curve; find the plane in which it lies.
2107. Compute the curvature of the following curves:
a) $x=\cos t, y=\sin t, z=\cosh t$ at the point $t=0$;
b) $x^{2}-y^{2}+z^{2}=1, y^{2}-2 x+z=0$ at the point $(1,1,1)$.
2108. Compute the curvature and torsion at any point of the curves:
a) $x=e^{t} \cos t, y=e^{t} \sin t, z=e^{t}$;
b) $x=a \cosh t, y=a \sinh t, z=a t$ (hyperbolic screw-line).
2109. Find the radii of curvature and torsion at an arbitrary point (x, y, z) of the curves:
a) $x^{2}=2 a y, x^{3}=6 a^{2} z$;
b) $x^{3}=3 p^{2} y, 2 x z=p^{2}$.
2110. Prove that the tangential and normal components of acceleration w are expressed by the formulas

$$
\boldsymbol{w} \boldsymbol{\tau}=\frac{d v}{d t} \boldsymbol{\tau}, \quad \boldsymbol{w}_{\nu}=\frac{v^{2}}{R} v,
$$

where v is the velocity, R is the radius of curvature of the trajectory, τ and v are unit vectors of the tangent and principal normal to the curve.
2111. A point is in uniform motion along a screw-line $r=$ $=\boldsymbol{i} a \cos t+j a \sin t+b t \boldsymbol{k}$ with velocity v. Compute its acceleration w.
2112. The equation of motion is

$$
r=t i+t^{2} j+t^{3} k
$$

Determine, at times $t=0$ and $t=1:$ 1) the curvature of the trajectory and 2) the tangential and normal components of the acceleration.

MULTIPLE AND LINE INTEGRALS

Sec. 1. The Double Integral in Rectangular Coordinates

1°. Direct computation of double integrals. The double integral of a continuous function $f(x, y)$ over a bounded closed region S is the limit of the corresponding two-dimensional integral sum

$$
\begin{equation*}
\int_{(S)} f(x, y) d x d y=\lim _{\substack{\max _{\begin{subarray}{c}{ } }} \max ^{2} \Delta y_{k} \rightarrow 0} \\
{l_{k} \rightarrow 0}\end{subarray}} \sum_{i} \sum_{k} f\left(x_{i}, y_{k}\right) \Delta x_{i} \Delta y_{k} \tag{I}
\end{equation*}
$$

where $\Delta x_{i}=x_{i+1}-x_{i}, \Delta y_{k}=y_{k+1}-y_{k}$ and the sum is extended over those values of i and k for which the points (x_{i}, y_{k}) belong to S.
2°. Setting up the limits of integration in a double integral. We distinguish two basic types of region of integration.

Fig. 85

Fig. 86

1) The region of integration S (Fig. 85) is bounded on the left and right by the straight lines $x=x_{1}$ and $x=x_{2}\left(x_{2}>x_{1}\right)$, from below and from above by the continuous curves $y=\varphi_{1}(x)(A B)$ and $y=\varphi_{2}(x)(C D)\left[\varphi_{2}(x) \geqslant \varphi_{1}(x)\right]$. each of which intersects the vertical $x=X\left(x_{1} \leqslant X \leqslant x_{2}\right)$ at only one point (set Fig. 85). In the region S, the variable x varies from x_{1} to x_{2}, while the variable y (for x constant) varies from $y_{2}=\varphi_{1}(x)$ to $y_{2}=\varphi_{2}(x)$. The integral (1) mas
be computed by reducing to an iterated integral by the formula

$$
\iint_{(S)} f(x, y) d x d y=\int_{x_{1}}^{x_{2}} d x \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) d y,
$$

where x is held constant when calculating $\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} f(x, y) d y$.
2) The region of integration S is bounded from below and from above by the straight lines $y=y_{1}$ and $y=y_{2}\left(y_{2}>y_{1}\right)$, and from the left and the right by the continuous curves $x=\psi_{1}(y)(A B)$ and $x=\psi_{2}(y)(C D)\left[\psi_{2}(y) \geqslant \psi_{1}(y)\right]$, each of which intersects the parallel $y=Y\left(y_{1} \leqslant Y \leqslant y_{2}\right)$ at only one point (Fig. 86).

As before, we have

$$
\iint_{(S)} f(x, y) d x d y=\int_{y_{1}}^{y_{2}} d y \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) d x,
$$

$$
\psi_{2}(j)
$$

here, in the integral $\int_{\psi_{1}(y)} f(x, y) d x$ we consider y constant.
If the region of integration does not belong to any of the above-discussed types, then an attempt is made to break it up into parts, each of which does belong to one of these two types.

Example 1. Evaluate the integral

$$
I=\int_{0}^{1} d x \int_{v}^{1}(x+y) d y
$$

Fig. 87
Solution.

$$
I=\left.\int_{0}^{1}\left(x y+\frac{y_{2}}{2}\right)\right|_{y=x} ^{y=1} d x=\int_{0}^{1}\left[\left(x+\frac{1}{2}\right)-\left(x^{2}+\frac{x_{2}}{2}\right)\right] d x=\frac{1}{2} .
$$

Example 2. Determine the limits of integration of the integral

$$
\int_{(S)} f(x, y) d x d y
$$

if the region of integration S (Fig. 87) is bounded by the hyperbola $y^{2}-x^{2}=1$ and by two straight lines $x=2$ and $x=-2$ (we have in view the region containing the coordinate origin).

Solution. The region of integration $A B C D$ (Fig. 87) is bounded by the straight lines $x=-2$ and $x=2$ and by two branches of the hyperbola

$$
y=\sqrt{1+x^{2}} \quad \text { and } \quad y=-\sqrt{1+x^{2}} ;
$$

that is, it belongs to the first type. We have:

$$
\iint_{(S)} f(x, y) d x d y=\int_{-2}^{2} d x \int_{-\sqrt{1+x^{2}}}^{\sqrt{1+x^{2}}} f(x, y) d y .
$$

Evaluate the following iterated integrals:
2113. $\int_{0}^{2} d y \int_{0}^{1}\left(x^{2}+2 y\right) d x$.
2117. $\int_{-5}^{5} d y \int_{y^{2}-4}^{5}(x+2 y) d x$.
$2114 \int_{3}^{4} d x \int_{1}^{2} \frac{d y}{(x+y)^{2}}$.
2118. $\int_{0}^{2 \pi} d \varphi \int_{a \sin \varphi}^{a} r d r$.
2115. $\int_{0}^{1} d x \int_{0}^{1} \frac{x^{2} d y}{1+y^{2}}$.
2119. $\int_{-\frac{\pi}{2}}^{2} d \varphi \int_{0}^{3 \cos \varphi} r^{2} \sin ^{2} \varphi d r$.
2116. $\int_{1}^{2} d x \int_{\frac{1}{x}}^{x} \frac{x^{2} d y}{y^{2}}$.
2120. $\int_{0}^{1} d x \int_{0}^{1 / \overline{1-x^{2}}} \sqrt{1-x^{2}-y^{2}} d y$.

Write the equations of curves bounding regions over which the following double integrals are extended, and draw these regions:
2121. $\int_{-0}^{2} d y \int_{\frac{y^{2}}{4}-1}^{2-y} f(x, y) d x$.
2124. $\int_{1}^{3} d x \int_{x}^{2 x} f(x, y) d y$.
2122. $\int_{1}^{3} d x \int_{x^{2}}^{x+9} f(x, y) d y$.
2125. $\int_{0}^{8} d x \int_{0}^{\sqrt{25-x^{2}}} f(x, y) d y$.
2123. $\int_{0}^{4} d y \int_{y}^{10-y} f(x, y) d x$.
2126. $\int_{-1}^{2} d x \int_{x^{2}}^{x+2} f(x, y) d y$.

Set up the limits of integration in one order and then in the other in the double integral

$$
\int_{(\mathrm{S})} \int_{f} f(x, y) d x d y
$$

for the indicated regions S.
2127. S is a rectangle with vertices $O(0,0), A(2,0), B(2,1)$, $C(0,1)$.
2128. S is a triangle with vertices $O(0,0), A(1,0), B(1,1)$. 2129. S is a trapezoid with vertices $O(0,0), A(2,0), B(1,1)$, $C(0,1)$.
2130. S is a parallelogram with vertices $A(1,2), B(2,4)$, $C(2,7), D(1,5)$.
2131. S is a circular sector $O A B$ with centre at the point $O(0,0)$, whose arc end-points are $A(1,1)$ and $B(\ldots 1,1)$ (Fig. 88).

F以 88

Fig 89
2132. S is a right parabolic segment $A O B$ bounded by the parabola $B O A$ and a segment of the straight line $B A$ connecting the points $B(-1,2)$ and $A(1,2)$ (Fig. 89).
2133. S is a circular ring bounded by circles with radii $r=1$ and $R=2$ and with common centre $O(0,0)$.
2134. S is bounded by the hyperbola $y^{2}-x^{2}=1$ and the circle $x^{2}+y^{2}=9$ (the region containing the origin is meant).
2135. Set up the limits of integration in the double integral

$$
\iint_{(S)} f(x, y) d x d y
$$

if the region S is defined by the inequalities
a) $x=0 ; y \geq 0 ; x-1-y \leqslant 1$;
d) $y=x ; \quad x \geqq-1 ; \quad y \leqslant 1 ;$
b) $x^{2}+y^{2} \leqslant a^{2}$;
e) $y \leqslant x \leqslant y+2 a$;
c) $x^{2}+y^{2} \leqslant x$;
$0 \leqslant y \leqslant a$.

Change the order of integration in the following double integrals:
2136. $\int_{0}^{1} d x \int_{3 x^{2}}^{12 x} f(x, y) d y$.
2137. $\int_{0}^{1} d x \int_{2 x}^{x} f(x, y) d y$.
2138. $\int_{0}^{a} d x \int_{\frac{a^{2}-x^{2}}{2 a}}^{\sqrt{a^{2}-x^{2}}} f(x, y) d y$. 2141. $\int_{0}^{1} d y \int_{-\sqrt{1-y^{2}}}^{1-y} f(x, y) d x$.
2139. $\int_{\frac{a}{2}}^{a} d x \int_{0}^{\sqrt{2 a x-x^{2}}} f(x, y) d y . \quad$ 2142. $\int_{0}^{1} d y \int_{\frac{y^{2}}{2}}^{\sqrt{2-y^{2}}} f(x, y) d x$.
2140. $\int_{0}^{2 a} d x \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{4 a x}} f(x, y) d y$.
2143. $\int_{0}^{\frac{R \sqrt{2}}{2}} d x \int_{0}^{x} f(x, y) d y+\int_{\frac{R \sqrt{2}}{2}}^{R} d x \int_{0}^{\sqrt{R^{2}-x^{2}}} f(x, y) d y$.
2144. $\int_{0}^{\pi} d x \int_{0}^{\sin x} f(x, y) d y$.

Evaluate the following double integrals:
2145. $\iint_{(S)} x d x d y$, where S is a triangle with vertices $O(0,0)$, $A(1,1)$, and $B(0,1)$.

Fig. 90

Fig. 91
2146. $\iint_{(S)} x d x d y$, where the region of integration S is bounded by the straight line passing through the points $A(2,0), B(0,2)$ and by the arc of a circle with centre at the point $C(0,1)$, and radius 1 (Fig. 90).
2147. $\iint_{(S)} \frac{d x d y}{\sqrt{a^{2}-x^{2}-y^{2}}}$, where S is a part of a circle of radius a with centre at $O(0,0)$ lying in the first quadrant.
2148. $\iint_{(S)} \sqrt{x^{2}-y^{2}} d x d y$, where S is a triangle with vertices $O(0,0), A(1,-1)$, and $B(1,1)$.
2149. $\iint_{(S)} \sqrt{x y-y^{2}} d x d y$, where S is a triangle with vertices $O(0,0), A(10,1)$, and $B(1,1)$.
2150. $\iint_{(S)} e^{\frac{x}{y}} d x d y$, where S is a curvilinear triangle $O A B$ bounded by the parabola $y^{2}=x$ and the straight lines $x=0, y=1$ (Fig. 91).
2151. $\iint_{(S)} \frac{x d x d y}{x^{2}+y^{2}}$, where S is a parabolic segment bounded by the parabola $y=\frac{x^{2}}{2}$ and the straight line $y=x$.
2152. Compute the integrals and draw the regions over which they extend:
a) $\int_{0}^{\pi} d x \int_{0}^{1+\cos x} y^{2} \sin x d y$;
b) $\int_{0}^{2} d x \int_{\cos x}^{1} y^{4} d y$;
c) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d y \int_{0}^{i \cos y} x^{2} \sin ^{2} y d x$.

When solving Problems 2153 to 2157 it is abvisable to make the drawings first.
2153. Evaluate the double integral

$$
\iint_{\left(\mathcal{S}^{\prime}\right)} x y^{2} d x d y \text {, }
$$

if S is a region bounded by the parabola $y^{2}=2 p x$ and the straight line $x=p$.

2154*. Evaluate the double integral

$$
\iint_{(S)} x y d x d y \text {, }
$$

extended over the region S, which is bounded by the x-axis and an upper semicircle $(x-2)^{2}+y^{2}=1$.
2155. Evaluate the double integral

$$
\iint_{(S)} \frac{d x d y}{\sqrt{2 a-x}}
$$

where S is the area of a circle of radius a, which circle is tangent to the coordinate axes and lies in the first quadrant.

2156*. Evaluate the double integral

$$
\iint_{(\mathcal{S})} y d x d y
$$

where the region S is bounded by the axis of abscissas and an .arc of the cycloid

$$
\begin{aligned}
& x=R(t-\sin t), \\
& y=R(1-\cos t) .
\end{aligned}
$$

2157. Evaluate the double integral

$$
\iint_{(S)} x y d x d y
$$

in which the region of integration S is bounded by the coordinate axes and an arc of the astroid

$$
x=R \cos ^{3} t, \quad y=R \sin ^{3} t\left(0 \leqslant t \leqslant \frac{\pi}{2}\right)
$$

2158. Find the mean value of the function $f(x, y)=x y^{2}$ in the region $S\{0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\}$.

Hint. The mean value of a function $f(x, y)$ in the reswon S is the number

$$
\bar{f}=\frac{1}{S} \iint_{(S)} f(x, y) d x d y .
$$

2159. Find the mean value of the square of the distance of a point $M(x, y)$ of the circle $(x-a)^{2}+y^{2} \leqslant R^{2}$ from the coordinate origin.

Sec. 2. Change of Variables in a Double Integral

1°. Double integral in polar coordinates. In a double integral, when passing from rectangular coordinates (x, y) to polar coordinates (r, φ), which are connected with rectangular coordinates by the relations

$$
x=r \cos \varphi, \quad y=r \sin \varphi
$$

we have the formula

$$
\begin{equation*}
\iint_{(S)} f(x, y) d x d y=\iint_{(S)}(r \cos \varphi, r \sin \varphi) r d r d \varphi . \tag{1}
\end{equation*}
$$

If the region of integration (S) is bounded by the half-lines $r=\alpha$ and $r=\beta(\alpha<\beta)$ and the curves $r=r_{1}(\varphi)$ and $r=r_{2}(\varphi)$, where $r_{1}(\varphi)$ and $r_{2}(\varphi)\left[r_{1}(\varphi) \leqslant r_{2}(\varphi)\right]$ are single-valued functions on the interval $\alpha \leqslant \varphi \leqslant \beta$, then the double integral may be evaluated by the formula

$$
\iint_{(S)} F(\varphi, r) r d r d \varphi=\int_{\alpha}^{\beta} d \varphi \int_{r_{1}(\varphi)}^{r_{2}(\varphi)} F(\varphi, r) r d r,
$$

where $F(\varphi, r)=f(r \cos \varphi, r \sin \varphi)$. In evaluating the integral $\int_{r_{1}(\varphi)}^{r_{3}(\varphi)} F(\varphi, r) r d r$ we hold the quantity φ constant.

If the region of integration does not belong to one of the kinds that has been examined, it is broken up into parts, each of which is a region of a given type.
2°. Double integral in curvilinear coordinates. In the more gener al case, if in the double integral

$$
\iint_{(S)} f(x, y) d x d y
$$

it is required to pass from the variables x, y to the variables u, r, which are connected with x, y by the continuous and differentiable relationslins

$$
x=\varphi(u, v), \quad y=\psi(u, v)
$$

that establish a one-to-one (and, in both directions, continuous) correspondence between the points of the region S of the $x t y$-plane and the points of some region S^{\prime} of the $U V$-plane, and if the Jacobian

$$
I=\frac{D(x, y)}{D\left(u, v^{\prime}\right)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

retans a constant sign in the region S, then the formula

$$
\iint_{(s)} f(x, y) d x d y=\iint_{\left(s^{\prime}\right)} f[\varphi(u, v), \psi(u, v)]|I| d u d v
$$

holds true
The limits of the new integral are determined from general rules on the basis of the type of region S^{\prime}

Example 1. In passimg to polar coordinates, evaluate

$$
\iint_{(S)} \sqrt{1-x^{2}-y^{2}} d x d y
$$

where the region S is a circle of radus $R=1$ with centre at the coordinafe oryin (Fig 92).

Solution. Putting $x=r \cos \varphi, y=r \sin \varphi$, we obtain:

$$
\sqrt{1-x^{2}-y^{2}}=\sqrt{1-(r \cos \varphi)^{2}-(r \sin \varphi)^{2}}=\sqrt{1-r^{2}}
$$

Since the coordinate r in the region S varies from 0 to 1 for any φ, and φ varies from 0 to 2π, it follows that

$$
\iint_{(S)} \sqrt{1-x^{2}-y^{2}} d x d y=\int_{0}^{2 \pi} d \varphi \int_{0}^{1} r \sqrt{1-r^{2}} d r=\frac{2}{3} \pi .
$$

Pass to polar coordinates r and φ and set up the limits of integration with respect to the new variables in the following integrals:
2160. $\int_{0}^{1} d x \int_{0}^{1} f(x, y) d y$.
2161. $\int_{0}^{2} d x \int_{0}^{x} f\left(\sqrt{x^{2}+y^{2}}\right) d y$.
2162. $\iint_{(S)} f(x, y) d x d y$,
where S is a triangle bounded by the straight lines $y=x, y=-x$, $y=1$.
2163. $\int_{-1}^{1} d x \int_{x^{2}}^{1} f\left(\frac{y}{x}\right) d y$.
2164. $\iint_{(S)} f(x, y) d x d y$, where S is bounded by the lemniscate $\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$.

Fig. 92

Fig. 93
2165. Passing to polar coordinates, calculate the double inte gral

$$
\iint_{(S)} y d x d y
$$

where S is a semicircle of diameter a with centre at the poin $C\left(\frac{a}{2}, 0\right)$ (Fig. 93).
2166. Passing to polar coordinates, evaluate the double integral

$$
\iint_{(S)}\left(x^{2}+y^{2}\right) d x d y
$$

extended over a region bounded by the circle $x^{2}+y^{2}=2 a x$.
2167. Passing to polar coordinates, evaluate the double integral

$$
\iint_{(S)} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

where the region of integration S is a semicircle of radius a with centre at the coordinate origin and lying above the x-axis.
2168. Evaluate the double integral of a function $f(r, \varphi)=r$ over a region bounded by the cardioid $r=a(1+\cos \varphi)$ and the circle $r=a$. (This is a region that does not contain a pole.)
2169. Passing to polar coordinates, evaluate

$$
\int_{0}^{a} d x \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} d y
$$

2170. Passing to polar coordinates, evaluate

$$
\iint_{(S)} \sqrt{a^{2}-x^{2}-y^{2}} d x d y
$$

where the region S is a loop of the lemniscate

$$
\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right) \quad(x \geqslant 0)
$$

2171*. Evaluate the double integral

$$
\iint_{(S)} \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}} d x d y
$$

extended over the region S bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ by passing to generalized polar coordinates:

$$
\frac{x}{a}=r \cos \varphi, \frac{y}{b}=r \sin \varphi .
$$

2172***. Transform

$$
\int_{0}^{c} d x \int_{\alpha x}^{\beta x} f(x, y) d y
$$

$(0<\alpha<\beta$ and $c>0)$ by introducing new variables $u=x+y$, $u v=y$.

2173*. Change the variables $u=x+y, v=x-y$ in the integral

$$
\int_{0}^{1} d x \int_{0}^{1} f(x, y) d y .
$$

2174**. Evaluate the double integral

$$
\iint_{(S)} d x d y
$$

where S is a region bounded by the curve

$$
\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right)^{2}=\frac{x^{2}}{h^{2}}-\frac{y^{2}}{k^{2}} .
$$

Hint. Make the substitution

$$
x=a r \cos \varphi, \quad y=b r \sin \varphi .
$$

Sec. 3. Computing Areas

1°. Area in rectangular coordinates. The area of a plane region S is

$$
S=\int_{(S)} d x d y .
$$

If the region S is defined by the inequalities $a \leqslant x \leqslant b, \varphi(x) \leqslant y \leqslant \psi(x)$, then

$$
S=\int_{a}^{b} d x \int_{\varphi(x)}^{\psi(x)} d y .
$$

2°. Area in polar coordinates. If a region S in polar coordinates r and φ is defined by the inequalities $\alpha \leqslant \varphi \leqslant \beta, f(\varphi) \leqslant r \leqslant F(\varphi)$, then

$$
S=\iint_{(S)} r d \varphi d r=\int_{\alpha}^{\beta} d \varphi \int_{\mid(\varphi)}^{F(\varphi)} r d r .
$$

2175. Construct regions whose areas are expressed by the integrals
a) $\int_{-1}^{2} d x \int_{x^{2}}^{x+2} d y ;$
b) $\int_{0}^{a} d y \int_{a-y}^{\sqrt{a^{2}-y^{2}}} d x$.

Evaluate these areas and change the order of integration.
2176. Construct regions whose areas are expressed dy the integrals
a) $\int_{\frac{\pi}{4}}^{\arctan 2} d \varphi \int_{0}^{s \sec \varphi} r d r ;$
b) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \varphi \int_{a}^{a(1+\cos \varphi)} r d r$.

Compute these areas.
2177. Compute the area bounded by the straight lines $x=y$, $x=2 y, \quad x+y=a, x+3 y=a(a>0)$.
2178. Compute the area lying above the x-axis and bounded by this axis, the parabola $y^{2}=4 a x$, and the straight line $x+y=3 a$.

2179*. Compute the area bounded by the ellipse

$$
(y-x)^{2}+x^{2}=1
$$

2180. Find the area bounded by the parabolas

$$
y^{2}=10 x+25 \text { and } y^{2}=-6 x+9
$$

2181. Passing to polar coordinates, find the area bounded by the lines

$$
x^{2}+y^{2}=2 x, \quad x^{2}+y^{2}=4 x, \quad y=x, \quad y=0
$$

2182. Find the area bounded by the straight line $r \cos \varphi=1$ and the circle $r=2$. (The area is not to contain a pole.)
2183. Find the area bounded by the curves

$$
r=a(1+\cos \varphi) \text { and } r=a \cos \varphi(a>0) .
$$

2184. Find the area bounded by the line

$$
\left(\frac{x^{2}}{4}+\frac{y^{2}}{9}\right)^{2}=\frac{x^{2}}{4}-\frac{y^{2}}{9} .
$$

2185*. Find the area bounded by the ellipse

$$
(x-2 y+3)^{2}+(3 x+4 y-1)^{2}=100
$$

2186. Find the area of a curvilinear quadrangle bounded by the arcs of the parabolas $x^{2}=a y, x^{2}=b y, y^{2}=\alpha x, \quad y^{2}=\beta x(0<$ $<a<b, \quad 0<\alpha<\beta$) .

Hint. Introduce the new variables u and v, and put

$$
x^{2}=u y, \quad y^{2}=v x .
$$

2187. Find the area of a curvilinear quadrangle bounded by the arcs of the curves $y^{2}=a x, y^{2}=b x, x y=a, x y=\beta(0<a<b$, $0<\boldsymbol{\alpha}<\boldsymbol{\beta}$) .

Hint. Introduce the new variables u and v, and put

$$
x y=u, \quad y^{2}=v x .
$$

Sec. 4. Computing Volumes

The volume V of a cylindrotd bounded above by a continuous surface $z=f(x, y)$, below by the plane $z=0$, and on the sides by a right cylindrical surface, which cuts out of the $x y$-plane a region S ($\mathrm{F}_{\mathrm{ig}} .94$), is equal to

$$
V=\iint_{i S} I(x, y) d x d y
$$

2188. Use a double integral to express the volume of a pyramid with vertices $O(0,00), A(1,0,0), B(1,1,0)$ and $C(0,0,1)$ (Fig. 95). Set up the limits of integration.

Fig. 94

Fig. 95

In Problems 2189 to 2192 sketch the solid whose volume is expressed by the given double integral:
2189. $\int_{0}^{1} d x \int_{0}^{1-x}(1-x-y) d y$.
2190. $\int_{0}^{2} d x \int_{0}^{2-x}(4-x-y) d y . \quad$ 2192. $\int_{0}^{2} d x \int_{0}^{2} d x \int_{2}^{2-x}(4-x-y) d y$.
2193. Sketch the solid whose volume is expressed by the integral $\int_{0}^{a} d x \int_{0}^{\sqrt{\prime / \overline{u^{2}-x^{2}}}} \sqrt{a^{2}-x^{2}-y^{2}} d y$; reason geometrically to find the value of this integral.
2194. Find the volume of a solid bounded by the elliptical paraboloid $z=2 x^{2}+y^{2}+1$, the plane $x+y=1$, and the coordinate planes.

21!5. A solid is bounded by a hyperbolic paraboloid $z=x^{2}-y^{2}$ and the planes $y=0, z=0, x=1$. Compute its volume.
2196. A solid is bounded by the cylinder $x^{2}+z^{2}=a^{2}$ and the planes $y=0, z=0, y=x$. Compute its volume.

Find the volumes bounded by the following surfaces:
2197. $a z=y^{2}, x^{2}+y^{2}=r^{2}, z=0$.
2198. $y=\sqrt{x}, y=2 \sqrt{x}, x+z=6, \quad z=0$.
2199. $z=x^{2}+y^{2}, \quad y=x^{2}, \quad y=1, \quad z=0$.
2200. $x+y+z=a, \quad 3 x+y=a, \quad \frac{3}{2} x+y=a, \quad y=0, \quad z=0$.
2201. $\frac{x^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=1, y=\frac{b}{a} x, y=0, z=0$.
2202. $x^{2}+y^{2}=2 a x, \quad z=\alpha x, \quad z=\beta x \quad(\alpha>\beta)$.

In Problems 2203 to 2211 use polar and generalized polar coordinates.
2203. Find the entire volume enclosed between the cylinder $x^{2}+y^{2}=a^{2}$ and the hyperboloid $x^{2}+y^{2}-z^{2}=-a^{2}$.
2204. Find the entire volume contained between the cone $2\left(x^{2}+y^{2}\right)-z^{2}=0$ and the hyperboloid $x^{2}+y^{2}-z^{2}=-a^{2}$.
2205. Find the volume bounded by the suriaces $2 a z=x^{2}+y^{2}$, $x^{2}+y^{2}-z^{2}=a^{2}, \quad z=0$.
2206. Determine the volume of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+1-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

2207. Find the volume of a solid bounded by the paraboloid $2 a z=x^{2}+y^{2}$ and the sphere $x^{2}+y^{2}+z^{2}=3 a^{2}$. (The volume lying inside the paraboloid is meant.)
2208. Compute the volume of a solid bounded by the $x y$-plane, the cylinder $x^{2}+y^{2}=2 a x$, and the cone $x^{2}+y^{2}=z^{2}$.
2209. Compule the volume of a solid bounded by the $x y$-plane, the surface $z=a e^{-\left(x^{2}+y^{2}\right)}$, and the cylinder $x^{2}+y^{2}=R^{2}$.
2210. Compute the volume of a solid bounded by the $x y$-plane, the paraboloid $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$, and the cylinder $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2 \frac{x}{a}$.
2211. In what ratio does the hyperboloid $x^{2}+y^{2}-z^{2}=a^{2}$ divide the volume of the sphere $x^{2}+y^{2}+z^{2} \leqslant 3 a^{2}$?

2212*. Find the volume of a solid bounded by the surfaces $z=x+y, \quad x y=1, \quad x y=2, \quad y=x, \quad y=2 x, \quad z=0(x>0, \quad y>0)$.

Sec. 5. Computing the Areas of Surfaces

The area σ of a smooth single-valued surface $z=f(x, y)$, whose projection on the $x y$-plane is the region S, is equal to

$$
\sigma=\iint_{(S)} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y .
$$

9*
2213. Find the area of that part of the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ which lies between the coordinate planes.
2214. Find the area of that part of the surface of the cylinder $x^{2}+y^{2}=R^{2}(z \geqslant 0)$ which lics between the planes $z=m x$ and $z=n x(m>n>0)$.

2215*. Compute the area of that part of the surface of the cone $x^{2}-y^{2}=z^{2}$ which is situated in the first octant and is bounded by the plane $y+z=a$.
2216. Compute the area of that part of the surface of the cylinder $x^{2}+y^{2}=a x$ which is cut out of it by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
2217. Compute the area of that part of the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ cut out by the surface $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
2218. Compute the area of that part of the surface of the paraboloid $y^{2}+z^{2}=2 a x$ which lies between the cylinder $y^{2}=a x$ and the plane $x=a$.
2219. Compute the area of that part of the surface of the cylinder $x^{2}+y^{2}=2 a x$ which lies between the $x y$-plane and the cone $x^{2}+y^{2}=z^{2}$.

2220*. Compute the area of that part of the surface of the cone $x^{2}-y^{2}=z^{2}$ which lies inside the cylinder $x^{2}+y^{2}=2 a x$.

2221*. Prove that the areas of the parts of the surfaces of the paraboloids $x^{2}+y^{2}=2 a z$ and $x^{2}-y^{2}=2 a z$ cut out by the cylinder $x^{2}+y^{2}=R^{2}$ are of equivalent size.

2222*. A sphere of radius a is cut by two circular cylinders whose base diameters are equal to the radius of the sphere and which are tangent to each other along one of the diameters of the sphere. Find the volume and the area of the surface of the remaining part of the sphere.

2223* An opening with square base whose side is equal to a is cut out of a sphere of radius a. The axis of the opening coincides with the diameter of the sphere. Find the area of the surface of the sphere cut out by the opening.

2224*. Compute the area of that part of the helicoid $z=c \arctan \frac{y}{x}$ which lies in the first octant between the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=b^{2}$.

Sec. 6. Applications of the Double Integral in Mechanics

1°. The mass and static moments of a lamina. If S is a region in an $x y$-plane occupied by a lamina, and $\varrho(x, y)$ is the surface density of the lamina at the point (x, y), then the mass M of the lamina and its static
moments M_{X} and M_{Y} relative to the x - and y-axes are expressed by the double integrals

$$
\begin{gather*}
M=\iint_{(S)} \varrho(x, y) d x d y, \quad M_{X}=\iint_{(S)} y \varrho(x, y) d x d y, \\
M_{Y}=\iint_{(S)} x \varrho(x, y) d x d y . \tag{1}
\end{gather*}
$$

If the lamina is homogencous, then $\varrho(x, y)=$ const.
2°. The coordinates of the centre of gravity of a lamina. If $C(\bar{x}, \bar{y})$ is the centre of gravity of a lamina, then

$$
\bar{x}=\frac{M_{Y}}{M}, \quad \bar{y}=\frac{M_{X}}{M},
$$

where M is the mass of the lamina and M_{X}, M_{Y} are its static moments relative to the coordinate axes (see 1°). If the lamina is homogeneous, then in formulas (1) we can put $0=1$.
3°. The moments of inertia of a lamina. The moments of inertia of a lamina relative to the x - and y-axes are, respectively, equal to

$$
\begin{equation*}
I_{X}=\int_{(S)} \int y^{2} \varrho(x, y) d x d y, \quad I_{Y}=\iint_{(S)} x^{2} \varrho(x, y) d x d y . \tag{2}
\end{equation*}
$$

The moment of inertia of a lamina relative to the origin is

$$
\begin{equation*}
I_{0}=\iint_{(S)}\left(x^{2}+y^{2}\right) \mathrm{\varrho}(x, y) d x d y=I_{X}+I_{Y} . \tag{3}
\end{equation*}
$$

Putting $0(x, y)=1$ in formulas (2) and (3), we get the geometric moments of mertia of a plane figure.
2225. Find the mass of a circular lamina of radius R if the density is proportional to the distance of a point from the centre and is equal to δ at the edge of the lamina.
2226. A lamina has the shape of a right triangle with legs $O B=a$ and $O A=b$, and its density at any point is equal to the distance of the point from the leg $O A$. Find the static moments of the lamina relative to the legs $O A$ and $O B$.
2227. Compute the coordinates of the centre of gravity of the area $O m A n O$ (Fig. 96), which is bounded by the curve $y=\sin x$ and the straight line $O A$ that passes through the coordinate origin and the vertex $A\left(\frac{\pi}{2}, 1\right)$ of a sine curve.
2228. Find the coordinates of the centre of gravity of an area bounded by the cardoid $r=a(1+\cos \varphi)$.
2229. Find the coordinates of the centre of gravity of a circular sector of radius a with angle at the vertex 2α (Fig. 97).
2230. Compute the coordinates of the centre of gravity of an area bounded by the parabolas $y^{2}=4 x+4$ and $y^{2}=-2 x+4$.
2231. Compute the moment of inerlia of a triangle bounded by the straight lines $x+y=2, x=2, y=2$ relative to the x-axis.
2232. Find the moment of inertia of an annulus with diameters d and $D(d<D):$ a) relative to its centre, and b) relative to its diameter.
2233. Compute the moment of inertia of a square with side a relative to the axis passing through its vertex perpendicularly to the plane of the square.
2234^{*}. Compute the moment of inertia of a segment cut off the parabola $y^{2}=a x$ by the straight line $x=a$ relative to the straight line $y=-a$.

Fig. 96

Fig. 97

2235*. Compute the moment of inertia of an area bounded by the hyperbola $x y=4$ and the straight line $x+y=5$ relative to the straight line $x=y$.
2236°. In a square lamini with side a, the density is proportional to the dislance from one of its vertices. Compute the moment of inerta of the lamina relative to the side that passes through this veriex.
2237. Find the moment of inartia of the cardioid $r=a(1+\cos \varphi)$ relative to the pole.
2238. Compute the moment of inertia of the area of the lemniscate $r^{2}=2 a^{2} \cos 2 \varphi$ relative to the axis perpendicular to its plane in the pole.

2239*. Compute the moment of inertia of a homogeneous lamina bounded by one arc of the cycloid $x=a(t-\sin t), y=a(1-\cos t)$ and the x-axis, relative to the x-axis.

Sec. 7. Triple Integrals

1°. Triple integrals in rectangular coordinates. The triple integral of the function $f(x, y, z)$ extended over the region V is the limit of the corresponding threefold iterated sum:

$$
\iint_{V} \int f(x, g, z) d x d y d z=\lim _{\substack{\max \\ \max \\ \max \Delta x_{i}, z_{k} \rightarrow 0}} \sum_{i} \sum_{i} \sum_{k} f\left(x_{i}, y_{j}, z_{k}\right) \Delta x_{i} \Delta y_{j} \Delta z_{k} .
$$

Evaluation of a triple integral reduces to the successive computation of the three ordinary (onefold iterated) integrals or to the computation of one double and one single integral.

Example 1. Compute

$$
I=\iiint_{V} x^{5} y^{2} z d x d y d z
$$

where the region V is defined by the inequalities

$$
0 \leqslant x \leqslant 1, \quad 0 \leqslant y \leqslant x, \quad 0 \leqslant z \leqslant x y .
$$

Solution. We have
$l=\int_{0}^{1} d x \int_{0}^{x} d y \int_{0}^{x y} x^{3} y^{2} z d z=\left.\int_{0}^{1} d x \int_{0}^{x} x^{s} y^{2} \frac{z^{2}}{2}\right|_{0} ^{x y} d y=$

$$
=\int_{0}^{1} d x \int_{0}^{x} \frac{x^{5} y^{4}}{2} d y=\left.\int_{0}^{1} \frac{x^{5}}{2} \frac{y^{5}}{5}\right|_{0} ^{x} d x=\int_{0}^{1} \frac{x^{10}}{10} d x=\frac{1}{110} .
$$

Example 2. Evaluate

$$
\iint_{(V)} \int_{0} x^{2} d x d y d z
$$

extended over the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
Solution.

$$
\iint_{(w)} \int_{i} x^{2} d x d y d z=\int_{-a}^{a} x^{2} d x \int_{\left(S_{y}\right)} \int_{-a} d y d z=\int_{-a}^{a} x^{2} S_{y z} d x,
$$

where $S_{y z}$ is the area of the ellipse $\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1-\frac{x^{2}}{a^{2}}, x=$ const, and is equal to

$$
S_{y z}=\pi b \sqrt{1-\frac{x^{2}}{a^{2}}} \cdot c \quad \sqrt{1-\frac{\lambda^{2}}{a^{2}}}=\pi b c\left(1-\frac{x^{2}}{a^{2}}\right) .
$$

We therefore finally get

$$
\iiint_{(V)} x^{2} d x d y d z=\pi b c \int_{-a}^{a} x^{2}\left(1-\frac{x^{2}}{u^{2}}\right) d x=\frac{4}{15} \pi a^{8} b c .
$$

2°. Change of variables in a triple integral. If in the triple integral

$$
\iiint_{(1)} f(x, y, z) d x d y d z
$$

it is required to pass from the variables x, y, z to the variables u, v, w, which are connected with x, y, z bv the relations $x=\varphi(u, v, w), y=\psi(u, v, w)$, $z=\chi(u, v, w)$, where the functions φ, ψ, χ are:

1) continuous together with their partial first derivatives;
2) in one-to-one (ind, in both directions, continusui) correspondence between the points of the region of integration V of $x y z$-space and the points of some region V^{\prime} of $U V W$-space;
3) the functional determinant (Jacobian) of these functions

$$
I=\frac{D(x, y, z)}{D(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial \dot{w}} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
$$

retains a constant sign in the region V, then we can make use of the formula
$\iint_{(V)} f f(x, y, z) d x d y d z=$

$$
=\iint_{\left(v^{\prime}\right)} f\left[\uparrow(u, v, w), \psi(u, v, w), \chi\left(u, v, w^{\prime}\right)\right]|I| d u d v d w .
$$

Fig. 98

Fig. 99

In particular,

1) for cylindrical coordinates r, φ, h (Fig. 98), where

$$
x=r \cos \varphi, \quad y=r \sin \varphi, \quad z=h
$$

we get $I=r$;
2) for spherical coordinates $\varphi, \psi, r i \varphi$ is the longitude, ψ the latitude, r the radius vector) (F1g. 99), where

$$
x=r \cos \psi \cos \varphi, \quad y=r \cos \psi \sin \varphi, \quad z=r \sin \psi
$$

we have $I=r^{2} \cos \psi$.
Example 3. Passing to spherical coordinates, compute

$$
\iint_{(V)} \int_{\sqrt{x^{2}+y^{2}+z^{2}}} d x d y d z
$$

where V is a sphere of radius R.
Solution. For a sphere, the ranges of the spherical coordinates φ (longltude), ψ (latitude), and r (radius vector) will be

$$
0 \leqslant \varphi \leqslant 2 \pi, \quad-\frac{\pi}{2} \leqslant \psi \leqslant \frac{\pi}{2}, \quad 0 \leqslant r \leqslant R
$$

We therefore have

$$
\iint_{\left(V^{\prime}\right)} \sqrt{x^{2}+1-y^{2}+z^{2}} d x d y d z=\int_{0}^{2 \pi} d \varphi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} d \psi \int_{0}^{R} r r^{2} \cos \psi d r=\pi R^{4}
$$

$3^{\text {n }}$. Applications of triple integrals. The volume of a region of three-dimensional $x y z$-space is

$$
V=\iiint_{\left(i^{\prime}\right)} d x d y d z
$$

The mass of a solid occupying the region V is

$$
M=-\iiint_{(V)} \gamma(r, y, z) d x d y d z
$$

where $\gamma(x, y, z)$ is the density of the body at the point (x, y, z).
The static moments of the body relative to the coordinate planes are

$$
\begin{aligned}
& M_{X Y}=\iint_{(V)} \int \gamma(x, y, z) z d x d y d z \\
& M_{Y Z}=\iint_{(V)}^{V} \int \gamma(x, y, z) x d x d y d z \\
& M_{Z X}=\iint_{(V)} \int \gamma(x, y, z) y d x d y d z
\end{aligned}
$$

The coordinates of the centre of gravity are

$$
\bar{x}=\frac{M_{Y Z}}{M}, \quad \bar{y}=\frac{M_{Z X}}{M}, \quad \bar{z}=\frac{M_{X Y}}{M} .
$$

If the solid is homogeneous, then we can put $\gamma(x, y, z)=1$ in the formulas for the coordmates of the centre of gravity.

The moments of inertia relative to the coordinate axes are

$$
\begin{aligned}
& I_{X}=\iint_{(V)} \int_{Y}\left(y^{2}+z^{2}\right) \gamma(x, y, z) d x d y d z \\
& I_{Y}=\iint_{(V)}^{(V}\left(z^{2}+x^{2}\right) \gamma(x, y, z) d x d y d z \\
& I_{Z}=\iint_{(V)} \int^{2}\left(x^{2}+y^{2}\right) \gamma(x, y, z) d x d y d z
\end{aligned}
$$

Putting $\gamma(x, y, z)=1$ in these formulas, we get the geometric moments of inertia of the body.
A. Evaluating triple integrals

Set up the limits of integration in the triple integral

$$
\iint_{(V)} \int_{i} f(x, y, z) d x d y d z
$$

for the indicated regions V.
2240. V is a tetrahedron bounded by the planes

$$
x+y+z=1, \quad x=0, \quad y=0, \quad z=0 .
$$

2241. V is a cylinder bounded by the surfaces

$$
x^{2}+y^{2}=R^{2}, \quad z=0, \quad z=H
$$

2242*. V is a cone bounded by the surfaces

$$
\frac{x^{2}}{c^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}, \quad z=c .
$$

2243. V is a volume bounded by the surfaces

$$
z=1-x^{2}-y^{2}, \quad z=0
$$

Compute the following integrals:
2244. $\int_{0}^{1} d x \int_{0}^{1} d y \int_{0}^{1} \frac{d z}{\sqrt{x+y+z+1}}$.
2245.
$\int^{2} 2 \sqrt{x} \sqrt{\frac{4 x-1)^{2}}{2}}$
2246.

2247. $\int_{\rho}^{1} d x \int_{0}^{1-x} d y \int_{0}^{1-x-y} x y z d z$.
2248. Evaluate

$$
\iint_{V} \int_{V} \frac{d x d y d z}{(x+4+z+1)^{5}},
$$

where V is the region of integration bounded by the coordinate planes and the plane $x+y+z=1$. 2249. Evaluate

$$
\iint_{(V)} \int_{1}(x+y+z)^{2} d x d y d z,
$$

where V (the region of integration) is the common part of the paraboloid $2 a_{2} \equiv x^{2}+y^{2}$ and the sphere $x^{2}+y^{2}+z^{2} \leqslant 3 a^{2}$.
2250. Evaluate

$$
\iint_{W} \int_{V} z^{\mathbf{2}} d x d y d z
$$

where V (region of integration) is the common part of the spheres $x^{2}+y^{2}+z^{2} \leqslant R^{2}$ and $x^{2}+y^{2}+z^{2} \leqslant 2 R z$
2251. Evaluate

$$
\iint_{\left(V^{\prime}\right)} z d x d y d z
$$

where V is a volume bounded by the plane $z=0$ and the upper half of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
2252. Evaluate

$$
\iint_{(V)} \int\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}++\frac{z^{2}}{c^{2}}\right) d x d y d z
$$

where V is the interior of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
2253. Evaluate

$$
\iint_{(V)} z d x d y d z
$$

where V (the region of integration) is bounded by the cone $z^{2}=\frac{h^{2}}{R^{-}}\left(x^{2}+y^{2}\right)$ and the plane $z=h$.
2254. Passing to cylindrical coordinates, evaluate

$$
\iiint_{(i)} d x d y d z,
$$

where V is a region bounded by the surfaces $x^{2}+y^{2}+z^{2}=2 R z$, $x^{2}-1 y^{2}=z^{2}$ and contaning the point $(0,0, R)$.
$2 \approx 55$. Evaluaie

$$
\int_{0}^{2} d x \int_{0}^{1 / 2 x-x^{2}} d y \int_{0}^{a} z \sqrt{x^{2}+y^{2}} d z
$$

first transforming it to cylindrical coordinates. 2256. Evaluate

$$
\int_{0}^{2 r} d x \int_{-\sqrt{21 x-x^{2}}}^{1 r} d y \int_{0}^{\frac{1 r x-x^{2}}{4 r^{2}-x^{2}-y^{2}}} d z
$$

first transforming it to cylindrical coordinates.
2257. Evaluate

$$
\int_{-R}^{R} d x \int_{-V \overline{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} d y \int_{0}^{\sqrt{R^{2}-x^{2}-y^{2}}}\left(x^{2}+y^{2}\right) d z,
$$

first transforming it to spher ical coordinates.
2258. Passing to spherical coordinates, evaluate the integral

$$
\iiint_{(V)} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z
$$

where V is the interior of the sphere $x^{2}+y^{2}+z^{2} \leqslant x$.
B. Computing volumes by means of triple integrals
2259. Use a triple integral to compute the volume of a solid bounded by the surfaces

$$
y^{2}=4 a^{2}-3 a x, y^{2}=a x, \quad z= \pm h
$$

2260**. Compute the volume of that part of the cylinder $x^{2}+y^{2}=2 a x$ which is contained between the paraboloid $x^{2}+y^{2}=2 a z$ and the $x y$-plane.

2261*. Compute the volume of a solid bounded by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the cone $z^{2}=x^{2}+y^{2}$ (external to the cone).

2262*. Compute the volume of a solid bounded by the sphere $x^{2}+y^{2}+z^{2}=4$ and the paraboloid $x^{2}+y^{2}=3 z$ (internal to the paraboloid).
2263. Compute the volume of a solid bounded by the $x y$-plane, the cylinder $x^{2}+y^{2}=a x$ and the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ (internal to the cylinder).
2264. Compute the volume of a solid bounded by the paraboloid

Fig. 100 $\frac{y^{2}}{b^{2}}+\frac{x^{2}}{c^{2}}=2 \frac{x}{a}$ and the plane $x=a$.
C. Applications of triple integrals to mechanics and physics
2265 . Find the mass M of a rectangular parallelepiped $0 \leqslant x \leqslant a$, $0 \leqslant y \leqslant b, \quad 0 \leqslant z \leqslant c$, if the density at the point (x, y, z) is $\varrho(x, y, z)=x+y+z$.
2266. Out of an octant of the sphere $x^{2}+y^{2}+z^{2} \leqslant c^{2}, \quad x=0$, $y \geqslant 0, \quad z \geqslant 0$ cut a solid $O A B C$ bounded by the coordinate planes and the plane $\frac{x}{a}+\frac{y}{b}=1(a \leqslant c, b \leqslant c)$ (Fig. 100). Find the mass of this body if the density at each point (x, y, z) is equal to the z-coordinate of the point.

2267*. In a solid which has the shape of a hemisphere $x^{2}+y^{2}+z^{2} \leqslant a^{2}, z \geqslant 0$, the density varies in proportion to the
distance of the point from the centre. Find the centre of gravity of the solid.
2268. Find the centre of gravity of a solid bounded by the paraboloid $y^{2}+2 z^{2}=4 x$ and the plane $x=2$.

2269*. Find the moment of inertia of a circular cylinder, whose altitude is h and the radius of the base is a, relative to the axis which serves as the diameter of the base of the cylinder.

2270*. Find the moment of inertia of a circular cone (altitude, h, radius of base, a, and density ϱ) relative to the diameter of the base.
$2271^{* *}$. Find the force of attraction exerled by a homogeneous cone of altitude h and vertex angle u (in axial cross-section) on a materal point containing unit mass and located at its vertex.

2272**. Show that the force of altraction exerted by a homogeneous sphere on an external material point does not change if the entire mass of the sphere is concentrated at its centre.

Sec. 8. Improper Integrals Dependent on a Parameter. Improper Multiple Integrals

1°. Differentiation with respect to a parameter. In the case of certain restrictions imposed on the functions $f(x, \alpha), f_{\alpha}^{\prime}(x, \alpha)$ and on the corresponding improper integrals we have the Leibniz rule

$$
\frac{d}{d \alpha} \int_{a}^{\infty} f(x, \alpha) d x=\int_{n}^{\infty} f_{\alpha}^{\prime}(x, \alpha) d x
$$

Example 1. By differentiating with respect to a parameter, evaluate

$$
\int_{0}^{\infty} \frac{e^{-\alpha x^{2}}-e^{-x^{2}}}{x} d x \quad(\alpha>0, \beta>0)
$$

Solution. Let

Then

$$
\int_{0}^{\infty} \frac{e^{-x x^{2}}-e^{-\beta x^{2}}}{x} d x=F(\alpha, \beta) .
$$

$$
\frac{\partial F(\alpha, \beta)}{\partial \alpha}=-\int_{0}^{\infty} x e^{-x x^{2}} d x=\left.\frac{1}{2 \alpha} e^{-x x^{2}}\right|_{0} ^{\infty}=-\frac{1}{2 \alpha}
$$

Whence $F(\alpha, \beta)=-\frac{1}{2} \ln \alpha+C(\beta)$. To find $C(\beta)$, we put $\alpha=\beta$ in the latter equation. We have $0=-\frac{1}{2} \ln \beta+C(\beta)$.

Whence $C(\beta)=\frac{1}{2} \ln \beta$. Hence,

$$
F(\alpha, \beta)=-\frac{1}{2} \ln \alpha+\frac{1}{2} \ln \beta=\frac{1}{2} \ln \frac{\beta}{\alpha} .
$$

2°. Improper double and triple integrals.
a) An inflnite region. If a function $f(x, y)$ is continuous in an unbounded region S, then we put

$$
\begin{equation*}
\iint_{(S)} f(x, y) d x d y=\lim _{\sigma \rightarrow 5} \int_{(\sigma)} f(x, y) d x d y, \tag{1}
\end{equation*}
$$

where σ is a finite region lying entirely within S, where $\sigma \rightarrow S$ significs that we expand the region σ by an arbitrary law so that any point of S should enter it and remain in it. If there is a limit on the right and if it does not depend on the choice of the region σ, then the corresponding improper integral is called convergent, otherwise it is divergent.

If the integrand $f(x, y)$ is nonnegative if $(x, y) \geqslant 0$], then for the convergence of an 1 m! ioper integral it is necessary and sufficient for the limit on the right of (1) to exist at least for one system of regions σ that exhaust the region S.
b) A discontinuous function. If a function $f(x, y)$ is everywhere contilluous in a bounded closed region S, except the point $P(a, b)$, then we put

$$
\begin{equation*}
\iint_{(S)} f(x, y) d x d y=\lim _{\varepsilon \rightarrow 0} \int_{\left(S_{\varepsilon}\right)} \int_{\mathcal{S}^{\prime}} f(x, y) d x d y, \tag{2}
\end{equation*}
$$

where S_{ε} is a region obtained from S by eliminating a small region of dia meter $e^{\text {e }}$ that contans the roint P. If (2) has a limit that does not depend on the tyre of small regions elimirated from S, the improper integral under consideration is called convergent, othirwise it is divergent.

If $f(x, y) \geqslant 0$, then the limit on the right of (2) is not dependent on the type of regions eliminated from S; for instance, such reg:ons may be circles of radius $\frac{\varepsilon}{2}$ with centre at P.

The concent of improper double integrals is readily extended to the case of triple integrals.

Example 2. Test for convergence

$$
\begin{equation*}
\iint_{(S)} \frac{d x d y}{\left(1+x^{2}+y^{2}\right)^{p}}, \tag{3}
\end{equation*}
$$

where S is the entire $x y$-plane.
Solution. Let σ be a circle of radius ϱ with centre at the coordinate origin. Passing to polar coordinates for $p \neq 1$, we have

$$
\begin{aligned}
I(\sigma)=\iint_{(\sigma)} \frac{d x d y}{\left(1+\lambda^{2}+y^{2}\right)^{p}}=\int_{0}^{2 \pi} d \varphi & \int_{0}^{0} \frac{r d r}{\left(1+r^{2}\right)^{p}}= \\
& =\left.\int_{0}^{2 \pi} \frac{1}{2} \frac{\left(1+r^{2}\right)^{1-p}}{1-p}\right|_{0} ^{0} d \varphi=\frac{\pi}{1-p}\left[\left(1+Q^{2}\right)^{1-p}-1\right] .
\end{aligned}
$$

If $p<1$, then $\lim _{\sigma \rightarrow s} I(\sigma)=\lim _{\alpha \rightarrow \infty} I(\sigma)=\infty$ and the integral diverges. But if $p>1$, then $\lim _{0 \rightarrow \infty} I(\sigma)=\frac{\pi}{p-1}$ and the integral converges. For $p=1$ we have
$I(\sigma)=\int_{0}^{2 \pi} d \varphi \int_{0}^{0} \frac{r d r}{1+r^{2}}=\pi \ln \left(1+\mathrm{Q}^{2}\right) ; \lim _{0 \rightarrow \infty} I(\sigma)=\infty$, that is, the integrat diverges.

Thus, the integral (3) converges for $p>1$.
2273. Find $f^{\prime}(x)$, if

$$
f(x)=\int_{x}^{\infty} e^{-x y^{2}} d y(x>0)
$$

2274. Prove that the function

$$
u=\int_{-\infty}^{+\infty} \frac{x f(z)}{x^{2}+(y-z)^{2}} d z
$$

satisfies the Laplace equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

2275. The Laplace transformation $F(p)$ for the function $f(t)$ is defined by the formula

$$
F(p)=\int_{0}^{\infty} e^{-p t} f(t) d t
$$

Find $F(p)$, if: a) $f(t)=1 ;$ b) $\left.f(t)=e^{a t} ; ~ c\right) ~ f(t)=\sin \beta t$;
d) $f(t)==\cos \beta t$.
2276. Taking advantage of the formula

$$
\int_{0}^{1} x^{n-1} d x=\frac{1}{n}(n>0)
$$

compute the integral

$$
\int_{0}^{1} x^{n-1} \ln x d x
$$

2277*. Using the formula

$$
\int_{0}^{\infty} e^{-p t} d t=\frac{1}{p}(p>0)
$$

evaluate the integral

$$
\int_{0}^{\infty} t^{2} e^{-\rho t} d t
$$

Applying differentiation with respect to a parameter, evaluate the following integrals:
2278. $\int_{0}^{\infty} \frac{e^{-x x}--e^{-\beta x}}{x} d x(\alpha>0, \beta>0)$.
2279. $\int_{0}^{\infty} \frac{e^{-x x}-e^{-j x}}{x} \sin m x d x(\alpha>0, \beta>0)$.
2280. $\int_{0}^{\infty} \frac{\arctan \alpha x}{x\left(1+x^{2}\right)} d x$.
2281. $\int_{0}^{1} \frac{\ln \left(1-\alpha^{2} x^{2}\right)}{x^{2} \sqrt{1-x^{2}}} d x(|\alpha|<1)$.
2282. $\int_{0}^{\infty} e^{-\alpha x} \frac{\sin \beta x}{x} d x \quad(\alpha \geqslant 0)$.

Evaluate the following improper integrals:
2283. $\int_{0}^{\infty} d x \int_{0}^{\infty} e^{-(x+!/)} d y$.
2284. $\int_{0}^{1} d y \int_{0}^{y^{2}} e^{\frac{x}{y}} d x$.
2285. $\iint_{(S)} \frac{d x d y}{x^{4}+y^{2}}$, where S is a region defined by the inequalities $x \geqslant 1, y \geqslant x^{2}$.

2286* $\cdot \int_{0}^{\infty} d x \int_{0}^{\infty} \frac{d x}{\left(x^{2}+y^{2} \cdot 1-a^{2}\right)^{2}}(a>0)$.
2287. The Euler-Poisson integral defined by the formula $I=\int_{0}^{\infty} e^{-x^{2}} d x$ may also be written in the form $I=\int_{0}^{\infty} e^{-y^{2}} d y$. Evaluate I by multiplying these formulas and then passing to polar coordinates.
2288. Evaluate

$$
\int_{0}^{\infty} d x \int_{0}^{\infty} d y \int_{0}^{\infty} \frac{d z}{\left(x^{2}+y^{2}+z^{2}+1\right)^{2}} .
$$

Test for convergence the improper double integrals:
2289** $\cdot \iint_{(S)} \ln \sqrt{x^{2}+y^{2}} d x d y$, where S is a circle $x^{2}+y^{2} \leqslant 1$.
2290. $\iint_{(S)} \frac{d x d y}{\left(x^{2}+y^{2}\right)^{x}}$, where S is a region defined by the inequality $x^{2}+y^{2} \geqslant 1$ ("exterior" of the circle).
$2291^{*} . \iint_{(S)} \frac{d x d y}{\sqrt[3]{(x-y)^{2}}}$, where S is a square $|x| \leqslant 1,|y| \leqslant 1$.
2292. $\iiint_{(1)} \frac{d x d y d z}{\left(x^{2}+y^{2}+z^{2}\right)^{x}}$, where V is a region defined by the inequality $x^{2}+y^{2}+z^{2} \geq 1$ ("exterior" of a sphere).

Sec. 9. Line Integrals

1°. Line integrals of the flrst type. Let $f(x, y)$ be a continuous function and $y=\varphi(x)[a \leqslant 1 \leqslant b]$ be the equation of some smooth curve C

Let us construct a system of points $M_{i}\left(x_{i}, y_{1}\right)(i=0,1,2, \ldots, n)$ that break up the curve C into elementary arcs $M_{t-1} M_{i}=\Delta s_{i}$ and let us form the integral $\operatorname{sum} S_{n}=\sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \Delta s_{1}$. The limit of this sum, when $n \rightarrow \infty$ and max $\Delta s_{i} \rightarrow 0$, is called a line integral of the first type

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \Delta s_{i}=\int_{C} f(x, y) d s
$$

($d s$ is the arc differential) and is evaluated from the formula

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x, \Psi(x)) \sqrt{1+\left(\varphi^{\prime}(x)\right)^{2}} d x
$$

In the case of parametric representation of the curve $C: x=\varphi(t)$, $y=\psi(t)\{\alpha \leqslant t \leqslant \beta\}$, we have

$$
\int_{C} f(x, y) d s=\int_{\alpha}^{\beta} f\left(\varphi(t), \psi^{\prime}(t)\right) \sqrt{\varphi^{\prime 2}(t)+\psi^{\prime 2}(t)} d t .
$$

Also considered are line integrals of the first type of functions of three variables $f(x, y, z)$ taken along a space curve. These integrals are evaluated in like fashion A line integral of the first type does not depend on the direction of the path of integration; if the integrand f is interpreted as a linear density of the curve of integration C, then this integral represents the mass of the curve C.

Example 1. Evaluate the line integral

$$
\int_{C}(x+y) d s,
$$

where C is the contour of the triangle $A B O$ with vertices $A(1,0), B(0,1)$, and $O(0,0)$ (Fig 101).

Solution. Here, the equation $A B$ is $y=1-x$, the equation $O B$ is $x=0$, and the equation $O A$ is $y=0$. We therefore have
$\int_{C}(x+y) d s=\int_{A B}(x+y) d s+\int_{B O}(x+y) d s+\int_{O A}(x+y) d s=$
$=\int_{0}^{1} \sqrt{2} d x+\int_{0}^{1} y d y+\int_{0}^{1} x d x=\sqrt{\overline{2}}+1$.
2°. Line integrals of the second type. If $P(x, y)$ and $Q(x, y)$ are continuous functions and $y=\varphi(x)$ is a smooth curve C that runs from a to b as

Fig. 101
x varies. then the corresponding line integral of the second type is expressed as follows:

$$
\int_{C} P(x, y) d x+Q(x, y) d y=\int_{a}^{b}\left[P(x, \varphi(x))+\varphi^{\prime}(x) Q(x, \varphi(x))\right] d x .
$$

In the more general case when the curve C is represented parametrically: $x=\varphi(t), y=\psi(t)$, where t varies from a to β, we have $\int_{C} P(x, y) d x+Q(x, y) d y+\int_{\alpha}^{\beta}\left[P(\varphi(t), \quad \psi(t)) \varphi^{\prime}(t)+Q(\varphi(t), \quad \psi(t)) \psi^{\prime}(t)\right] d t$.
Similar formulas hold for a line integral of the second type taken over a space curve.

A line integral of the second type changes stgn when the direction of the path of integratton ts reversed. This integral may be interpreted mechanically as the work of an appropriate variable force $\{P(x, y), Q(x, y)\}$ along the curve of integration C

Example 2. Evaluate the line integral

$$
\int_{C} y^{2} d x+x^{2} d y,
$$

where C is the upper half of the ellipse $x=a \cos t, y=b \sin t$ traversed clockwise.

Solution. We have
$\int_{C} y^{2} d x+x^{2} d y=\int_{\pi}^{0}\left[b^{2} \sin ^{2} t \cdot(-a \sin t)+a^{2} \cos ^{2} t \cdot b \cos t\right] d t=$ $=-a b^{2} \int_{\pi}^{0} \sin ^{3} t d t+a^{2} b \int_{\pi}^{0} \cos ^{3} t d t=\frac{4}{3} a b^{2}$.
3°. The case of a total differential. If the integrand of a line integral of the second type is a total differential of some single-valued function $U=U(x, y)$, that is, $P(x, y) d x+Q(x, y) d y=d U(x, y)$, then this line integral is not dependent on the path of integration and we have the Newton-Leibniz formula

$$
\begin{equation*}
\int_{\left(x_{1}, y_{1}\right)}^{\left(x_{2}, y_{2}\right)} P(x, y) d x+Q(x, y) d y=U\left(x_{2}, y_{2}\right)-U\left(x_{1}, y_{3}\right), \tag{1}
\end{equation*}
$$

where (x_{1}, y_{1}) is the initial and (x_{2}, y_{2}) is the terminal point of the path In particular, if the contour of infegration C is closed, then

$$
\begin{equation*}
\int_{C} P(x, y) d x+Q(x, y) d y=0 \tag{2}
\end{equation*}
$$

If I) the contour of integration C is contained entirely within some simply-connected regio. S and 2) the functions $P(x, y)$ and $Q(x, y)$ together with their partal derivatives of the first order are continuous in S, then a necessary and sufficient condition for the existence of the function U is the i.lentical fulfilment (in S) of the equality

$$
\begin{equation*}
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} \tag{3}
\end{equation*}
$$

(see integration of total differentials) If conditions one and two are not fulfilled, the presence of condition (3) does not guarantee the existence of a sumbe-valued lunction U, and formulas (1) and (2) may prove wrong (see Problem 23: 2) We give a method of finding a function $U(x, y)$ from its total differential based on the use of line integrals (which is yet arother method of integrating a total differential). For the contour of integration C let us take a broken lue $P_{0} P_{1} M$ (Fid 102), where $P_{0}\left(x_{0}, y_{0}\right)$ is a fixed oint and $M(x, y)$ is a variable point. Then along $P_{0} P_{1}$, we have $y=y_{0}$ and $d y=0$, and along $P_{1} M$ we have $d x=0$ We get:

$$
\begin{aligned}
U(x, y)-U\left(x_{0}, y_{0}\right)= & =\int_{\left(x_{u}, y_{0}\right)}^{(x, y)} P(x, y) d x+Q(x, y) d y \\
& =\int_{x_{0}}^{x} P\left(x, y_{0}\right) d x+\int_{y_{0}}^{y} Q(x, y) d y .
\end{aligned}
$$

Similarly, integrating with respect to $P_{0} P_{2} M$, we have

$$
U(x, y)-U\left(x_{0}, y_{0}\right)=\int_{U_{0}}^{y} Q\left(x_{0}, y\right) d y+\int_{x_{0}}^{x} P(x, y) d x .
$$

Example 3. $(4 x+2 y) d x+(2 x-6 y) d y=d U$. Find U.
Solution. Let $x_{0}=0, y_{0}=0$. Then
or

$$
U(x, y)=\int_{0}^{x} 4 x d x+\int_{0}^{y}(2 x-6 y) d y+C=2 x^{2}+2 x y-3 y^{2}+C
$$

$$
U(x, y)=\int_{0}^{y}-6 y d y+\int_{0}^{x}(4 x+2 y) d x+C=-3 y^{2}+2 x^{2}+3 x y+C,
$$

where $C=U(0,0)$ is an arbitrary constant.

Fig. 102
4°. Green's formula for a plane. If C is the boundary of a region S and the functions $P(x, y)$ and $Q(x, y)$ are continuous together with their firstorder partial derivatives in the closed region $S+C$, then Green's formula holds:

$$
\oint_{C} P d x+Q d y=\iint_{(S)}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y,
$$

here t'e circulation about the contour C is chosen so that the region S should remain to the left.
5°. Applications of line integrals. ${ }^{1}$) An area bounded by the closed contour C is

$$
S=-\oint_{C} y d x=\oint_{C} x d y
$$

(the direction of circulation of the confour is chosen counterclockwise).
The folowing formula for area is more convenient for application:

$$
S=\frac{1}{2} \oint_{C}(x d y-y d x)=\frac{1}{2} \oint_{C} x^{2} d\left(\frac{y}{x}\right)
$$

2) The work of a force, having projections $X=X(x, y, z), Y=Y(x, y, z)$, $Z=Z(x, y, z)$ (or, accordingly, the work of a force field), along a path C is
expressed by the integral

$$
A=\int_{C} X d x+Y d y+Z d z
$$

If the force has a potential, i.e., if there exists a function $U=U(x, y, z)$ (a potential function or a force function) such that

$$
\frac{\partial U}{\partial x}=X, \frac{\partial U}{\partial y}=Y, \frac{\partial U}{\partial z}==Z,
$$

then the work, irrespective of the shape of the path C, is equal to

$$
A=\int_{\left(x_{1}, y_{1}, z_{1}\right)}^{\left(x_{1}, y_{2}, z_{2}\right)} X d x+Y d y+Z d z=\int_{\left(x_{1}, y_{1}, z_{1}\right)}^{\left(x_{2}, y_{2}, z_{2}\right)} d U=U\left(x_{2}, y_{2}, z_{2}\right)-U\left(x_{1}, y_{1} z_{1}\right),
$$

where $\left(r_{1}, y_{1}, z_{1}\right)$ is the mitial and $\left(x_{2}, y_{2}, z_{2}\right)$ is the termnal point of the path.

A. Line Integrals of the First Type

Evaluate the following line integrals:
2293. $\int_{C} x y d s$, where C is the contour of the square $|x|+|y|=a$ ($a>0$).
2294. $\int_{C} \frac{d s}{\sqrt{x^{2}+y^{2}-4}}$, where C is a segment of the straight line connecting the points $O(0,0)$ and $A(1,2)$.
2295. $\int_{C} x y d s$, where C is a quarter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ lying in the first quadrant.
2296. $\int_{G} y^{2} d s$, where C is the first arc of the cycloid $x=a(t-\sin t)$, $y=a(1-\cos t)$.
2297. $\int_{C} \sqrt{x^{2}+y^{2}} d s$, where C is an arc of the involute of the circle $x=a(\cos t \mid-t \sin t), y=a(\sin t-t \cos t) \mid 0 \leqslant t \leqslant 2 \pi]$.
2298. $\int_{C}\left(x^{2}+y^{2}\right)^{2} d s$, where C is an arc of the logarithmic spiral $r=a e^{m p}(m>0)$ from the point $A(0, a)$ to the point $O(-\infty, 0)$.
2299. $\int_{C}(x+y) d s$, where C is the right-hand loop of the lemniscate $r^{2}=a^{2} \cos 2 \varphi$.
2300. $\int_{C}(x+y) d s$, where C is an arc of the curve $x=t$, $y=\frac{3 t^{2}}{\sqrt{2}}, z=t^{3}(0 \leqslant t \leqslant 1]$.
2301. $\int_{C} \frac{d s}{x^{2}+y^{2}+z^{2}}$, where C is the first turn of the screw-line $x=a \cos t, y=a \sin t, z=b t$.
2302. $\int_{C} \sqrt{2 y^{2}+z^{2}} d s$, where C is the circle $x^{2}+y^{2}+z^{2}=a^{2}$, $x=y$.

2303*. Find the area of the lateral surface of the parabolic cylinder $y=\frac{3}{8} x^{2}$ bounded by the planes $z=0, x=0, z=x, y=6$.
2304. Find the arc length of the conic screw-line $C x=a e^{1} \cos t$, $y=a e^{i} \sin t, z=a e^{t}$ from the point $O(0,0,0)$ to the point $A(a, 0, a)$.
2305. Determine the mass of the contour of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, if the linear density of it at each point $M(\lambda, y)$ is equal to $|y|$.
2306. Find the mass of the first turn of the screw-line $x=a \cos t$, $y=a \sin t, z=b t$, if the density at each point is equal to the radius vector of this point.
2307. Determine the coordinates of the centre of gravity of a half-are of the cycloid

$$
x=a(t-\sin t), y=a(1-\cos t) \quad[0 \leqslant t \leqslant \pi]
$$

2308. Find the moment of inertia, about the z-axis, of the first lurn of the screw-line $x=a \cos t, y=a \sin t, z=b t$.
2309. With what force will a mass M distributed with uniform density over the circle $x^{2}+y^{2}=a^{2}, \mathrm{z}=0$, act on a mass m localed at the point $A(0,0, b)$?

B. Line Integrals of the Second Type

Evaluate the following line integrals:
2310. $\int_{A B}\left(x^{2}-2 x y\right) d x+\left(2 x y+y^{2}\right) d y$, where $A B$ is an arc of the parabola $y=x^{2}$ from the point $A(1,1)$ to the point $B(2,4)$.
2311. $\int_{C}(2 a-y) d x+x d y$, where C is an arc of the first arch of the cycloid

$$
x=a(t-\sin t), y=a(1-\cos t)
$$

which arc runs in the direction of increasing parameter t.
2312. $\int_{0 A} 2 x y d x-x^{2} d y$ taken along different paths emanating from the coordinate origin $O(0,0)$ and terminating at the point $A(2,1)$ (Fig. .103):
a) the straight line $O m A$;
b) the parabola $O n A$, the axis of symmetry of which is the y-axis;
c) the parabola $O p A$, the axis of symmetry of which is the x-axis;
d) the broken line $O B A$;
e) the broken line $O C A$.
2313. $\int_{O A} 2 x y d x+x^{2} d y$ as in Problem 2312.

2314*. $\oint \frac{(x+u) d x-(x-u) d y}{x^{2}+y^{2}}$ taken along the circle $x^{2}+y^{2}=a^{2}$ counterclockwise.

Fig. 103
2315. $\int_{C} y^{2} d x+x^{2} d y$, where C is the upper half of the ellipse $x=a \cos t, y=b \sin t$ traced clockwise.
2316. $\int_{A B} \cos y d x-\sin x d y$ taken along the segment $A B$ of the bisector of the second quadrantal angle, if the abscissa of the point A is 2 and the ordinate of B is 2 .
2317. $\oint \frac{x y(y d x-x d y)}{x^{2}+y^{2}}$, where C is the right-hand loop ot the lemniscate $r^{2}=a^{2} \cos 2 \varphi$ traced counterclockwise.
2318. Evaluate the line integrals with respect to expressions. which are total differentials:
a) $\int_{(-1,2)}^{(2.3)} x d y+y d x$,
b) $\left.\int_{(0,1)}^{(3,4)} x d x+y d y, \mathrm{c}\right) \int_{(0,0)}^{(1,1)}(x+y)(d x+d y)$,
d) $\int_{(1,2)}^{(2,1)} \frac{y d x-x d y}{y^{2}}$ (along a path that does not intersect the x-axis),
e) $\int_{\left(\frac{1}{2}, \frac{1}{2}\right)}^{(x, y)} \frac{d x+d y}{x+y}$ (along a path that does not intersect the straight line $x+y=0$),
f) $\int_{\left(x_{1}, y, y\right)}^{\left(x_{2}, y_{2}\right)} \varphi(x) d x+\psi(y) d y$.
2319. Find the antiderivative functions of the integrands and evaluate the integrals:
a) $\int_{(-2,-1)}^{(3,0)}\left(x^{4}+4 x y^{3}\right) d x+\left(6 x^{2} y^{2}-5 y^{4}\right) d y$,
b) $\int_{(0,-1)}^{(1,0)} \frac{x d y-y d x}{(x-y)^{2}}$ (the integration path does not intersect the straight line $y=x$),
c) $\int_{(1,1)}^{(8,1)} \frac{(x+2 y) d x+y d y}{(x+y)^{2}}$ (the integration path does not intersect the straight line $y=-x$),
d) $\int_{(0,0)}^{(1,1)}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}+y\right) d x+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}+x\right) d y$.
2320. Compute

$$
I=\int \frac{x d x+y d y}{\sqrt{1+x^{2}+y^{2}}}
$$

taken clockwise along the quarter of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ that lies in the first quadrant.
2321. Show that if $f(u)$ is a continuous function and C is a closed piecewise-smooth contour, then

$$
\oint_{C} f\left(x^{2}+y^{2}\right)(x d x+y d y)=0
$$

2322. Find the antiderivative function U if:
a) $d u=(2 x+3 y) d x+(3 x-4 y) d y$;
b) $d u=\left(3 x^{2}-2 x y+y^{2}\right) d x-\left(x^{2}-2 x y+3 y^{2}\right) d y$;
c) $d u=e^{x-y}[(1+x+y) d x+(1-x-y) d y]$;
d) $d u=\frac{d x}{x+y}+\frac{d y}{x+y}$.

Evaluate the line integrals taken along the following space curves:
2323. $\int_{C}(y-z) d x+(z-x) d y+(x-y) d z$, where C is a turn of the screw-line

$$
\left\{\begin{array}{l}
x=a \cos t \\
y=a \sin t \\
z=b t
\end{array}\right.
$$

corresponding to the variation of the parameter t from 0 to 2π.
2324. $\oint_{C} y d x+z d y-x d z$, where C is the circle

$$
\left\{\begin{array}{l}
x=R \cos \alpha \cos t \\
y=R \cos \alpha \sin t \\
z=R \sin \alpha(\alpha=\text { const })
\end{array}\right.
$$

traced in the direction of increasing parameter.
2325. $\int_{0 A} x y d x+y z d y+z x d z$, where $O A$ is an arc of the circle

$$
x^{2}+y^{2}+z^{2}=2 R x, z=x,
$$

situated on the side of the $x z$-plane where $y>0$.
2326. Evaluate the line integrals of the total differentials:
a) $\int_{\substack{(1,0,-z) \\(a, b, c)^{3}}}^{(6.4,8)} x d x+y d y-z d z$,
b) $\int y z d x+z x d y+x y d z$, $\left(\begin{array}{l}1,1,1 \\ (3,4, \\ 5\end{array}\right)$
c) $\int_{(0,0,0)} \frac{x d x+y d!+z d z}{\sqrt{x^{2}+y^{2}+z^{2}}}$,

$$
\left(\begin{array}{l}
(0,0,0) \\
\left(x, y, \frac{1}{x i y}\right)
\end{array}\right.
$$

d) $\int_{(1,1,1)} \frac{y z d x+2 x d y+x y d z}{x y z}$ (the integration path is situated in the first octant).

C. Green's Formula

2327. Using Green's formula, transform the line integral

$$
I=\oint_{c} \sqrt{x^{2}-1 y^{2}} d x+y\left[x y+\ln \left(x+\sqrt{x^{2}+y^{2}}\right)\right] d y
$$

where the contour C bounds the region S.
2328. Applying Green's formula, evaluate

$$
I=\oint_{C} 2\left(x^{2}+y^{2}\right) d x+(x+y)^{2} d y
$$

where C is the contour of a triangle (traced in the positive direction) with verlices at the points $A(1,1), B(2,2)$ and $C(1,3)$. Verify the result oblained by computing the integral directly. 2329. Applying Green's formula, evaluate the inicgral

$$
\oint_{C}-x^{2} y d x+x y^{2} d y
$$

where C is the circle $x^{2}+y^{2}=R^{2}$ traced counterclockwise.
2330. A parabola $A m B$, whose axis is the y-axis and whose chord is $A n B$, is drawn through the points $A(1,0)$ and $B(2,3)$. Find $\oint_{A m B n A}(x+y) d x-(x-y) d y$ directly and by applying Green's formula.
2331. Find $\int_{A m B} e^{x y}\left[y^{2} d x+(1+x y) d y\right]$, if the points A and B lie on the x-axis, while the area, bounded by the integration path $A m B$ and the segment $A B$, is equal to S.

2332*. Evaluate $\oint_{C} \frac{x d y-y d x}{\lambda^{2}+y^{2}}$. Consider two cases:
a) when the origin is outside the contour C,
b) when the contour encircles the origin n times.
$2333^{* *}$. Show that if C is a closed curve, then

$$
\oint_{c} \cos (X, n) d s=0,
$$

where s is the arc length and n is the outer normal.
2334. Applying Green's formula, find the value of the integral

$$
I=\oint_{c}[x \cos (X, n)+y \sin (X, n)] d s,
$$

where $d s$ is the differential of the arc and n is the outer normal to the contour C.

2335*. Evaluate the integral

$$
\oint_{C} \frac{d x-d y}{x+y},
$$

taken along the contour of a square with vertices at the points $A(1,0), B(0,1), C(-1,0)$ and $D(0,-1)$, provided the contour is traced counterclockwise.

D. Applications of the Line Integral

Evaluate the areas of figures bounded by the following curves: 2336. The ellipse $x=a \cos t, y=b \sin t$.
2337. The astroid $x=a \cos ^{3} t, y=a \sin ^{3} t$.
2338. The cardioid $\quad x=a \quad(2 \cos t-\cos 2 t), \quad y=a \quad(2 \sin t-$ $\sin 2 t)$.

2339*. A loop of the folium of Descartes $x^{3}+y^{3}-3 x x y=0$ $(a>0)$.
2340. The curve $(x+y)^{3}=a x y$.

2341*. A circle of radius r is rolling without sliding along a fixed circle of radius R and outside it. Assuming that $\frac{R}{r}$ is an integer, find the area bounded by the curve (epicycloid) described by some point of the moving circle. Analyze the particular case of $r=R$ (cardioid).

2342*. A circle of radius r is rolling without sliding along a fixed circle of radius R and inside it. Assuming that $\frac{R}{r}$ is an integer, find the area bounded by the curve (hypocycloid) described by some point of the moving circle. Analyze the particular case when $r=\frac{R}{4}$ (astroid).
2343. A field is generated by a force of constant magnitude F in the positive x-direction Find the work that the theld does when a material point traces clockwise a quarter of the circle $x^{2}+y^{2}=R^{2}$ lying in the first quadrant.
2344. Find the work done by the forse of gravity when a material point of mass m is moved irom position $A\left(x_{1}, y_{1}, z_{1}\right)$ to position $B\left(x_{2}, y_{2}, z_{2}\right)$ (the z-axis is directed vertically upwards).
2345. Find the work done by an elastic force directed towards the coordinate origin if the magnitude of the force is proportional to the distance of the point from the orign and if the point of application of the force traces counterclockwise a quarter of the ellipse $\frac{x^{2}}{a^{2}}+y_{b^{2}}^{2}=1$ lying in the first quadrant.
2346. Find the potential function of a fore $R\{X, Y, Z\}$ and determine the work done by the force over a given path if:
a) $X=0, Y=0, Z=-m g$ (force of gravity) and the material point is moved from pusition $A\left(x_{1}, y_{1}, z_{1}\right)$ to position $B\left(x_{2}, y_{2}, z_{2}\right)$;
b) $X=-\frac{\mu x}{r^{3}}, \quad Y=-\frac{\mu y}{r^{2}}, \quad Z=-\frac{\mu 2}{s^{2}}, \quad$ where $\mu=$ const and $r=V \overline{x^{2}+y^{2}+z^{2}}$ (Newton attractive force) and the material point moves from position $A(a, b, c)$ to infinity;
c) $X=-k^{2} x, \quad Y=-k^{2} y, \quad Z=-k^{2} z$, where $k=$ const (elastic force), and the initial point of the path is located on the sphere $x^{2}+y^{2}+z^{2}=R^{2}$, while the terminal point is located on the sphere $x^{2}+y^{2}+z^{2}=r^{2}(R>r)$.

Sec. 10. Surface Integrals

1°. Surface integral of the first type. Let $f(x, y, z)$ be a continuous function and $z==\varphi(x, y)$ a smooth surface S.

The surface integral of the first type is the limit of the integral sum

$$
\iint_{S} f(x, y, z) d S=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}, y_{i}, z_{i}\right) \Delta S_{i}
$$

where ΔS_{i} is the area of the i th element of the surface S, the point $\left(x_{i}, y_{t}\right.$, z_{i}) belongs to this element, and the maximum diameter of elements of partition tends to zero.

The value of this integral is not dependent on the choice of side of the surface S over which the integration is performed.

If a projection σ of the surface S on the $x y$-plane is single-valued, that is, every strdight line parallel to the z-axis intersects the surface S at only one point, then the appropriate surface integral of the first type may be calculated from the formula

$$
\iint_{S} f(x, y, z) d S=\iint_{(\sigma)} f[x, y, \varphi(x, y)] \sqrt{1+\varphi_{x}^{\prime 2}(x, y)+\varphi_{y}^{\prime 2}(x, y)} d x d y
$$

Example 1. Compute the surface integral

$$
\iint_{S}(x+y+z) d S,
$$

where S is the surface of the cube $0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1,0 \leqslant z \leqslant 1$.
Let us compute the sum of the surface integrals over the upper edge of the cube ($z=1$) and over the lower edge of the cube ($z=0$):

$$
\int_{0}^{1} \int_{0}^{1}(x+y+1) d x d y+\int_{0}^{1} \int_{0}^{1}(x+y) d x d y=\int_{0}^{1} \int_{0}^{1}(2 x+2 y+1) d x d y=3
$$

The desired surface integral is obviously three times greater and equal to

$$
\iint_{S}(x+y+z) d S=0 .
$$

2°. Surface integral of the second type. If $P=P(x, y, z), Q=Q(x, y, z)$, $R=R(x, y, z)$ are continuous functions and S^{+}is a side of the smooth surface S characterized by the direction of the normal $n\{\cos \alpha, \cos \beta, \cos \gamma\}$, then the corresponding surface integral of the second type is expressed as follows:

$$
\iint_{S+} P d y d z+Q d z d x+R d x d y=\iint_{S}(P \cos \alpha+Q \cos \beta+R \cos \gamma) d S .
$$

When we pass to the other side, S^{-}, of the surface, this integral reverses sign.

If the surface S is represented implicitly, $F(x, y, z)=0$, then the direction cosines of the normal of this surface are determined from the formulas

$$
\cos \alpha=\frac{1}{D} \frac{\partial F}{\partial x}, \cos \beta=\frac{1}{D} \frac{\partial F}{\partial y}, \cos \gamma=\frac{1}{D} \frac{\partial F}{\partial z},
$$

where

$$
D= \pm \sqrt{\left(\frac{\partial F}{\partial x}\right)^{2}+\left(\frac{\partial F}{\partial y}\right)^{2}+\left(\frac{\partial F}{\partial z}\right)^{2}}
$$

and the choice of sign before the radical should be brought into agreement with the side of the surface S.
3°. Stokes' formula. If the functions $P=P(x, y, z), Q=Q(x, y, z)$, $R=R(x, y, z)$ are continuously differentiable and C is a closed contour bounding a two-sided surface S, we then have the Stokes' formula

$$
\begin{aligned}
& \oint_{C} P d x+Q d y+R d z= \\
& \quad=\int_{S}\left[\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \cos \alpha+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \cos \beta+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \cos \gamma\right] d S,
\end{aligned}
$$

where $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosines of the normal to the surface S, and the direction of the normal is defined so that on the side of the normal the contour S is traced counterclockwise (in a right-handed coordinate system).

Evaluate the following surface integrals of the first type:
2347. $\iint\left(x^{2}+y^{2}\right) d S$, where S is the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
2348. $\iint_{S} \sqrt{x^{2}+y^{2}} d S$ where S is the lateral surface of the cone $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}-z^{2} b^{2}=0 \quad[0 \leqslant z \leqslant b]$.

Evaluate the following surface integrals of the second type:
2349. $\iint_{S} y z d y d z+x z d z d x+x y d x d y$, where S is the external side of the surface of a tetrahedron bounded by the planes $x=0$, $y=0, z=0, x+y+z=a$.
2350. $\iint_{S} z d x d y$, where S is the external side of the cllipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
2351. $\iint_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y$, where S is the external side of the surface of the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}(z \geqslant 0)$.
2352. Find the mass of the surface of the cube $0 \leqslant x \leqslant 1$, $0 \leqslant y \leqslant 1,0 \leqslant z \leqslant 1$, if the surface density at the point $M(x, y, z)$ is equal to $x y z$.
2353. Determine the coordinates of the centre of gravity of a homogeneous parabolic envelope $a z=x^{2}+y^{2}(0 \leqslant z \leqslant a)$.
2354. Find the moment of inertia of a part of the lateral surface of the cone $z=\sqrt{x^{2}+y^{2}}[0 \leqslant z \leqslant h]$ about the z-axis.
2355. Applying Stokes' formula, transform the integrals:
a) $\oint_{C}\left(x^{2}-y z\right) d x+\left(y^{2}-z x\right) d y+\left(z^{2}-x y\right) d z$;
b) $\oint_{C} y d x+z d y+x d z$.

Applying Stokes' formula, find the given integrals and verify the results by direct calculations:
2356. $\oint_{C}(y+z) d x+(z+x) d y+(x+y) d z$, where C is the circle

$$
x^{2}+y^{2}+z^{2}=a^{2}, \quad x+y+z=0 .
$$

2357. $\oint_{C}(y-z) d x+(z-x) d y+(x-y) d z$, where C is the ellipse

$$
x^{2}+y^{2}=1, \quad x+z=1 .
$$

2358. $\oint_{C} x d x+(x+y) d y+(x+y+z) d z$, where C is the curve $x=a \sin t, y=a \cos t, z=a(\sin t+\cos t)[0 \leqslant t \leqslant 2 \pi]$.
2359. $\oint_{A B C A} y^{2} d x+z^{2} d y+x^{2} d z$, where $A B C A$ is the contour of $\triangle A B C$ with vertices $A(a, 0,0), B(0, a, 0), C(0,0, a)$.
2360. In what case is the line integral

$$
I=\oint_{C} P d x+Q d y+R d z
$$

over any closed contour C equal to zero?

Sec. 11. The Ostrogradsky-Gauss Formula

If S is a closed smooth surface bounding the volume V, and $P=P(x, y, z)$, $Q=Q(x, y, z), R=R(x, y, z)$ are functions that are continuous together with their first partial derivatives in the closed region V, then we have the Ostro-gradsky-Gauss formula

$$
\iint_{S}(P \cos \alpha+Q \cos \beta+R \cos \gamma) d S=\iiint_{(V)}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) d x d y d z \text {, }
$$

where $\operatorname{crs} \alpha, \cos \beta, \cos \gamma$ are the direction cosines of the outer normal to the surface S

Applying the Ostrogradsky-Gauss formula, transform the following surface integrals over the closed surfaces S bounding the
volume $V(\cos \alpha, \cos \beta, \cos \gamma$ are direction cosines of the outer normal to the surface S).
2361. $\iint_{S} x y d x d y+y z d y d z+z x d z d x$.
2362. $\iint_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y$.
2363. $\iint_{S} \frac{x \cos \alpha+y \cos \beta+z \cos \gamma}{\sqrt{x^{2}+y^{2}+z^{2}}} d S$.
2364. $\iint_{S}\left(\frac{\partial u}{\partial x} \cos \alpha+\frac{\partial u}{\partial y} \cos \beta+\frac{\partial u}{\partial z} \cos \gamma\right) d S$.

Using the Ostrogradsky-Gauss formula, compute the following surface integrals:

2£65. $\iint_{S} x^{2} d y d z+y^{2} d z d x+z^{2} d x d y$, where S is the external side of the surface of the cube $0 \leqslant x \leqslant a, 0 \leqslant y \leqslant c, 0 \leqslant z \leqslant a$.
2366. $\iint_{S} x d y d z+y d z d x+z d x d y$, where S is the external side of a pyramid bounded by the surfaces $x+y+z=a, x=0, y=0$, $z=-0$.
2367. $\iint_{5} x^{3} d y d z+y^{3} d z d x=z^{3} d x d y$, where S is the external side of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
$2368 \iint_{S}\left(x^{2} \cos \alpha+y^{2} \cos \beta+z^{2} \cos \gamma\right) d S$, where S is the external total surface of the cone

$$
\frac{\lambda^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}-\frac{z^{2}}{b^{2}}=0 \quad[0 \leqslant z \leqslant b]
$$

2369. Prove that if S is a closed surface and l is any fixed direction, then

$$
\iint_{S} \cos (n, l) d S=0
$$

where n is the outer normal to the surface S.
2370. Prove that the volume of the solid V bounded by the surface S is equal to

$$
V=\frac{1}{3} \iint_{S}(x \cos \alpha+y \cos \beta+z \cos \gamma) d S
$$

where $\cos c, \cos \beta, \cos \gamma$ are the direction cosines of the outer normal to the surface S.

Sec. 12. Fundamentals of Field Theory

1°. Scalar and vector fields. A scalar fiela is defined by the scalar function of the point $u=f(P)=f(x, y, z)$, where $P(x, y, z)$ is a point of space. The surfaces $f(x, y, z)=C$, where $C=$ const, are called level surfaces of the scalar field.

A vector field is defined by the vector function of the point $a=a(P)=$ $=a(r)$, where P is a point of space and $r=x i+y j+z k$ is the radius vector of the point P. In coordinate form, $a=a_{x} i+a_{y} j+a_{z} k$, where $a_{x}=a_{x}(x, y, z)$, $a_{y}=a_{y}(x, y, z)$, and $a_{z}=a_{z}(x, y, z)$ are projections of the vector a on the coordinate axes. The vector lines (force lines, flow lines) of a vector field are found from the following system of differential equations

$$
\frac{d x}{a_{x}}=\frac{d y}{a_{y}}=\frac{d z}{a_{z}} .
$$

A scalar or vector field that does not depend on the time t is called stationary; if it depends on the time, it is called nonstationary.
2°. Gradient. The vector

$$
\operatorname{grad} U(P)=\frac{\partial U}{\partial x} i+\frac{\partial U}{\partial y} j+\frac{\partial U}{\partial z} k . \equiv \nabla U
$$

where $\nabla=i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+\boldsymbol{k} \frac{\partial}{\partial z}$ is the Hamiltonian operator (del, or nabla), is called the gradient of the field $U=f(P)$ at the given point P (cl. Ch. VI, Sec. 6). The gradient is in the direction of the normal n to the level surface at the foint P and in the direction of increasing function U, and has length equal to

$$
\frac{\partial U}{\partial n}=\sqrt{\left(\frac{\partial U}{\partial x}\right)^{2}+\left(\frac{\partial U}{\partial y}\right)^{2}+\left(\frac{\partial U}{\partial z}\right)^{2}} .
$$

If the direction is given by the unit vector $l\{\cos \alpha, \cos \beta, \cos \gamma\}$, then

$$
\frac{\partial U}{\partial l}=\operatorname{grad} U \cdot l=\operatorname{grad}_{l} U=\frac{\partial U}{\partial x} \cos \alpha+\frac{\partial U}{d y} \cos \beta+\frac{\partial U}{\partial z} \cos \gamma
$$

(the derivative of the function U in the direction l).
3°. Divergence and rotation. The divergence of a vector field $a(P)=a_{\lambda} i$;$+a_{y} j+a_{z} k$ is the scalar $\operatorname{div} \boldsymbol{a}=\frac{\partial a_{x}}{\partial x}+\frac{\partial a_{y}}{\partial y}+\frac{\partial a_{z}}{\partial z}=\nabla \boldsymbol{a}$.

The rotation (curl) of a vector field $a(P)=a_{x} i+a_{y} j+a_{z} k$ is the vector

$$
\operatorname{rot} a=\left(\frac{\partial a_{z}}{\partial y}-\frac{\partial a_{y}}{\partial z}\right) i+\left(\frac{\partial a_{x}}{\partial z}-\frac{\partial a_{z}}{\partial x}\right) j+\left(\frac{\partial a_{y}}{\partial x}-\frac{\partial a_{x}}{\partial y}\right) k \equiv \nabla \times a .
$$

4°. Flux of a vector. The flux of a vector field $\boldsymbol{a}(P)$ through a surface S in a direction defined by the unit vector of the normal $n\{\cos \alpha, \cos \beta, \cos \gamma\}$ to the surface S is the integral

$$
\iint_{S} a n d S=\iint_{S} a_{n} d S=\iint_{S}\left(a_{x} \cos \alpha+a_{y} \cos \beta+a_{z} \cos \gamma\right) d S
$$

If S is a closed surface bounding a volume V, and n is a unit vector of the outer normal to the surface S, then the Ostrogradsky-Gauss formula holds,
which in vector form is

$$
\oiint_{S} a_{n} d S=\iiint_{(V)} \operatorname{div} a d x d y d z
$$

5°. Circulation of a vector, the work of a fleld. The line integral of the vector a along the curve C is defined by the formula

$$
\begin{equation*}
\int_{C} a d r=\int_{C} a_{s} d s=\int_{C} a_{x} d x+a_{y} d y+a_{z} d z \tag{1}
\end{equation*}
$$

and represents the work done by the field a along the curve C (a_{s} is the projection of the vector a on the tangent to C).

If C is closed, then the line integral (1) is called the ctrculation of the vector field a around the contour C.

If the closed curve C bounds a two-sided surface S, then Stokes' formula holds, which in vector form has the form

$$
\oint_{C} a d r=\iint_{S} n \operatorname{rot} a d S,
$$

where n is the vector of the normal to the surface S; the direction of the vector should be chosen so that for an observer looking in the direction of \boldsymbol{n} the circulation of the contour C should be counterclockwise in a right-handed coordinate system.
6°. Potential and solenoidal fields. The vector field $a(r)$ is called potental if

$$
\boldsymbol{a}=\operatorname{grad} U .
$$

where $U=f(r)$ is a scalar function (the potential of the field).
For the potentiality of a field a, given in a simply-connected domain, it is necessary and sufficient that it be nonrotational, that is, rot $a=0$. In that case there exists a potential U defined by the equation

$$
d U=a_{x} d x+a_{v} d y+a_{z} d z
$$

If the potential U is a single-valued function, then $\int_{A B} a d r=U(B)-U(A)$; in particular, the circulation of the vector a is equal to zero: $\oint_{C} a d r=0$.

A vector field $\boldsymbol{a}(\boldsymbol{r})$ is called solenoidal if at each point of the field div $a=0$; in this case the flux of the vector through any closed surface is zero.

If the field is at the same time potential and solenoidal, then div $(\operatorname{grad} U)=0$ and the potential function U is harmonic; that is, it satisfies the Laplace equation $\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}=0$, or $\Delta U=0$, where $\Delta=\nabla^{2}=\frac{\partial^{2}}{\partial \lambda^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is the Laplacian operator
2371. Determine the level surfaces of the scalar field $U=f(r)$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. What will the level surfaces be of a field $U=F(\mathrm{Q})$, where $\mathrm{Q}=\sqrt{x^{2}+y^{2}}$?

10-1900
2372. Determine the level surfaces of the scalar field

$$
U=\arcsin \frac{z}{\sqrt{x^{2}+y^{2}}}
$$

2373. Show that straight lines parallel to a vector c are the vector lines of a vector field $\boldsymbol{a}(P)=\boldsymbol{c}$, where \boldsymbol{c} is a constant vector.
2374. Find the vector lines of the field $a=-\omega y i+\omega x j$, where ω is a constant.
2375. Derive the formulas:
a) $\operatorname{grad}\left(C_{1} U+C_{2} V\right)=C_{1} \operatorname{grad} U+C_{2} \operatorname{grad} V$, where C_{1} and C_{2} are constants;
b) $\operatorname{grad}(U V)=U \operatorname{grad} V+V \operatorname{grad} U$;
c) $\operatorname{grad}\left(U^{2}\right)=2 U \operatorname{grad} U$;
d) $\operatorname{grad}\left(\frac{U}{V}\right)=\frac{V \operatorname{grad} U-U \operatorname{grad} V}{V^{2}}$;
e) $\operatorname{grad} \varphi(U)=\varphi^{\prime}(U) \operatorname{grad} U$.
2376. Find the magnitude and the direction of the gradient of the field $U=x^{3}+y^{3}+z^{3}-3 x y z$ at the point $A(2,1,1)$. Determine at what points the gradient of the field is perpendicular to the z-axis and at what points it is equal to zero.
2377. Evaluate $\operatorname{grad} U$, if U is equal, respectively, to: a) r, b) r^{2}, c) $\frac{1}{r}$, d) $f(r)\left(r=\sqrt{x^{2}+y^{2}+z^{2}}\right)$.
2378. Find the gradient of the scalar field $U=c r$, where c is a constant vector. What will the level surfaces be of this field, and what will their position be relative to the vector c ?
2379. Find the derivative of the function $U=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}$ at a given point $P(x, y, z)$ in the direction of the radius vector r of this point. 'In what case will this derivative be equal to the magnitude of the gradient?
2380. Find the derivative of the function $U=\frac{1}{r}$ in the direction of $\ell\{\cos \alpha, \cos \beta, \cos \gamma\}$. In what case will this derivative be equal to zero?
2381. Derive the formulas:
a) $\operatorname{div}\left(C_{1} a_{1}+C_{2} a_{2}\right)=C_{1} \operatorname{div} a_{1}+C_{2} \operatorname{div} a_{2}$, where C_{1} and C_{2} are constants;
b) $\operatorname{div}(U c)=\operatorname{grad} U \cdot c$, where \boldsymbol{c} is a constant vector;
c) $\operatorname{div}(U a)=\operatorname{grad} U \cdot \boldsymbol{a}+U \operatorname{div} \boldsymbol{a}$.
2382. Evaluate $\operatorname{div}\left(\frac{r}{r}\right)$.
2383. Find div a for the central vector field $a(P)=f(r) \frac{r}{r}$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
2384. Derive the formulas:
a) $\operatorname{rot}\left(C_{1} a_{1}+C_{2} a_{2}\right)=C_{1}$ rot $a_{1}+C_{2}$ rot a_{2}, where C_{1} and C_{2} are constants;
b) $\operatorname{rot}(U \boldsymbol{c})=\operatorname{grad} U \cdot \boldsymbol{c}$, where \boldsymbol{c} is a constant vector;
c) $\operatorname{rot}(U a)=\operatorname{grad} U \cdot \boldsymbol{a}+U \operatorname{rot} \boldsymbol{a}$.
2385. Evaluate the divergence and the rotation of the vector \boldsymbol{a} if \boldsymbol{a} is, respectively, equal to: a) \boldsymbol{r}; b) $\boldsymbol{r} \boldsymbol{c}$ and c) $f(r) \boldsymbol{c}$, where \boldsymbol{c} is a constant vector.
2386. Find the divergence and rotation of the field of linear velocities of the points of a solid rotating counterclockwise with constant angular velocity ω about the z-axis.
2387. Evaluate the rotation of a field of linear velocities $\boldsymbol{v}=\boldsymbol{\omega} \cdot \boldsymbol{r}$ of the points of a body rotating with constant angular velocity ω about some axis passing through the coordinate origin.
2388. Evaluate the divergence and rotation of the gradient of the scalar field U.
2389. Prove that $\operatorname{div}(\operatorname{rot} a)=0$.
2390. Using the Ostrogradsky-Gauss theorem, prove that the flux of the vector $\boldsymbol{a}=\boldsymbol{r}$ through a closed surface bounding an arbitrary volume v is equal to three times the volume.
2391. Find the flux of the vector r through the total suriace of the cylinder $x^{2}+y^{2} \leqslant R^{2}, 0 \leqslant z \leqslant H$.
2392. Find the flux of the vector $a=x^{\mathbf{s}} \boldsymbol{i}+y^{\mathbf{s}} \boldsymbol{j}+z^{3} \boldsymbol{k}$ through: a) the lateral surface of the cone $\frac{x^{2}+y^{2}}{R^{2}} \leqslant \frac{z^{2}}{H^{2}}, 0 \leqslant z \leqslant H$; b) the total surface of the cone.

2393*. Evaluate the divergence and the tlux of an attractive force $F=-\frac{m r}{r^{3}}$ of a point of mass m, located at the coordinate origin, through an arbitrary closed surface surrounding this point.
2394. Evaluate the line integral of a vector r around one turn of the screw-line $x=R \cos t ; y=R \sin t ; z=h t$ from $t=0$ to $t=2 \pi$.
2395. Using Stokes' theorem, evaluate the circulation of the vector $a=x^{2} y^{3} i+j+z k$ along the circumference $x^{2}+y^{2}=R^{2} ; z=0$, taking the hemisphere $z=\sqrt{R^{2}-x^{2}-y^{2}}$ for the surface.
2396. Show that if a force F is central, that is, it is directed towards a fixed point 0 and depends only on the distance r from this point: $\boldsymbol{F}=f(r) r$, where $f(r)$ is a single-valued continuous function, then the field is a potential field. Find the potential U of the field.
2397. Find the potential U of a gravitational field generated by a material point of mass m located at the origin of coordinates: $\boldsymbol{a}=-\frac{m}{r^{3}}$. Show that the potential U satisfies the Laplace equation $\Delta U=0$.
2398. Find out whether the given vector field has a potential U, and find U if the potential exists:
a) $a=\left(5 x^{2} y-4 x y\right) i+\left(3 x^{2}-2 y\right) j$
b) $a=y z i+z x j+x y k$;
c) $a=(y+z) i+(x+z) j+(x+y) k$.
2399. Prove that the central space field $a=f(r) r$ will be solenoidal only when $f(r)=\frac{k}{r^{2}}$, where k is constant.
2400. Will the vector field $a=r(c \times r)$ be solenoidal (where c is a constant vector)?

Chapter VIII

SERIES

Sec. 1. Number Series

1^{\prime}. Fundamental concepts. A number series

$$
\begin{equation*}
a_{1}+a_{2}+\ldots+a_{n}+\ldots=\sum_{n=1}^{\infty} a_{n} \tag{1}
\end{equation*}
$$

is called convergent if its partial sum

$$
S_{n}=a_{1}+a_{2}+\ldots+a_{n}
$$

has a finite limit as $n \rightarrow \infty$. The quantity $S=\lim _{n \rightarrow \infty} S_{n}$ is then called the sum of the series, while the number

$$
R_{n}=S-S_{n}=a_{n+1}+a_{n+2}+\ldots
$$

is called the rematnder of the series. If the limit $\lim S_{n}$ does not exist (or is infinite), the series is then called divergent.

If a series converges, then $\lim _{n \rightarrow \infty} a_{n}=0$ (necessary condition for convergence). The converse is not true.

For convergence of the series (1) it is necessary and sufficient that for any positive number e it be possible to choose an N such that for $n>N$ and for any positive p the following inequality is fulfilled:

$$
\left|a_{n+1}+a_{n+2}+\ldots+a_{n+p}\right|<\varepsilon
$$

(Cauchy's test).
The convergence or divergence of a series is not violated if we add or subtract a finite number of its terms.
2°. Tests of convergence and divergence of positive series.
a) Comparison test I. If $0 \leqslant a_{n} \leqslant b_{n}$ after a certain $n=n_{0}$, and the series

$$
\begin{equation*}
b_{1}+b_{2}+\ldots+b_{n}+\ldots=\sum_{n=1}^{\infty} b_{n} \tag{2}
\end{equation*}
$$

converges, then the series (1) also converges. If the series (1) diverges, then (2) diverges as well.

It is convenient, for purposes of comparing series, to take a geometric progression:

$$
\sum_{n=0}^{\infty} a q^{n} \quad(a \neq 0)
$$

which converges for $|q|<1$ and diverges for $|q| \geqslant 1$, and the harmontc sertes

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

which is a divergent series.
Example 1. The series

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}+\ldots+\frac{1}{n \cdot 2^{n}}+\ldots
$$

converges, since here

$$
a_{n}=\frac{1}{n \cdot 2^{n}}<\frac{1}{2^{n}},
$$

while the geometric progression

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}},
$$

whose ratio is $q=\frac{1}{2}$, converges.
Example 2. The series

$$
\frac{\ln 2}{2}+\frac{\ln 3}{3}+\ldots+\frac{\ln n}{n}+\ldots
$$

diverges, since its general term $\frac{\ln n}{n}$ is greater than the corresponding term $\frac{1}{n}$ of the harmonic series (which diverges).
b) Comparison test II. If there exists a finite and nonzero $\operatorname{limit}_{n \rightarrow x} \lim _{n \rightarrow n} \frac{a_{n}}{b_{n}}$ (in particular, if $a_{n} \sim b_{n}$), then the series (1) and (2) converge or diverge at the same time.

Example 3. The series

$$
1+\frac{1}{3}+\frac{1}{5}+\ldots+\frac{1}{2 n-1}+\ldots
$$

aiverges, since

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2 n-1}: \frac{1}{n}\right)=\frac{1}{2} \neq 0
$$

whereas a series with general term $\frac{1}{n}$ diverges.

Example 4. The series

$$
\frac{1}{2-1}+\frac{1}{2^{2}-2}+\frac{1}{2^{3}-3}+\ldots+\frac{1}{2^{n}-n}+\ldots
$$

converges, since

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{2^{n}-n}: \frac{1}{2^{n}}\right)=1, \quad \text { i.e., } \quad \frac{1}{2^{n}-n} \backsim \frac{1}{2^{n}},
$$

while a series with general term $\frac{1}{2^{n}}$ converges.
c) D'Alembert's test. Let $a_{n}>0$ (after a certain n) and let there be a limit

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=q .
$$

Then the series (1) converges if $q<1$, and diverges if $q>1$. If $q=1$, then it is not known whether the series is convergent or not.

Example 5. Test the convergence of the series

$$
\frac{1}{2}+\frac{3}{2^{2}}+\frac{5}{2^{s}}+\ldots+\frac{2 n-1}{2^{n}}+\ldots
$$

Solution. Here,

$$
a_{n}=\frac{2 n-1}{2^{n}}, a_{n+1}=\frac{2 n+1}{2^{n+1}}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(2 n+1) 2^{n}}{2^{n+1}(2 n-1)}=\frac{1}{2} \lim _{n \rightarrow \infty} \frac{1+\frac{1}{2 n}}{1-\frac{1}{2 n}}=\frac{1}{2}
$$

Hence, the given series converges.
d) Cauchy's test. Let $a_{n} \geqslant 0$ (after a certain n) and let there be a limif

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=q
$$

Then (1) converges if $q<1$, and diverges if $q>1$. When $q=1$, the question of the convergence of the series remains open.
e) Cauchy's integral test. If $a_{n}=f(n)$, where the function $f(x)$ is positive, monotoncally decreasing and continuous for $x \geqslant a \geqslant 1$, the series (1) and the integral

$$
\int_{a}^{\infty} f(x) d x
$$

converge or diverge at the same time.
By means of the integral test it may be proved that the Dtrichlet sertes

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{p}} \tag{3}
\end{equation*}
$$

converses if $p>1$, and diverges if $p \leqslant 1$. The convergence of a large number of serles may be tested by comparing with the corresponding Dirichlet series (3)

Example 6. Test the following series for convergence

$$
\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6}+\ldots+\frac{1}{(2 n-1) 2 n}+\ldots
$$

Solution. We have

$$
a_{n}=\frac{1}{(2 n-1) 2 n}=\frac{1}{4 n^{2}} \frac{1}{1-\frac{1}{2 n}} \sim \frac{1}{4 n^{2}} .
$$

Since the Dirichlet series converges for $p=2$, it follows that on the basis of comparison test II we can say that the given series likewise converges.
3°. Tests for convergence of alternating series. If a series

$$
\begin{equation*}
\left|a_{1}\right|+\left|a_{2}\right|+\ldots+\left|a_{n}\right|+\ldots \tag{4}
\end{equation*}
$$

composed of the absolute values of the terms of the series (1), converges, then (1) also converges and is called absolutely convergent. But if (1) converges and (4) diverges, then the series (1) is called conditionally (not absolutely) convergent.

For investigating the absolute convergence of the series (1), we can make use [for the series (4)] of the familiar convergence tests of positive series. For instance, (1) converges absolutely if

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 \text { or } \lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}<1
$$

In the gencral case, the divergence of (1) does not follow from the divergence of (4). But if $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1$ or $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}>1$, then not only does (4) diverge but the series (1) does also.

Leibniz test if for the alternating series

$$
\begin{equation*}
b_{1}-b_{2}+b_{8}-b_{4}+\ldots \quad\left(b_{n} \geqslant 0\right) \tag{5}
\end{equation*}
$$

the following conditions are fulfilled: 1) $b_{1} \geqslant b_{2} \geqslant b_{3} \geqslant \ldots$; 2) $\lim _{n \rightarrow \infty} b_{n}=0$, then (5) converges.

In this case, for the remainder of the series R_{n} the evaluation

$$
\left|R_{n}\right| \leqslant b_{n+1}
$$

holds.
Example 7. Test for convergence the series

$$
1-\left(\frac{2}{3}\right)^{2}-\left(\frac{3}{5}\right)^{3}+\left(\frac{4}{7}\right)^{4}+\ldots+(-1)^{\frac{n(n-1)}{2}}\left(\frac{n}{2 n-1}\right)^{n}+\ldots
$$

Solution. Let us form a series of the absolute values of the terms of this series:

$$
1+\left(\frac{2}{3}\right)^{2}+\left(\frac{3}{5}\right)^{3}+\left(\frac{4}{7}\right)^{4}+\ldots+\left(\frac{n}{2 n-1}\right)^{n}+\ldots
$$

Since

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n}{2 n-1}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{n}{2 n-1}=\lim _{n \rightarrow \infty} \frac{1}{2-\frac{1}{n}}=\frac{1}{2}
$$

the series converges absolutely.
Example 8. The series

$$
1-\frac{1}{2}+\frac{1}{3}-\ldots+(-1)^{n+1} \cdot \frac{1}{n}+\ldots
$$

converges, since the conditions of the Leibniz test are fulfilled. This series converges conditionally, since the series

$$
1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}+\ldots
$$

diverges (harmonic series).

Note. For the convergence of an alternating series it is not sufficient that its general term should tend to zero. The Leibniz test only states that an alternating series converges if the absolute value of its general term tends to zero monotonically. Thus, for example, the series

$$
1-\frac{1}{5}+\frac{1}{2}-\frac{1}{5^{2}}+\frac{1}{3}-\ldots+\frac{1}{k}-\frac{1}{5^{k}}+\ldots
$$

diverges despite the fact that its general term tends to zero (here, of course, the monotonic variation of the absolute value of the general term has been v iolated). Indeed, here, $S_{2 k}=S_{k}^{\prime}+S_{k}^{\prime \prime}$, where

$$
s_{k}^{\prime}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{k}, s_{k}^{\prime \prime}=-\left(\frac{1}{5}+\frac{1}{5^{2}}+\ldots+\frac{1}{5^{k}}\right)
$$

and $\lim _{k \rightarrow \infty} S_{k}^{\prime}=\infty$ (S_{k}^{\prime} is a partial sum of the harmonic series), whereas the limit $\lim _{k \rightarrow \infty} S_{k}^{\prime \prime}$ exists and is finite (S_{k}^{*} is a partial sum of the convergent geometric progression), hence, $\lim _{k \rightarrow \infty} S_{2 k}=\infty$.

On the other hand, the Leibniz test is not necessary for the convergence of an alternating series: an alternating series may converge if the absolute value of its general term tends to zero in nonmonotonic fashion

Thus, the series

$$
1-\frac{1}{2^{2}}+\frac{1}{3^{3}}-\frac{1}{4^{2}}+\ldots+\frac{1}{(2 n-1)^{3}}-\frac{1}{(2 n)^{2}}+\ldots
$$

converges (and it converges absolutely), although the Leibniz test is not fulfilled: though the absolute value of the general term of the series tends to zero, it does not do so monotonically.
4°. Series with complex terms A series with the general term $c_{n}=a_{n}+$ $+i b_{n}\left(i^{2}=-1\right)$ converges if, and only if, the series with real terms $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converge at the same time; in this case

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n}=\sum_{n=1}^{\infty} a_{n}+i \sum_{n=1}^{\infty} b_{n} . \tag{6}
\end{equation*}
$$

The series (6) definitely converges and is called absolutely convergent, if the series

$$
\sum_{n=1}^{\infty}\left|c_{n}\right|=\sum_{n=1}^{\infty} \sqrt{a_{n}^{2}+b_{n}^{2}}
$$

whose terms are the moduli of the terms of the series (6), converges.
5°. Operations on series.
a) A convergent series may be multiplied termwise by any number k; that is, if

$$
a_{1}+a_{2}+\ldots+a_{n}+\ldots=S
$$

then

$$
\text { - } k a_{1}+k a_{2}+\ldots+k a_{n}+\ldots=k S .
$$

b) By the sum (difference) of two convergent series

$$
\begin{gather*}
a_{1}+a_{2}+\ldots+a_{n}+\ldots=S_{1} \tag{7}\\
b_{1}+b_{2}+\ldots+b_{n}+\ldots=S_{2} \tag{8}
\end{gather*}
$$

we mean a series

$$
\left(a_{1} \pm b_{1}\right)+\left(a_{2} \pm b_{2}\right)+\ldots+\left(a_{n} \pm b_{n}\right)+\ldots=S_{1} \pm S_{2} .
$$

c) The product of the series (7) and (8) is the series

$$
\begin{equation*}
c_{1}+c_{2}+\ldots+c_{n}+\ldots \tag{9}
\end{equation*}
$$

where $c_{n}=a_{1} b_{n}+a_{2} b_{n-1}+\ldots+a_{n} b_{1}(n=1,2, \ldots)$.
If the series (7) and (8) converge absolutely, then the series (9) also converges absolutely and has a sum equal to $S_{1} S_{2}$.
d) If a series converges absolutely, its sum remains unchanged when the terms of the series are rearranged. This property is absent if the series converges conditionally.

Write the simplest formula of the nth term of the series using the indicated terms:
2401. $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\ldots \quad 2404.1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+\ldots$
2402. $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\ldots$
2405. $\frac{3}{4}+\frac{4}{9}+\frac{5}{16}+\frac{6}{25}+\ldots$
2403. $1+\frac{2}{2}+\frac{3}{4}+\frac{4}{8}+\ldots \quad$ 2406. $\frac{2}{5}+\frac{4}{8}+\frac{6}{11}+\frac{8}{14}+\ldots$
2407. $\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\ldots$
2408. $1+\frac{1 \cdot 3}{1 \cdot 4}+\frac{1 \cdot 3 \cdot 5}{1 \cdot 4 \cdot 7}+\frac{1 \cdot 3 \cdot 5 \cdot 7}{1 \cdot 4 \cdot 7 \cdot 10}+\ldots$
2409. $1-1+1-1+1-1+\ldots$
2410. $1+\frac{1}{2}+3+\frac{1}{4}+5+\frac{1}{6}+\ldots$

In Problems 2411-2415 it is required to write the first 4 or 5 terms of the series on the basis of the known general term a_{n}.
2411. $a_{n}=\frac{3 n-2}{n^{2}+1}$.
2412. $\frac{(-1)^{n} n}{2^{n}}$.
$2413 a_{n}=\frac{2+(-1)^{n}}{n^{2}}$.
Test the following series for convergence by applying the comparison tests (or the necessary condition):
2416. $1-1+1-1+\ldots+(-1)^{n-1}+\ldots$
2417. $\frac{2}{5}+\frac{1}{2}\left(\frac{2}{5}\right)^{2}+\frac{1}{3}\left(\frac{2}{5}\right)^{3}+\ldots+\frac{1}{n}\left(\frac{2}{5}\right)^{n}+\ldots$
2418. $\frac{2}{3}+\frac{3}{5}+\frac{4}{7}+\ldots+\frac{n+1}{2 n+1}+\ldots$
2419. $\frac{1}{\sqrt{10}}-\frac{1}{\sqrt[3]{10}}+\frac{1}{\sqrt[4]{10}}-\ldots+\frac{(-1)^{n+1}}{\sqrt[n]{10}}+\ldots$
2420. $\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\ldots+\frac{1}{2 n}+\ldots$
2421. $\frac{1}{11}+\frac{1}{21}+\frac{1}{31}+\ldots+\frac{1}{.10 n+1}+\ldots$
2422. $\frac{1}{\sqrt{1 \cdot 2}}+\frac{1}{\sqrt{2 \cdot 3}}+\frac{1}{\sqrt{3 \cdot 4}}+\ldots+\frac{1}{\sqrt{n(n+1)}}+\ldots$
2423. $2+\frac{2^{2}}{2}+\frac{2^{3}}{3}+\ldots+\frac{2^{n}}{n}+\ldots$
2424. $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots+\frac{1}{\sqrt{n}}+\ldots$
2425. $\frac{1}{2^{2}}+\frac{1}{5^{2}}+\frac{1}{8^{2}}+\ldots+\frac{1}{(3 n-1)^{2}}+\ldots$
$2426 . \frac{1}{2}+\frac{\sqrt[3]{2}}{3 \sqrt{2}}+\frac{\sqrt[3]{3}}{4 \sqrt{3}}+\ldots+\frac{\sqrt[3]{n}}{(n 1-1) \sqrt{n}}-\ldots$
Using d'Alembert's test, test the followin's series for convergence:
2427. $\frac{1}{\sqrt{2}}+\frac{3}{2}+\frac{5}{2 \sqrt{2}}+\ldots+\frac{2 n-1}{(\sqrt{2})^{n}}+\ldots$
2428. $\frac{2}{1}+\frac{2 \cdot 5}{1 \cdot 5}+\frac{2 \cdot 5 \cdot 8}{1 \cdot 5 \cdot 9}+\ldots+\frac{2 \cdot 5 \cdot 8 \ldots(3 n-1)}{1 \cdot 5 \cdot 9 \ldots(4 n-3)}+\ldots$

Test for convergence, using Cauchy's test:
2429. $\frac{2}{1}+\left(\frac{3}{3}\right)^{2}+\left(\frac{4}{5}\right)^{3}+\ldots+\left(\frac{n+1}{2 n-1}\right)^{n}+\ldots$
2430. $\frac{1}{2}+\left(\frac{2}{5}\right)^{3}+\left(\frac{3}{8}\right)^{3}+\ldots+\left(\frac{n}{3 n-1}\right)^{2 n-1}+\ldots$

Test for convergence the positive series:
$2431.1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\ldots$
2432. $\frac{1}{3}+\frac{1}{8}+\frac{1}{15}+\ldots+\frac{1}{(n+1)^{2}-1}+\ldots$
2433. $\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\frac{1}{7 \cdot 10}+\ldots+\frac{1}{(3 n-2)(3 n+1)}+\ldots$
2434. $\frac{1}{3}+\frac{4}{9}+\frac{9}{19}+\ldots+\frac{n^{2}}{2 n^{2}+1}+\ldots$
2435. $\frac{1}{2}+\frac{2}{5}+\frac{3}{10}+\ldots+\frac{n}{n^{2}+1}+\ldots$
2436. $\frac{3}{2^{2} \cdot 3^{3}}+\frac{5}{3^{2} \cdot 4^{2}}+\frac{7}{4^{2} \cdot 5^{2}}+\ldots+\frac{2 n+1}{(n+1)^{2}(n+2)^{2}}+\ldots$
2437. $\frac{3}{4}+\left(\frac{6}{7}\right)^{2}+\left(\frac{9}{10}\right)^{3}+\ldots+\left(\frac{3 n}{3 n+1}\right)^{n}+\ldots$
2438. $\left(\frac{3}{4}\right)^{\frac{1}{2}}+\frac{5}{7}+\left(\frac{7}{10}\right)^{\frac{3}{2}}+\ldots+\left(\frac{2 n+1}{3 n+1}\right)^{\frac{n}{2}}+\ldots$
2439. $\frac{1}{e}+\frac{8}{e^{2}}+\frac{27}{e^{4}}+\ldots+\frac{n^{3}}{e^{n}}+\ldots$
2440. $1+\frac{2}{2^{2}}+\frac{4}{3^{8}}+\ldots+\frac{2^{n-1}}{n^{n}}+\ldots$
2441. $\frac{11}{2+1}+\frac{2!}{2^{2}+1}+\frac{31}{2^{2}+1}+\ldots+\frac{n!}{2^{n}+1}+\ldots$
2442. $1+\frac{2}{11}+\frac{4}{21}+\ldots+\frac{2^{n-1}}{(n-1)!}+\ldots$
2443. $\frac{1}{4}+\frac{1 \cdot 3}{4 \cdot 8}+\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\ldots+\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{4 \cdot 8 \cdot 12 \ldots 4 n}+\ldots$
2444. $\frac{(11)^{2}}{2!}+\frac{(21)^{2}}{4!}+\frac{(31)^{2}}{6!}+\ldots+\frac{(n!)^{2}}{(2 n)!}+\ldots$
2445. $1000+\frac{1000 \cdot 1002}{1 \cdot 4}+\frac{1000 \cdot 1002 \cdot 1004}{1 \cdot 4 \cdot 7}+\ldots$

$$
\ldots+\frac{1000 \cdot 1002 \cdot 1004 \ldots(998+2 n)}{1 \cdot 4 \cdot 7 \ldots(3 n-2)}+\ldots
$$

2446. $\frac{2}{1}+\frac{2 \cdot 5 \cdot 8}{1 \cdot 5 \cdot 9}+\ldots+\frac{2 \cdot 5 \cdot 8 \ldots(6 n-7)(6 n-4)}{1 \cdot 5 \cdot 9 \ldots(8 n-11)(8 n-7)}+\ldots$
2447. $\frac{1}{2}+\frac{1.5}{2.4 \cdot 6}+\ldots+\frac{1.5 \ldots(4 n-3)}{2 \cdot 4 \cdot 6 \ldots(4 n-4)(4 n-2)}+\ldots$
2448. $\frac{1}{1!}+\frac{1 \cdot 11}{31}+\frac{1 \cdot 11 \cdot 21}{5!}+\ldots+\frac{1 \cdot 11 \cdot 21 \ldots(10 n-9)}{(2 n-1)!}+\ldots$
2449. $1+\frac{1 \cdot 4}{1 \cdot 3 \cdot 5}+\frac{1 \cdot 4 \cdot 9}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}+\ldots+\frac{1 \cdot 4 \cdot 9 \ldots n^{2}}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9 \ldots(4 n-3)}+\ldots$
2450. $\sum_{n=1}^{\infty} \arcsin \frac{1}{\sqrt{n}}$. 2455. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.
2451. $\sum_{n=1}^{\infty} \sin \frac{1}{n^{2}}$.
2452. $\sum_{n=2}^{\infty} \frac{1}{n \ln ^{2} n}$.
2453. $\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{n}\right)$. 2457. $\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n \cdot \ln \ln n}$.
2454. $\sum_{n=1}^{\infty} \ln \frac{n^{2}+1}{n^{2}}$. 2458. $\sum_{n=2}^{\infty} \frac{1}{n^{2}-n}$.
2455. $\sum_{n=2}^{\infty} \frac{1}{\ln n}$. 2459. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$.
2456. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}$ 2465. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$.
2457. $\sum_{n=2}^{\infty} \frac{1}{n \ln n+\sqrt{\ln ^{2} n}} . \quad$ 2466. $\sum_{n=1}^{\infty} \frac{2^{n} n!}{n^{n}}$.
2458. $\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n}-\sqrt{n}} . \quad$ 2467. $\sum_{n=1}^{\infty} \frac{3^{n} n!}{n^{n}}$.
2459. $\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{(2 n-1)(5 \sqrt[3]{n}-1)}$. 2468*. $\sum_{n=1}^{\infty} \frac{e^{n} n!}{n^{n}}$.
2460. $\sum_{n=1}^{\infty}\left(1-\cos \frac{\pi}{n}\right)$.
2461. Prove that the series $\sum_{n=2}^{\infty} \frac{1}{n^{p} \ln q}$:
1) converges for arbitrary q, if $p>1$, and for $q>1$, if $p=1$;
2) diverges for arbitrary q, if $p<1$, and for $q \leqslant 1$, if $p=1$.

Test for convergence the following alternating series. For convergent series, test for absolute and conditional convergence.
2470. $1-\frac{1}{3}+\frac{1}{5}-\ldots+\frac{(-1)^{n-1}}{2 n-1}+\ldots$
2471. $1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\ldots+\frac{(-1)^{n-1}}{\sqrt{n}}+\ldots$
2472. $1-\frac{1}{4}+\frac{1}{9}-\ldots+\frac{(-1)^{n-1}}{n^{2}}+\ldots$
2473. $1-\frac{2}{7}+\frac{3}{13}-\ldots+\frac{(-1)^{n-1} n}{6 n-5}+\ldots$
2474. $\frac{3}{1 \cdot 2}-\frac{5}{2 \cdot 3}+\frac{7}{3 \cdot 4}-\ldots+(-1)^{n-1} \frac{2 n+1}{n(n+1)}+\ldots$
2475. $-\frac{1}{2}-\frac{2}{4}+\frac{3}{8}+\frac{4}{16}-\ldots+(-1)^{\frac{n^{2}+n}{2}} \cdot \frac{n}{2^{n}}+\ldots$
2476. $-\frac{2}{2 \sqrt{2}-1}+\frac{3}{3 \sqrt{3}-1}-\frac{4}{4 \sqrt{4}-1}+\ldots+$ $+(-1)^{n} \frac{n+1}{(n+1) \sqrt{n+1}-1}+\ldots$
2477. $-\frac{3}{4}+\left(\frac{5}{7}\right)^{2}-\left(\frac{7}{10}\right)^{3}+\ldots+(-1)^{n}\left(\frac{2 n+1}{3 n+1}\right)^{n}+\ldots$
2478. $\frac{3}{2}-\frac{3.5}{2 \cdot 5}+\frac{3 \cdot 5 \cdot 7}{2 \cdot 5 \cdot 8}-\ldots+(-1)^{n-1} \frac{3 \cdot 5 \cdot 7 \ldots(2 n+1)}{2 \cdot 5 \cdot 8 . .(3 n-1)}+\ldots$
2479. $\frac{1}{7}-\frac{1.4}{7.9}+\frac{1 \cdot 4 \cdot 7}{7.9 \cdot 11}-\ldots+(-1)^{n-1} \frac{1 \cdot 4 \cdot 7 \ldots(3 n-2)}{7 \cdot 9 \cdot 11 \ldots(2 n+5)}+\ldots$
2480. $\frac{\sin \alpha}{\ln 10}+\frac{\sin 2 a}{(\ln 10)^{2}}+\ldots+\frac{\sin n \alpha}{(\ln 10)^{n}}+\ldots$
2481. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n}$.
2482. $\sum_{n=1}^{\infty}(-1)^{n-1} \tan \frac{1}{n \sqrt{n}}$.
2483. Convince yourself that the d'Alembert test for convergence does not decide the question of the convergence of the series $\sum_{n=1}^{\infty} a_{n}$, where

$$
a_{2 k-1}=\frac{2^{k-1}}{3^{k-1}}, \quad a_{2 k}=\frac{2^{k-1}}{3^{k}} \quad(k=1,2, \ldots),
$$

whereas by means of the Cauchy test it is possible to establish that this series converges.

2484*. Convince yourself that the Leibniz test cannot be applied to the alternating series a) to d). Find out which of these series diverge, which converge conditionally and which converge absolutely:
a) $\frac{1}{\sqrt{2-1}}-\frac{1}{\sqrt{2}+1}+\frac{1}{\sqrt{\overline{3}-1}}-\frac{1}{\sqrt{\overline{3}}+1}+\frac{1}{\sqrt{4-1}}-\frac{1}{\sqrt{4}+1}+\ldots$

$$
\left(a_{2 k-1}=\frac{1}{\sqrt{k+1}-1}, \quad a_{2 k}=-\frac{1}{\sqrt{k+1}+1}\right) ;
$$

b) $1-\frac{1}{3}+\frac{1}{2}-\frac{1}{3^{3}}+\frac{1}{2^{2}}-\frac{1}{3^{5}}+\ldots$

$$
\left(a_{2 k-1}=\frac{1}{2^{k-1}}, \quad a_{2 k}=-\frac{1}{3^{2 k-1}}\right) ;
$$

c) $1-\frac{1}{3}+\frac{1}{3}-\frac{1}{3^{2}}+\frac{1}{5}-\frac{1}{3^{3}}+\ldots$

$$
\left(a_{2 k-1}=\frac{1}{2 k-1}, \quad a_{2 k}=-\frac{1}{3^{k}}\right) ;
$$

d) $\frac{1}{3}-1+\frac{1}{7}-\frac{1}{5}+\frac{1}{11}-\frac{1}{9}+\ldots$

$$
\left(a_{2 k-1}=\frac{1}{4 k-1}, \quad a_{2 k}=-\frac{1}{4 k-3}\right) .
$$

Test the following series with complex terms for convergence:
2485. $\sum_{n=1}^{\infty} \frac{n(2+i)^{n}}{2^{n}}$.
2488. $\sum_{n=1}^{\infty} \frac{i^{n}}{n}$.
2486. $\sum_{n=1}^{\infty} \frac{n(2 t-1)^{n}}{3^{n}}$.
2489. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}+i}$.
2487. $\sum_{n=1}^{\infty} \frac{1}{n(3+i)^{n}}$.
2490. $\sum_{n=1}^{\infty} \frac{1}{(n+i) \sqrt{n}}$.
2491. $\sum_{n=1}^{\infty} \frac{1}{[n+(2 n-1) i]^{2}}$. 2492. $\sum_{n=1}^{\infty}\left[\frac{n(2-i)+1}{n(3-2 i)-3 i}\right]^{n}$.
2493. Between the curves $y=\frac{1}{x^{3}}$ and $y=\frac{1}{x^{2}}$ and to the right of their point of intersection are constructed segments parallel to the y-axis at an equal distance from each other. Will the sum of the lengths of these segments be finite?
2494. Will the sum of the lengths of the segments mentioned in Problem 2493 be finite if the curve $y=\frac{1}{x^{2}}$ is replaced by the curve $y=\frac{1}{x}$?
2495. Form the sim of the series $\sum_{n=1}^{\infty} \frac{1+n}{3^{n}}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n}}-n$. Does this sum converge?
2496. Form the difference of the divergent series $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ and $\sum_{n=1}^{\infty} \frac{1}{2 n}$ and test it for convergence.
2497. Does the series formed by subtracting the series $\sum_{n=1}^{\infty} \frac{1}{2 n-1}$ from the series $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?
2498. Choose two series such that their sum converges while their difference diverges.
2499. Form the product of the series $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$. Does this product converge?
2500. Form the series $\left(1+\frac{1}{2}+\frac{1}{4}+\ldots+\frac{1}{2^{n-1}}+\ldots\right)^{2}$. Does this series converge?
2501. Given the series $1+\frac{1}{2!}-\frac{1}{3!}+\ldots+\frac{(-1)^{n}}{n!}+\ldots$ Estimate the error committed when replacing the sum of this series with the sum of the first four terms, the sum of the first five terms. What can you say about the signs of these errors?

2502*. Estimate the error due to replacing the sum of the series

$$
\frac{1}{2}+\frac{1}{2!}\left(\frac{1}{2}\right)^{2}+\frac{1}{3!}\left(\frac{1}{2}\right)^{3}+\ldots+\frac{1}{n!}\left(\frac{1}{2}\right)^{n}+\ldots
$$

by the sum of its first n terms.
2503. Estimate the error due to replacing the sum of the series

$$
1+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!}+\ldots
$$

by the sum of its first n terms. In particular, estimate the accuracy of such an approximation for $n=10$.

2504**. Estimate the error due to replacing the sum of the series

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots+\frac{1}{n^{2}}+\ldots
$$

by the sum of its first n terms. In particular, estimate the accuracy of such an approximation for $n=1,000$.

2505**. Estimate the error due to replacing the sum of the series

$$
1+2\left(\frac{1}{4}\right)^{2}+3\left(\frac{1}{4}\right)^{4}+\ldots+n\left(\frac{1}{4}\right)^{2 n-2}+\ldots
$$

by the sum of its first n terms.
2506. How many terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ does one have to take to compute its sum to two decimal places? to three decimals?
2507. How many terms of the series $\sum_{n=1}^{\infty} \frac{n}{(2 n+1) 5^{n}}$ does one have to take to compute its sum to two decimal places? to three? to four?

2508*. Find the sum of the series $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+$ $+\frac{1}{n(n+1)}+\ldots$
2509. Find the sum of the series
$\sqrt[3]{x}+(\sqrt[5]{x}-\sqrt[3]{x})+(\sqrt[7]{x}-\sqrt[5]{x})+\ldots+(\sqrt[2 k+1]{x}-\sqrt[{2 k-\sqrt[1]{x})+} \ldots]{\sqrt{x}}$

Sec. 2. Functional Series

1°. Region of convergencs. The set of values of the argument x for which the functional series

$$
\begin{equation*}
f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)+\ldots \tag{1}
\end{equation*}
$$

converges is called the region of convergence of this series. The function

$$
S(x)=\lim _{n \rightarrow \infty} S_{n}(x),
$$

where $S_{n}(x)=f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)$, and x belongs to the region of convergence, is called the sum of the series; $R_{n}(x)=S(x)-S_{n}(x)$ is the remainder of the series.

In the simplest cases, it is sufficient, when determining the region of convergence of a series (1), to apply to this series certain convergence tests, holding x constant.

Fig. lut
Example 1. Determine the region of convergence of the series

$$
\begin{equation*}
\frac{x+1}{1 \cdot 2}+\frac{(x+1)^{2}}{2 \cdot 2^{2}}+\frac{(x+1)^{3}}{3 \cdot 2^{3}}+\ldots+\frac{(x+1)^{n}}{n \cdot 2^{n}}+\ldots \tag{2}
\end{equation*}
$$

Solution. Denoting by u_{n} the general term of the series, we will have

$$
\lim _{n \rightarrow \infty} \frac{\left|u_{n+1}\right|}{\left|u_{n}\right|}=\lim _{n \rightarrow \infty} \frac{|x+1|^{n+1} 2^{n} n}{2^{n+1}(n+1)|x|^{n}}=\frac{|x+1|}{2} .
$$

Using d'Alembert's test, we can assert that the series converges (and converges absolutely), if $\frac{|x+1|}{2}<1$, that is, if $-3<x<1$; the series diverges, if $\frac{|x+1|}{2}>1$, that is, if $-\infty<x<-3$ or $1<x<\infty$ (Fig. 104). When $x=1$ we get the harmonic series $1+\frac{1}{2}+\frac{1}{3}+\ldots$, which diverges, and when $x=-3$ we have the series $-1+\frac{1}{2}-\frac{1}{3}+\ldots$, which (in accord with the Leibniz test) converges (conditionally).

Thus, the series converges when $-3 \leqslant x<1$.
2°. Power series. For any power series

$$
\begin{equation*}
c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots+c_{n}(x-a)^{n}+\ldots \tag{3}
\end{equation*}
$$

(c_{n} and a are real numbers) there exists an interval (the interval of convergence) $|x-a|<R$ with centre at the point $x=a$, with in which the series (3) converges absolutely; for $|x-a|>R$ the series diverges. In special cases, the radius of convergence R may also be equal to 0 and ∞. At the end-points of the interval of convergence $x=a \pm R$, the power series may either converge or diverge. The interval of convergence is ordinarily determined with the help of the d'Alembert or Cauchy tests, by applying them to a series, the terms of which are the absolute values of the terms of the given series (3).

Applying to the series of absolute values

$$
\left|c_{0}\right|+\left|c_{1}\right||x-a|+\ldots+\left|c_{n}\right||x-a|^{n}+\ldots
$$

the convergence tests of d'Alembert and Cauchy, we get, respectively, for the radius of convergence of the power series (3), the formulas

$$
R=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{\left|c_{n}\right|}} \text { and } R=\lim _{n \rightarrow \infty}\left|\frac{c_{n}}{c_{n+1}}\right|
$$

However, one must be very careful in using them because the limits on the right frequently do not exist. For example, if an infinitude of coefficients c_{n}
vanishes las a particular instance, this occurs if the series contains terms with only even or only odd powers of $(x-a)]$, one cannot use these formulas. It is then advisable, when determining the interval of convergence, to apply the d'Alembert or Cauchy tests directly, as was done when we investigated the series (2), without resorting to general formulas for the radius of convergence.

If $z=x+l y$ is a complex variable, then for the power series

$$
\begin{equation*}
c_{0}+c_{1}\left(z-z_{0}\right)+c_{2}\left(z-z_{0}\right)^{2}+\ldots+c_{n}\left(z-z_{0}\right)^{n}+\ldots \tag{4}
\end{equation*}
$$

($c_{n}=a_{n}+i b_{n}, z_{0}=x_{0}+i y_{0}$) there exists a certain circle (circle of convergence) $\left|z-z_{0}\right|<R$ with centre at the point $z=z_{0}$, inside which the series converges absolutely; for $\left|z-z_{0}\right|>R$ the series diverges. At points lying on the circumference of the circle of convergence, the series (4) may both converge and diverge. It is customary to determine the circle of convergence by means of the d'Alembert or Cauchy tests applied to the series

$$
\left|c_{0}\right|+\left|c_{1}\right| \cdot\left|z-z_{0}\right|+\left|c_{2}\right| \cdot\left|z-z_{0}\right|^{2}+\ldots+\left|c_{n}\right| \cdot\left|z-z_{0}\right|^{n}+\ldots,
$$

whose terms are absolute values of the terms of the given series. Thus, for example, by means of the d'Alembert test it is easy to see that the circle of convergence of the series

$$
\frac{z+1}{1 \cdot 2}+\frac{(z+1)^{2}}{2 \cdot 2^{2}}+\frac{(z+1)^{3}}{3 \cdot 2^{3}}+\ldots+\frac{(z+1)^{n}}{n \cdot 2^{n}}+\ldots
$$

is determined by the inequality $|z+1|<2$ |it is sufficient to repeat the calculations carried out on page 305 which served to determine the interval of convergence of the series (2), only here x is replaced by z]. The centre of the circle of convergence lies at the point $z=-1$, while the radus R of this circle (the radius of convergence) is equal to 2.
$3^{\text {o }}$. Uniform convergence. The functional series (1) converges uniformly on some interval if, no matter what $\varepsilon>0$, it is possible to find an N such that does not depend on x and that when $n>N$ for all x of the given interval we have the inequality $\left|R_{n}(x)\right|<\varepsilon$, where $R_{n}(x)$ is the remainder of the given series.

If $\left|f_{n}(x)\right| \leqslant c_{n}(n=1,2, \ldots)$ when $a \leqslant x \leqslant b$ and the number series $\sum_{n=1}^{\infty} c_{n}$ converges, then the functional series (1) converges on the interval $(a, b$, absolutely and uniformly (Weierstrass' test).

The power series (3) converges absolutely and uniformly on any interval lying within its interval of convergence. The power series (3) may be termwise differentiated and integrated within its interval of convergence (for $|x-a|<R$); that is, if

$$
\begin{equation*}
c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\ldots+c_{n}(x-a)^{n}+\ldots=f(x), \tag{5}
\end{equation*}
$$

then for any x of the interval of convergence of the series (3), we have

$$
\begin{align*}
& \int_{x_{0}}^{x} c_{0} d x+\int_{x_{0}}^{x} c_{1}(x-a) d x+c_{2}(x-a)+\ldots+n c_{n}(x-a)^{n-1}+\ldots=f^{\prime}(x) \tag{6}\\
& x_{0} \\
& c_{2}(x-a)^{2} d x+\ldots+\int_{x_{0}}^{x} c_{n}(x-a)^{n} d x+\ldots= \tag{7}\\
&=\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}\left(x_{0}-a\right)^{n+1}}{n+1}=\int_{x_{0}}^{x} f(x) d x
\end{align*}
$$

|the number x_{0} also belongs to the interval of convergence of the series (3)]. Here, the series (6) and (7) have the same interval of convergence as the series (3).

Find the region of convergence of the series:
2510. $\sum_{n=1}^{\infty} \frac{1}{n^{x}}$.
2518. $\sum_{n=1}^{\infty} \frac{1}{n!x^{n}}$.
2511. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{x}}$.
2519. $\sum_{n=1}^{\infty} \frac{1}{(2 n-1) x^{n}}$.
2512. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n^{\operatorname{lnx} x}}$.
2520. $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{(x-2)^{n}}$.
2513. $\sum_{n=1}^{n} \frac{\sin (2 n-1) x}{(2 n-1)^{2}}$.
2521. $\sum_{n=9}^{\infty} \frac{2 n+1}{(n+1)^{5} x^{2 n}}$.
2514. $\sum_{n=0}^{\infty} 2^{n} \sin \frac{x}{3^{n}}$.
2522. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot 3^{n}(x-5)^{n}}$.
2515**. $\sum_{n=0}^{\infty} \frac{\cos n x}{e^{n-x}}$.
2523. $\sum_{n=1}^{\infty} \frac{n^{n}}{x^{n^{n}}}$.
2516. $\sum_{n=0}^{\infty}(-1)^{n+1} e^{-n \sin x}$.
2524*. $\sum_{n=1}^{\infty}\left(x^{n}+\frac{1}{2^{n} x^{n}}\right)$.
2517. $\sum_{n=1}^{\infty} \frac{n!}{x^{n}}$.
2525. $\sum_{n=-1}^{\infty} x^{n}$.

Find the interval of convergence of the power series and test the convergence at the end-points of the interval of convergence:
2526. $\sum_{n=0}^{n} x^{n}$.
2527. $\sum_{n=1}^{\infty} \frac{x^{n}}{n \cdot 2^{n}}$.
2528. $\sum_{n=1}^{\infty} \frac{x^{2 n-1}}{2 n-1}$.
2529. $\sum_{n=1}^{\infty} \frac{2^{n-1} x^{-n-1}}{(4 n-3)^{2}}$.
2530. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}$.
2531. $\sum_{n=0}^{\infty} \frac{(n+1)^{5} x^{2 n}}{2 n+1}$.
2532. $\sum_{n=0}^{\infty}(-1)^{n}(2 n+1)^{2} x^{n}$.
2533. $\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$.
2534. $\sum_{n=1}^{\infty} n!x^{n}$.
2535. $\quad \sum_{n=1}^{\infty} \frac{x^{n}}{n^{n}}$.
2536. $\sum_{n=1}^{\infty}\left(\frac{n}{2 n+1}\right)^{2 n-1} x^{n}$.
2537. $\sum_{n=0}^{\infty} 33^{n^{2}} x^{n^{2}}$.
2538. $\sum_{n=1}^{\infty} \frac{n}{n+1}\left(\frac{x}{2}\right)^{n}$.
2539. $\sum_{n=1}^{\infty} \frac{n!x^{n}}{n^{n}}$.
2540. $\sum_{n=2}^{\infty} \frac{x^{n-1}}{n \cdot 3^{n} \cdot \ln n}$.
2541. $\sum_{n=1}^{\infty} x^{n 1}$.

2542**. $\sum_{n=1}^{\infty} n!x^{n!}$.
2543*. $\sum_{n=1}^{\infty} \frac{x^{n t}}{2^{n-1} n^{n}}$.
2544*. $\sum_{n=1}^{\infty} \frac{x^{n^{n}}}{n^{n}}$.
2545. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x-5)^{n}}{n \cdot 3^{n}}$.
2546. $\sum_{n=1}^{\infty} \frac{(x-3)^{n}}{n \cdot 5^{n}}$.
2547. $\sum_{n=1}^{\infty} \frac{(x-1)^{2 n}}{n \cdot 9^{n}}$.
2548. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x-2)^{2 n}}{2 n}$.
2549. $\sum_{n=1}^{\infty} \frac{(x+3)^{n}}{n^{2}}$.
2550. $\sum_{n=1}^{\infty} n^{n}(x+3)^{n}$.
2551. $\sum_{n=1}^{\infty} \frac{(x+5)^{2 n-1}}{2 n \cdot 4^{n}}$.
2552. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{(2 n-1) 2^{n}}$.
2553. $\sum_{n=1}^{\infty}(-1)^{n+1} x$

$$
\times \frac{(2 n-1)^{2 n}(x-1)^{n}}{(3 n-2)^{2 n}}
$$

2554. $\sum_{n=1}^{\infty} \frac{n!(x+3)^{n}}{n^{n}}$.
2555. $\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{(n+1) \ln ^{2}(n+1)}$.
2556. $\sum_{n=1}^{\infty} \frac{(x-3)^{2 n}}{(n+1) \ln (n+1)}$.
2557. $\sum_{n=1}^{\infty}(-1)^{n+1} \times$

$$
X \frac{(x-2)^{n}}{(n-1) \ln (n+1)}
$$

3558. $\sum_{n=1}^{\infty} \frac{(x+2)^{n^{2}}}{n^{n}}$.

2559*. $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n^{2}}(x-1)^{n}$.
2560. $\sum_{n=1}^{\infty} \frac{(2 n-1)^{n}(x+1)^{n}}{2^{n-1} \cdot n^{1}}$.
2561. $\sum_{n=0}^{\infty}(-1)^{n} \frac{\sqrt[3]{n+2}}{n+1} x$
$\times(x-2)^{n}$.
2562. $\sum_{n=0}^{\infty} \frac{(3 n-2)(x-3)^{n}}{(n+1)^{2} 2^{n+1}}$.
2563. $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-3)^{n}}{(2 n+1) \sqrt{n+1}}$.

Determine the circle of convergence:
2564. $\sum_{n=0}^{\infty} i^{n} z^{n}$.
2566. $\sum_{n=1}^{\infty} \frac{(z-2 i)^{n}}{n \cdot 3^{n}}$.
2565. $\sum_{n=0}^{\infty}(1+n i) z^{n}$.
2567. $\sum_{n=0}^{\infty} \frac{z^{2 n}}{2^{n}}$.
2568. $(1+2 i)+(1+2 i)(3+2 i) z+\ldots+$

$$
+(1+2 i)(3+2 i) \ldots(2 n+1+2 i) z^{n}+\ldots
$$

2569. $1+\frac{2}{1-i}+\frac{z^{2}}{(1-i)(1-2 i)}+\ldots$

$$
\ldots+\frac{z^{n}}{(1-i)(1-2 i) \ldots(1-n i)}+\ldots
$$

2570. $\sum_{n=0}^{\infty}\left(\frac{1+2 n i}{n+2 i}\right)^{n} z^{n}$.
2571. Proceeding from the definition of uniform convergence, prove that the series

$$
1+x+x^{2}+\ldots+x^{n}+\ldots
$$

does not converge uniformly in the interval ($-1,1$), but converges uniformly on any subinterval within this interval.

Solution. Using the formula for the sum of a geometric progression, we get, for $|x|<1$,

$$
R_{n}(x)=x^{n+1}+x^{n+2}+\ldots=\frac{x^{n+1}}{1-x}
$$

Within the interval $(-1,1)$ let us take a subinterval $[-1+\alpha, 1-\alpha]$, where α is an arbitrarily small positive number. In this subinterval $|x| \leqslant 1-\alpha$, $|1-x| \geqslant \alpha$ and, consequently,

$$
\left|R_{u}(x)\right| \leqslant \frac{(1-\alpha)^{n+1}}{\alpha}
$$

To prove the uniform convergence of the given series over the subinterval $[-1+\alpha, 1-\alpha]$, it must be shown that for any $e>0$ it is possible to choose an N dependent only on ε such that for any $n>N$ we will have the ine. quality $\left|R_{n}(x)\right|<\varepsilon$ for all x of the subinterval under consideration.

Taking any $\varepsilon>0$, let us require that $\frac{(1-\alpha)^{n+1}}{\alpha}<\varepsilon$; whence $(1-\alpha)^{n+1}<\varepsilon \alpha$, $(n+1) \ln (1-\alpha)<\ln (\varepsilon \alpha)$, that is, $n+1>\frac{\ln (\varepsilon \alpha)}{\ln (1-\alpha)}$ [since $\left.\ln (1-\alpha)<0\right]$ and $n>\frac{\ln (\varepsilon \alpha)}{\ln (1-\alpha)}-1$. Thus, putting $N=\frac{\ln (e \alpha)}{\ln (1-\alpha)}-1$, we are convinced that when $n>N,\left|R_{n}(x)\right|$ is indeed less than ε for all x of the subinterval $[-1+a, 1-a]$ and the uniform convergence of the given series on any subinterval within the interval $(-1,1)$ is thus proved.

As for the entire interval ($-1,1$), it contains points that are arbitrarily close to $x=1$, and since $\lim _{x \rightarrow 1} R_{n}(x)=\lim _{x \rightarrow 1} \frac{x^{n+1}}{1-x}=\infty$, no matteı how large n is,
points x will be found for which $R_{n}(x)$ is greater than any arbitrarily large number Hence, it is impossible to choose an N such that for $n>N$ we would have the inequality $\left|R_{n}(x)\right|<\varepsilon$ at all points of the interval $(-1,1)$, and this means that the convergence of the series in the interval ($-1,1$) is not uniform.
2572. Using the definition of uniform convergence, prove that:
a) the series

$$
1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\ldots
$$

converges uniformly in any finite interval;
b) the series

$$
\frac{x^{2}}{1}-\frac{x^{4}}{2}+\frac{x^{6}}{3}-\ldots+\frac{(-1)^{n-1} x^{\leq n}}{n}+\ldots
$$

converges uniformly throughout the interval of convergence (-1, 1);
c) the series

$$
1+\frac{1}{2^{x}}+\frac{1}{3^{x}}+\ldots+\frac{1}{n^{x}}+\ldots
$$

converges uniformly in the interval $(1-\delta, \infty)$ where δ is any positive number;
d) the series

$$
\left(x^{2}-x^{4}\right)+\left(x^{4}-x^{6}\right)+\left(x^{6}-x^{8}\right)+\ldots+\left(x^{2 n}-x^{2 n+2}\right)+\ldots
$$

converges not only within the interval ($-1,1$), but at the extremities of this interval, however the convergence of the series in ($-1,1$) is nonuniform.

Prove the uniform convergence of the functional series in the indicated intervals:
2573. $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}} \quad$ on the interval $[-1,1]$.
2574. $\sum_{n=1}^{\infty} \frac{\sin n x}{2^{n}} \quad$ over the entire number scale.
2575. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{\sqrt{n}}$ on the interval $\{0,1\}$.

Applying termwise differentiation and integration, find the sums of the series:
2576. $x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots+\frac{x^{n}}{n}+\ldots$
2577. $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots$
2578. $x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\ldots+\frac{x^{n-n-1}}{2 n-1}+\ldots$
2579. $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots+(-1)^{n-1} \frac{x^{2 n-1}}{2 n-1}+\ldots$
2580. $1+2 x+3 x^{2}+\ldots+(n+1) x^{n}+\ldots$
2581. $1-3 x^{2}+5 x^{4}-\ldots+(-1)^{n-1}(2 n-1) x^{2 n-2}+\ldots$
2582. $1 \cdot 2+2 \cdot 3 x+3 \cdot 4 x^{2}+\ldots+n(n+1) x^{n-1}+\ldots$

Find the sums of the series:
2583. $\frac{1}{x}+\frac{2}{x^{2}}+\frac{3}{x^{3}}+\ldots+\frac{n}{x^{n}}+\ldots$
2584. $x+\frac{x^{5}}{5}+\frac{x^{9}}{9}+\ldots+\frac{x^{3 n-3}}{4 n-3}+\ldots$

2585*. $1-\frac{1}{3 \cdot 3}+\frac{1}{5 \cdot 3^{2}}-\frac{1}{7 \cdot 3^{3}}+\ldots+\frac{(-1)^{n-1}}{(2 n-1) 3^{n-1}}+\ldots$
2586. $\frac{1}{2}+\frac{3}{2^{2}}+\frac{5}{2^{3}}+\ldots+\frac{2 n-1}{2^{n}}+\ldots$

Sec. 3. Tayior's Series

1^{1}. Expanding a function in a power series. If a function $f(x)$ can be expanded, in some neighbourhood $|x-a|<R$ of the point a, in a series of powers of $x-a$, then this series (called Taylor's series) is of the form

$$
\begin{equation*}
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2^{\prime}}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n^{\prime}}(x-a)^{n}+\ldots \tag{1}
\end{equation*}
$$

When $a=0$ the Taylor series is also called a Maclaurin's series. Equation (1) holds if when $|x-a|<R$ the remainder term (or simply remainder) of the Taylor series

$$
R_{n}(x)=f(x)-\left[f(a) \sum_{k=1}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}\right] \rightarrow 0
$$

as $n \longrightarrow \infty$.
To evaluate the remainder, one can make use of the formula

$$
\begin{equation*}
R_{n}(x)=\frac{(x-a)^{n+1}}{(n+1)!} f^{(n+1)}[a+0(x-a)], \text { where } 0<0<1 \tag{2}
\end{equation*}
$$

(Lagrange's form).
Example 1. Expand the function $f(x)=\cosh x$ in a series of powers of x.
Solution. We find the derivatives of the given function $f(x)=\cosh x$, $f^{\prime}(x)=\sinh x, f^{\prime \prime}(x)=\cosh x, f^{\prime \prime \prime}(x)=\sinh x, \ldots$ generally, $f^{(n)}(x)=\cosh x$, if n is even, and $f^{(n)}(x)=\sinh x$, if n is odd. Putting $a=0$, we get $f(0)=1$, $f^{\prime}(0)=0, f^{\prime \prime}(0)=1, f^{\prime \prime \prime}(0)=0, \ldots ;$ generally, $f^{(n)}(0)=1$, if n is even, and $f^{(n)}(0)=0$ if n is odd. Whence, from (1), we have:

$$
\begin{equation*}
\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots+\frac{x^{2 n}}{(2 n)!}+\ldots \tag{3}
\end{equation*}
$$

To determine the interval of convergence of the series (3) we apply the d'Alembert test. We have

$$
\lim _{n \rightarrow \infty}\left|\frac{x^{2 n+2}}{(2 n+2)!}: \frac{x^{2 n}}{(2 n)!}\right|=\lim _{n \rightarrow \infty} \frac{x^{2}}{(2 n+1)(2 n+2)}=0
$$

for any x. Hence, the series converges in the interval $-\infty<x<\infty$. The remainder term, in accord with formula (2), has the form:

$$
\begin{aligned}
& R_{n}(x)=\frac{x^{n+1}}{(n+1)!} \cosh \theta x, \text { if } n \text { is odd, and } \\
& R_{n}(x)=\frac{x^{n+1}}{(n+1)!} \sinh \theta x, \text { if } n \text { is even. }
\end{aligned}
$$

Since $0>\theta>1$, it follows that

$$
|\cosh \theta x|=\frac{e^{\theta x}+e^{-\theta x}}{2} \leqslant e^{|x|}, \quad|\sinh \theta x|=\left|\frac{e^{\theta x}-e^{-\theta x}}{2}\right| \leqslant e^{|x|},
$$

and therefore $\left|R_{n}(x)\right| \leqslant \frac{|x|^{n+1}}{(n+1)!} e^{|x|}$. A series with the general term $\frac{|x|^{n}}{n!}$ converges for any x (this is made immediately evident with the help of d'Alembert's test); therefore, in accord with the necessary condition for convergence,

$$
\lim _{n \rightarrow \infty} \frac{|x|^{n+1}}{(n+1)!}=0
$$

and consequently $\lim _{n \rightarrow \infty} R_{n}(x)=0$ for any x. This signifies that the sum of the series (3) for any x is indeed equal to $\cosh x$.
2°. Techniques employed for expanding in power series.
Making use of the principal expansions

1. $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\ldots \quad(-\infty<x<\infty)$,
II. $\sin x=\frac{x}{1!}-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots+(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}+\ldots \quad(-\infty<x<\infty)$,
III. $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{2}}{4!}-\ldots+(-1)^{n} \frac{x^{2 n}}{(2 n)!}+\ldots \quad(-\infty<x<\infty)$,
IV. $(1+x)^{m^{m}}=1+\frac{m}{1!} x+\frac{m(m-1)}{2!} x^{2}+\ldots$
$\left.\ldots+\frac{m(m-1) \ldots(m-n+1)}{n!} x^{n}+\ldots \quad(-1<x<1)^{*}\right)$,
$\mathrm{V} \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots+(-1)^{n-1} \frac{x^{n}}{n}+\ldots \quad(-1<x \leqslant 1)$,
and also the formula for the sum of a geometric progression, it is possible, in many cases, simply to obtain the expansion of a given function in a power series, without having to investigate the remainder term. It is sometimes advisable to make use of termwise differentiation or integration when expanding a function in a series. When expanding rational functions in power series it is advisable to decompose these functions into partial fractions.
*) On the boundaries of the interval of convergence (i. e., when $x=-1$ and $x=1$) the expansion IV behaves as follows: for $m \geqslant 0$ it converges absolutely on both boundaries; for $0>m>-1$ it diverges when $x=-1$ and conditionally converges when $x=1$; for $m \leqslant-1$ it diverges on both boundaries.

Example 2. Expand in powers of x^{*}) the function

$$
f(x)=\frac{3}{(1-x)(1+2 x)}
$$

Solution. Decomposing the function into partial fractions, we will have

$$
f(x)=\frac{1}{1-x}+\frac{2}{1+2 x}
$$

Since

$$
\begin{equation*}
\frac{1}{1-x}=1+x+x^{2}+\ldots=\sum_{n=0}^{\infty} x^{n} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{1+2 x}=1-2 x+(2 x)^{2}-\ldots=\sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{n} \tag{5}
\end{equation*}
$$

it follows that we finally get

$$
\begin{equation*}
f(x)=\sum_{n=0}^{\infty} x^{n}+2 \sum_{n=0}^{\infty}(-1)^{n} 2^{n} x^{n}=\sum_{n=0}^{\infty}\left[1+(-1)^{n} 2^{n+1}\right] x^{n} \tag{6}
\end{equation*}
$$

The geometric progressions (4) and (5) converge, respectively, when $|x|<1$ and $|x|<\frac{1}{2}$; hence, formula (6) holds for $|x|<\frac{1}{2}$, i. e., when $-\frac{1}{2}<x<\frac{1}{2}$.
3°. Taylor's series for a function of two variables. Expanding a function of two variables $f(x, y)$ into a Taylor's sertes in the neighbourhood of a point (a, b) has the form

$$
\begin{align*}
& f(x, y)=f(a, b)+\frac{1}{1!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right] f(a, b)+\frac{1}{2!}\left[(x-a) \frac{\partial}{\partial x}+\right. \\
& \left.\quad+(y-b) \frac{\partial}{\partial y}\right]^{2} f(a, b)+\ldots+\frac{1}{n!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{n} f(a, b)+\ldots \tag{7}
\end{align*}
$$

If $a=b=0$, the Taylor series is then called a Maclaurtn's sertes. Here the notation is as follows:

$$
\begin{aligned}
& {\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right] f(a, b)=\left.\frac{\partial f(x, y)}{\partial x}\right|_{\substack{x=a \\
y=b}}(x-a)+\left.\frac{\partial f(x, y)}{\partial y}\right|_{\substack{x=a \\
y=b}}(y-b) ;} \\
& {\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{2} f(a, b)=\left.\frac{\partial^{2} f(x, y)}{\partial x^{2}}\right|_{\substack{x=a \\
y=b}} ^{\substack{y=b}}(x-a)^{2}+} \\
& +\left.2 \frac{\partial^{2} f(x, x)}{\partial x \partial y}\right|_{\substack{x=a \\
y=b}}(x-a)(y-b)+\left.\frac{\partial^{2} f(x, y)}{\partial y^{2}}\right|_{\substack{x=a \\
y=b}}(y-b)^{2} \text { and so forth. }
\end{aligned}
$$

*) Here and henceforward we mean "in positive integral powers".

The expansion (7) occurs if the remainder term of the series

$$
R_{n}(x, y)=f(x, y)-\left\{f(a, b)+\sum_{k=1}^{n} \frac{1}{k!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{k} f(a, b)\right\} \rightarrow 0
$$

as $n \rightarrow \infty$. The remainder term may be represented in the form

$$
R_{n}(x, y)+\left.\frac{1}{(n+1)!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{n+1} f(x, y)\right|_{\substack{x=a+f(x-a) \\ y=b+0(y-b)}},
$$

where $0<\theta<1$.
Expand the indicated functions in positive integral powers of x, find the intervals of convergence of the resulting series and investigate the behaviour of their remainders:
2587. $a^{x}(a>0)$. 2589. $\cos (x+a)$.
$\begin{array}{ll}\text { 2588. } \sin \left(x+\frac{\pi}{4}\right) . & \text { 2590. } \sin ^{2} x . \\ \text { 2591*. } \ln (2+x) .\end{array}$
Making use of the principal expansions $I-V$ and a geometric progression, write the expansion, in powers of x, of the following functions, and indicate the intervals of convergence of the series:
2592. $\frac{2 x-3}{(x-1)^{2}}$.
2598. $\cos ^{2} x$.
2593. $\frac{3 x-5}{x^{2}-4 x+3}$.
2599. $\sin 3 x+x \cos 3 x$.
2594. $x e^{-2 x}$.
2600. $\frac{x}{9+x^{2}}$.
2595. $e^{x^{2}}$.
2601. $\frac{1}{\sqrt{4-x^{2}}}$.
2596. $\sinh x$.
2602. $\ln \frac{1+x}{1-x}$.
2597. $\cos 2 x$.
2603. $\ln \left(1+x-2 x^{2}\right)$.

Applying differentiation, expand the following functions in powers of x, and indicate the intervals in which these expansions occur:
2604. $(1+x) \ln (1+x) . \quad$ 2606. $\arcsin x$.
2605. $\arctan x \quad$ 2607. $\ln \left(x+\sqrt{1+x^{2}}\right)$.

Applying various techniques, expand the given functions in powers of x and indicate the intervals in which these expansions occur:
2608. $\sin ^{2} x \cos ^{2} x$.
2609. $(1+x) e^{-x}$.
2612. $\frac{x^{2}-3 x+1}{x^{2}-5 x+6}$.
2610. $\left(1+e^{x}\right)^{3}$.
2611. $\sqrt[3]{8+x}$
2613. $\cosh ^{3} x$.
2614. $\frac{1}{4-x^{4}}$.
2615. $\ln \left(x^{2}+3 x+2\right)$.
2616. $\int_{0}^{x} \frac{\sin x}{x} d x$.
2617. $\int_{0}^{x} e^{-x^{2}} d x$
2618. $\int_{0}^{x} \frac{\ln (1+x) d x}{x}$.
2619. $\int_{0}^{x} \frac{d x}{\sqrt{1-x^{4}}}$.

Write the first three nonzero terms of the expansion of the following functions in powers of x :
2620. $\tan x$ 2623. $\sec x$.
2621. $\tanh x$ 2624. $\ln \cos x$.
2622. $e^{\cos x}$ 2625. $e^{x} \sin x$.

2626*. Show that for computing the length of an ellipse it is possible to make use of the approximate formula

$$
s \approx 2 \pi a\left(1-\frac{\varepsilon^{2}}{4}\right)
$$

where ε is the eccentricity and $2 a$ is the major axis of the ellipse.
2627. A heavy string hangs, under its own weight, in a catenary line $y=a \cosh \frac{x}{a}$, where $a=\frac{H}{q}$ and H is the horizontal tension of the string, while q is the weight of unit length. Show that for small x, to the order of x^{4}, it may be taken that the string hangs in a parabola $y=a+\frac{x^{2}}{2 a}$.
2628. Expand the function $x^{3}-2 x^{2}-5 x-2$ in a series of powers of $x-14$.
2629. $f(x)=5 x^{3}-4 x^{2}-3 x+2$. Expand $f(x+h)$ in a series of powers of h
2630. Expand $\ln x$ in a series of powers of $x-1$.
2631. Expand $\frac{1}{x}$ in a series of powers of $x-1$.
2632. Expand $\frac{1}{x^{2}}$ in a series of powers of $x+1$.
2633. Expand $\frac{1}{x^{2}+3 x+2}$ in a series of powers of $x+4$.
2634. Expand $\frac{1}{x^{2}+4 x+7}$ in a series of powers of $x+2$.
2635. Expand e^{x} in a series of powers of $x+2$.
2636. Expand \sqrt{x} in a series of powers of $x-4$.
2637. Expand $\cos x$ in a series of powers of $x-\frac{\pi}{2}$.
2638. Expand $\cos ^{2} x$ in a series of powers of $x-\frac{\pi}{4}$.

2639*. Expand $\ln x$ in a series of powers of $\frac{1-x}{1+x}$.
2640. Expand $\frac{x}{\sqrt{1+x}}$ in a series of powers of $\frac{x}{1+x}$.
2641. What is the magnitude of the error if we put approximately

$$
e \approx 2+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!} ?
$$

2642. To what degree of accuracy will we calculate the number $\frac{\pi}{4}$, if we make use of the series

$$
\arctan x=x-\frac{x^{3}}{3}+\frac{x^{3}}{5}-\ldots,
$$

by taking the sum of its first five terms when $x=1$?
2643*. Calculate the number $\frac{\pi}{6}$ to three decimals by expanding the function $\operatorname{arc} \sin x$ in a series of powers of x (see Example 2606).
2644. How many terms do we have to take of the series

$$
\cos x=1-\frac{x^{2}}{2!}+\ldots,
$$

in order to calculate $\cos 18^{\circ}$ to three decimal places?
2645. How many terms do we have to take of the series

$$
\sin x=x-\frac{x^{3}}{3!}+\ldots,
$$

to calculate $\sin 15^{\circ}$ to four decimal places?
2646. How many terms of the series

$$
e^{x}=1+\frac{x}{11}+\frac{x^{2}}{2^{2}}+\ldots
$$

have to be taken to find the number e to four decimal places? 2647. How many terms of the series

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\ldots
$$

do we have to take to calculate $\ln 2$ to two decimals? to 3 decimals?
2648. Calculate $\sqrt[3]{7}$ to two decimals by expanding the function $\sqrt[3]{8+x}$ in a series of powers of x.
2649. Find out the origin of the approximate formula $\sqrt{a^{2}+x} \approx a+\frac{x}{2 a}(a>0)$, evaluate it by means of $\sqrt{23}$, putting $a=5$, and estimate the error.
2650. Calculate $\sqrt[4]{19}$ to three decimals.
2651. For what values of x does the approximate formula $\cos x \approx 1-\frac{x^{2}}{2}$
yield an error not exceeding 0.01 ? 0.001 ? 0.0001 ?
2652. For what values of x does the approximate formula
$\sin x \approx x$
yield an error that does not exceed 0.01? 0.001?
2653. Evaluate $\int_{0}^{1 / 2} \frac{\sin x}{x} d x$ to four decimals.
2654. Evaluate $\int_{0}^{1} e^{-x^{2}} d x$ to four decimals.
2655. Evaluate $\int_{0}^{1} \sqrt[3]{x} \cos x d x$ to three decimals.
2656. Evaluate $\int_{0}^{1 / 4} \frac{\sin x}{\sqrt{x}} d x$ to three decimals.
2657. Evaluate $\int_{0}^{1 / 4} \sqrt{1+x^{3}} d x$ to four decimals.
2658. Evaluate $\int_{0}^{0} \sqrt{x} e^{x} d x$ to three decimals.
2659. Expand the function $\cos (x-y)$ in a series of powers of x and y, find the region of convergence of the resulting series and investigate the remainder.

Wiite the expansions, in powers of x and y, of the following functions and indicate the regions of convergence of the series:
2660. $\sin x \cdot \sin y$.

2663*. $\ln (1-x-y+x y)$.
2661. $\sin \left(x^{2}+y^{2}\right)$.
-664*. $\arctan \frac{x+y}{1-x y}$.
2662*. $\frac{1-x+y}{1+x-y}$.
2665. $f(x, y)=a x^{2}+2 b x y+c y^{2}$. Expand $f(x+h, y+k)$ in powers of h and k.
2666. $f(x, y)=x^{3}-2 y^{2}+3 x y$. Find the increment of this function when passing from the values $x=1, y=2$ to the values $x==1+h, y=2+k$.
2667. Expand the function e^{x+y} in powers of $x-2$ and $y+2$.
2668. Expand the function $\sin (x+y)$ in powers of x and $y-\frac{\pi}{2}$.

Write the first three or four terms of a power-series expansion in x and y of the functions:
2669. $e^{x} \cos y$.
2670. $(1+x)^{1+y}$.

Sec. 4. Fourier Series

1°. Dirichlet's theorem. We say that a function $f(x)$ satisfies the Dirichlet conditions in an interval (a, b) if, in this interval, the function

1) is uniformly bounded; that is $|f(x)| \leqslant M$ when $a<x<b$, where M is constant;
2) has no more than a finite number of points of discontinuity and all of them are of the first kind [i.e., at each discontinuity ξ the function $f(x)$ has a finite limit on the left $f(\xi-0)=\lim _{\varepsilon \rightarrow 0} f(\xi-\varepsilon)$ and a finite limit on the right $\left.f(\xi+0)=\lim _{\varepsilon \rightarrow 0} f(\xi+\varepsilon)(\varepsilon>0)\right]$;
3) has no more than a finite number of points of strict extremum.

Dirichlet's theorem asserts that a function $f(x)$, which in the interval ($-\pi, \pi$) satisfies the Dirichlet conditions at any point x of this interval at which $f(x)$ is continuous, may be expanded in a trigonometric Fourier series:
$f(x)=\frac{a_{0}}{2}+a_{1} \cos x+b_{1} \sin x+a_{2} \cos 2 x+b_{2} \sin 2 x+\ldots+a_{n} \cos n x+$

$$
\begin{equation*}
+b_{n} \sin n x+\ldots \tag{1}
\end{equation*}
$$

where the Fourier coeffictents a_{n} and b_{n} are calculated from the formulas
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x(n=0,1,2, \ldots) ; b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x(n=1,2, \ldots)$.
If x is a point of discontinuity, belonging to the interval $(-\pi, \pi)$, of a function $f(x)$, then the sum of the Fourier series $S(x)$ is equal to the arithmetical mean of the left and right limits of the function:

$$
S(x)=\frac{1}{2}[f(x-0)+f(x+0)]
$$

At the end-points of the interval $x=-\pi$ and $x=\pi$,

$$
S(-\pi)=S(\pi)=\frac{1}{2}[f(-\pi+0)+f(\pi-0)] .
$$

2°. Incomplete Fourier series. If a function $f(x)$ is even [i. e., $f(-x)=$ $=f(x)$], then in formula (1)

$$
b_{n}=0(n=1,2, \ldots)
$$

and

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} l(x) \cos n x d x \quad(n=0,1,2, \ldots)
$$

If a function $f(x)$ is odd [i.e., $f(-x)=-f(x)$], then $a_{n}=0(n=0,1,2 \ldots)$ and

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x(n=1,2, \ldots)
$$

A function specified in an interval ($0, \pi$) may, at our discretion, be continued in the interval ($-\pi, 0$) either as an even or an odd function; hence, it may be expanded in the interval ($0, \pi$) in an incomplete Fourier series of sines or of cosines of multiple arcs.
3°. Fourier series of a period 2l. If a function $f(x)$ satisfies the Dirichlet conditions in some interval ($-l, l$) of length $2 l$, then at the discontinuities of the function belonging to this interval the following expansion holds:

$$
\begin{aligned}
f(x)=\frac{a_{0}}{2}+a_{1} \cos \frac{\pi x}{l}+b_{1} \sin \frac{\pi x}{l}+a_{2} \cos \frac{2 \pi x}{l}+ & b_{2} \sin \frac{2 \pi x}{l}+\ldots \\
& \ldots+a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}+\ldots,
\end{aligned}
$$

where

$$
\begin{align*}
a_{n} & =\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x(n=0,1,2, \ldots) \\
b_{n} & =\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x(n=1,2, \ldots) \tag{2}
\end{align*}
$$

At the points of discontinuity of the function $f(x)$ and at the end-points $x= \pm l$ of the interval, the sum of the Fourter series is defined in a manner similar to that whel we have in the expansion in the interval ($-\pi, \pi$).

In the case of an expansion of the function $f(x)$ in a Fourier series in an arbitrary interval ($a, a+2 l$) of length $2 l$, the limits of integration in formulas (2) should be replaced respectively by a and $a+2 l$

Expand the following functions in a Fourier series in the interval ($-\pi, \pi$), determine the sum of the series at the points of discontinuity and at the end-points of the interval ($x=-\pi$, $x=\pi$), construct the graph of the function itself and of the sum of the corresponding series [outside the interval ($-\pi, \pi$) as well]:
2671. $f(x)=\left\{\begin{array}{l}c_{1} \text { when }-\pi<x \leqslant 0 \\ c_{2} \text { when } 0<x<\pi .\end{array}\right.$

Consider the special case when $c_{1}=-1, c_{2}=1$.
2672. $f(x)=\left\{\begin{array}{l}a x \text { when }-\pi<x \leqslant 0, \\ b x \text { when } 0 \leqslant x<\pi .\end{array}\right.$

Consider the special cases: a) $a=b=1$; b) $a=-1, \quad b=1$; c) $a=0, b=1 ; ~ d) ~ a=1, b=0$.
2673. $f(x)=x^{2}$.
2676. $f(x)=\cos a x$.
2674. $f(x)=e^{a \dot{x}}$.
2677. $f(x)=\sinh a x$.
2675. $f(x)=\sin a x$.
2678. $f(x)=\cosh a x$.
2679. Expand the function $f(x)=\frac{\pi-x}{2}$ in a Fourier series in the interval $(0,2 \pi)$.
2680. Expand the function $f(x)=\frac{\pi}{4}$ in sines of multiple arcs in the interval $(0, \pi)$. Use the expansion obtained to sum the number series:
a) $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots$;
b) $1+\frac{1}{5}-\frac{1}{7}-\frac{1}{11}+\frac{1}{13}+\frac{1}{17}-\ldots$;
c) $1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\frac{1}{13}-\ldots$

Take the functions indicated below and expand them, in the interval ($0, \pi$), into incomplete Fourier series: a) of sines of multiple arcs, b) of cosines of multiple arcs. Sketch graphs of the functions and graphs of the sums of the corresponding seifes in their domains of definition.
2681. $f(x)=x$. Find the sum of the following series by means of the expansion obtained:

$$
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots
$$

2682. $f(x)=x^{2}$. Find the sums of the following number series by means of the expansion obtained:
1) $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$;
2) $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots$
2683. $f(x)=e^{a x}$.
2684. $f(x)=\left\{\begin{array}{l}1 \text { when } 0<x<\frac{\pi}{2}, \\ 0 \text { when } \frac{\pi}{2} \leqslant x<\pi .\end{array}\right.$
2685. $f(x)=\left\{\begin{array}{r}x \text { when } 0<x \leqslant \frac{\pi}{2}, \\ \pi-x \text { when } \frac{\pi}{2}<x<\pi .\end{array}\right.$

Expand the following functions, in the interval $(0, \pi)$, in sines of multiple arcs:
2686. $f(x)=\left\{\begin{array}{l}x \text { when } 0<x \leqslant \frac{\pi}{2}, \\ 0 \text { when } \frac{\pi}{2}<x<\pi .\end{array}\right.$
2687. $f(x)=x(\pi-x)$.
2688. $f(x)=\sin \frac{x}{2}$.

Expand the following functions, in the interval $(0, \pi)$, in cosines of multiple arcs:
2689. $f(x)=\left\{\begin{array}{l}1 \text { when } 0<x \leqslant h, \\ 0 \text { when } h<x<\pi .\end{array}\right.$
2690. $f(x)=\left\{\begin{array}{cl}1-\frac{x}{2 h} & \text { when } 0<x \leqslant 2 h, \\ 0 & \text { when } 2 h<x<\pi .\end{array}\right.$
2691. $f(x)=x \sin x$.
2692. $f(x)=\left\{\begin{array}{r}\cos x \text { when } 0<x \leqslant \frac{\pi}{2}, \\ -\cos x \text { when } \frac{\pi}{2}<x<\pi .\end{array}\right.$
2693. Using the expansions of the functions x and x^{2} in the interval ($0, \pi$) in cosines of multiple arcs (see Problems 2681 and 2682), prove the equality

$$
\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}=\frac{3 x^{2}-6 \pi r+2 \pi^{2}}{12} \quad(0 \leqslant x \leqslant \pi) .
$$

2694**. Prove that if the function $f(x)$ is even and we have $f\left(\frac{\pi}{2}+x\right)=-f\left(\frac{\pi}{2}-x\right)$, then its Fourier series in the interval (- π, π) represents an expansion in cosines of odd multiple arcs, and if the function $f(x)$ is odd and $f\left(\frac{\pi}{2}+x\right)=f\left(\frac{\pi}{2}-x\right)$, then in the interval $(-\pi, \pi)$ it is expanded in sines of odd multiple arcs.

Expand the following functions in Fourier series in the indicated intervals:
2695. $f(x)=|x|(-1<x<1)$.
2696. $f(x)=2 x \quad(0<x<1)$.
2697. $f(x)=e^{x} \quad(-l<x<l)$.
2698. $f(x)=10-x \quad(5<x<15)$.

Expand the followin's functions, in the indicated intervals, in incomplete Fourier series: a) in sines of multiple ares, and
b) in cosines of multiple arcs:
2699. $f(x)=1 \quad(0<x<1)$.
2700. $f(x)=x \quad(0<x<l)$.
2701. $f(x)=x^{2} \quad(0<x<2 \pi)$.
2702. $f(x)=\left\{\begin{array}{r}x \text { when } 0<x \leqslant 1, \\ 2-x \text { when } 1<x<2 .\end{array}\right.$
2703. Expand the following function in cosines of multiple arcs in the interval $\left(\frac{3}{2}, 3\right)$:

$$
f(x)=\left\{\begin{array}{r}
1 \text { when } \frac{3}{2}<x \leqslant 2, \\
3-x \text { when } 2<x<3 .
\end{array}\right.
$$

11-1900

Chapter IX DIFFERENTIAL EQUATIONS

Sec. 1. Verifying Solutions. Forming Differential Equations of Families of Curves. Initial Conditions

1^{1}. Basic concepts. An equation of the type

$$
\begin{equation*}
F\left(x, y, y^{\prime}, \ldots, y\right)^{(n)}=\mathbf{0} \tag{1}
\end{equation*}
$$

where $y=y(x)$ is the sought-for function, is called a differential equation of order n. The function $y=\varphi(x)$, which converts equation (1) into an identity, is called the solution of the equation, while the graph of this function is called an integral curve. If the solution is represented implicitly, $\Phi(x, y)=0$, then it is usually called an integral

Example 1. Check that the function $y=\sin x$ is a solution of the equation
Solution. We have:

$$
y^{\prime \prime}+y=0
$$

$$
y^{\prime}=\cos x, \quad y^{\prime \prime}=-\sin x
$$

The integral

$$
y^{\prime \prime}+y=-\sin x+\sin x \equiv 0
$$

$$
\begin{equation*}
\Phi\left(x, y, C_{1}, \ldots, C_{n}\right)=0 \tag{2}
\end{equation*}
$$

of the differential equation (1), which contains n independent arbitrary constants C_{1}, \ldots, C_{n} and is equivalent (in the given region) to equation (1), is called the general integral of this equation (in the respective region). By assigning definite values to the constants C_{1}, \ldots, C_{n} in (2), we get particular integrals.

Conversely, if we have a family of curves (2) and eliminate the parameters C_{1}, \ldots, C_{n} from the system of equations

$$
\Phi=0, \quad \frac{d \Phi}{d x}=0, \quad \ldots, \quad \frac{d^{n} \Phi}{d x^{n}}=0
$$

we, generally speaking, get a differential equation of type (1) whose general integral in the corresponding region is the relation (2).

Example 2. Find the differential equation of the family of parabolas

$$
\begin{equation*}
y=C_{1}\left(x-C_{2}\right)^{2} \tag{3}
\end{equation*}
$$

Solution. Differentiating equation (3) twice, we get:

$$
\begin{equation*}
y^{\prime}=2 C_{1}\left(x-C_{2}\right) \text { and } y^{\prime \prime}=2 C_{1} \tag{4}
\end{equation*}
$$

Eliminating the parameters C_{1} and C_{2} from equations (3) and (4), we obtain the desired differential equation

$$
2 y y^{\prime \prime}=u^{\prime \prime}
$$

It is easy to verify that the function (3) converts this equation into an identity.
2°. Initial conditions. If for the desired particular solution $y=y(x)$ of a differential equation

$$
\begin{equation*}
y^{(n)}=f\left(x, y, y^{\prime}, \ldots, y^{(n-1)}\right) \tag{5}
\end{equation*}
$$

the inittal conditions

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}, \quad \ldots, \quad y^{(n-1)}\left(x_{0}\right)=y_{0}^{(n-1)}
$$

are given and we know the general solution of equation (5)

$$
y=\varphi\left(x, C_{1}, \ldots, C_{n}\right),
$$

then the arbitrary constants C_{1}, \ldots, C_{n} are determined (if this is possible) from the system of equations

$$
\left.\begin{array}{l}
y_{0}=\varphi\left(x_{0}, C_{1}, \ldots, C_{n}\right), \\
y_{0}^{\prime}=\varphi_{x}^{\prime}\left(x_{0}, C_{1}, \ldots, C_{n}\right), \\
y_{0}^{(n-1)}=\varphi_{x^{n-1}}^{(n-1)}\left(x_{0}, C_{1}, \ldots, C_{n}\right) .
\end{array}\right\}
$$

Example 3. Find the curve of the family

$$
\begin{equation*}
y=C_{1} e^{x}+C_{2} e^{-2 x} \tag{6}
\end{equation*}
$$

for which $y(0)=1, y^{\prime}(0)=-2$.
Solution. We have:

$$
y^{\prime}=C_{1} e^{x}-2 C_{2} e^{-2 x}
$$

Putting $x=0$ in formulas (6) and (7), we obtain
whence
and, hence,

$$
1=C_{1}+C_{2}, \quad-2=C_{1}-2 C_{2},
$$

$$
\begin{gathered}
C_{1}=0, \quad C_{2}=1 \\
y=e^{-2 x} .
\end{gathered}
$$

Determine whether the indicated functions are solutions of the given differential equations:
2704. $x y^{\prime}=2 y, y=5 x^{2}$.
2705. $y^{\prime 2}=x^{2}+y^{2}, y=\frac{1}{x}$.
2706. $(x+y) d x+x d y=0, y=\frac{C^{2}-x^{2}}{2 x}$.
2707. $y^{\prime \prime}+y=0, y=3 \sin x-4 \cos x$.
2708. $\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0, x=C_{1} \cos \omega t+C_{2} \sin \omega t$.
2709. $y^{\prime \prime}-2 y^{\prime}+y=0 ; \quad$ a) $y=x e^{x}$, b) $y=x^{2} e^{x}$.
2710. $y^{\prime \prime}-\left(\lambda_{1}+\lambda_{2}\right) y^{\prime}+\lambda_{1} \lambda_{2} y=0$, $y=C_{1} e^{\lambda_{1} x}+C_{2} e^{\lambda_{2} x}$.
Show that for the given differential equations the indicated relations are integrals:
2711. $(x-2 y) y^{\prime}=2 x-y, \quad x^{2}-x y+y^{2}=C^{3}$.

11*
2712. $(x-y+1) y^{\prime}=1, \quad y=x+C e^{y}$.
2713. $(x y-x) y^{\prime \prime}+x y^{\prime 2}+y y^{\prime}-2 y^{\prime}=0, \quad y=\ln (x y)$.

Form differential equations of the given families of curves (C, C_{1}, C_{8}, C_{3} are arbitrary constants):
2714. $y=C x$.
2715. $y=C x^{2}$.
2716. $y^{2}=2 C x$.
2717. $x^{2}+y^{2}=C^{2}$.
2718. $y=C e^{x}$.
2719. $x^{2}=C\left(x^{2}-y^{2}\right)$.
2720. $y^{2}+\frac{1}{x}=2+C e^{-\frac{y^{2}}{2}}$.
2721. $\ln \frac{x}{y}=1+a y$
(a is a parameter).
2722. $\left(y-y_{0}\right)^{2}=2 p x$
(y_{0}, p are parameters).
2726. Form the differential equation of all straight lines in the $x y$-plane.
2727. Form the differential equation of all parabolas with vertical axis in the $x y$-plane.
2728. Form the differential equation of all circles in the $x y$-plane.

For the given families of curves find the lines that satisfy the given initial conditions:
2729. $x^{2}-y^{2}=C, y(0)=5$.
2730. $y=\left(C_{1}+C_{2} x\right) e^{2 x}, \quad y(0)=0, \quad y^{\prime}(0)=1$.
2731. $y=C_{1} \sin \left(x-C_{2}\right), y(\pi)=1, \quad y^{\prime}(\pi)=0$.
2732. $y=C_{1} e^{-x}+C_{2} e^{x^{2}}+C_{8} e^{2 x}$; $y(0)=0, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=-2$.

Sec. 2. First-Order Differential Equations
1^{1}. Types of first-order differential equations. A differential equation of the first order in an unknown function y, solved for the derivative y^{\prime}, is of the form

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{1}
\end{equation*}
$$

where $f(x, y)$ is the given function. In certain cases it is convenient to consider the variable x as the sought-for function, and to write (1) in the form

$$
x^{\prime}=g(x, y)
$$

where $g(x, y)=\frac{1}{f(x, y)}$.
Taking into account that $y^{\prime}=\frac{d y}{d x}$ and $x^{\prime}=\frac{d x}{d y}$, the differential equations (1) and (1^{\prime}) may be written in the symmetric form

$$
\begin{equation*}
P(x, y) d x+Q(x, y) d y=0, \tag{2}
\end{equation*}
$$

where $P(x, y)$ and $Q(x, y)$ are known functions.
By solutions to (2) we mean functions of the form $y=\varphi(x)$ or $x=\psi(y)$ that satisfy this equation. The general integral of equations (1) and (1'), or
equation (2), is of the form

$$
\Phi(x, y, C)=0
$$

where C is an arbitrary constant.
2°. Direction fleld. The set of directions

$$
\tan \alpha=f(x, y)
$$

is called a direction field of the differential equation (1) and is ordinarily depicted by means of short lines or arrows inclined at an angle α.

Curves $f(x, y)=k$, at the points of which the inclination of the field has a constant value, equal to k, are called isoclines. By constructing the isoclines and direction field, it is possible, in the simplest cases, to give a

Fig 105
rough sketch of the field of intzgral curves, regarding the latter as curves which at each point have the given direction of the field.

Example 1. Using the method of isoclines, construct the field of integral curves of the equation

$$
y^{\prime}=x .
$$

Solution. By constructing the isoclines $x=k$ (straight lines) and the direction field, we obtain approximately the field of integral curves (Fig. 105). The family of parabolas

$$
y=\frac{x^{2}}{2}+C
$$

is the general solution.
Using the method of isoclines, make approximate constructions of fields of integral curves for the indicated differential equations:
2733. $y^{\prime}=-x$.
2734. $y^{\prime}=-\frac{x}{y}$.
2735. $y^{\prime}=1+y^{2}$.
2736. $y^{\prime}=\frac{x+y}{x-y}$.
2737. $y^{\prime}=x^{2}+y^{2}$.
3°. Cauchy's theorem. If a function $f(x, y)$ is continuous in some region $U\{a<x<A, b<y<B\}$ and in this region has a bounded derivative $f_{y}^{\prime}(x, y)$, then through each point (x_{0}, y_{0}) that belongs to U there passes one and only one integral curve $y=\varphi(x)$ of the equation (1) $\left[\varphi\left(x_{0}\right)=y_{0}\right]$.
4°. Euler's broken-line method. For an approximate construction of the integral curve of equation (1) passing through a given point $M_{0}\left(x_{0}, y_{0}\right)$, we replace the curve by a broken line with vertices $M_{i}\left(x_{i}, y_{i}\right)$, where

$$
\begin{aligned}
x_{i+1} & =x_{i}+\Delta x_{i}, \quad y_{i+1}=y_{i}+\Delta y_{i}, \\
\Delta x_{i} & =h \text { (one step of the process), } \\
\Delta y_{i} & =h f\left(x_{i}, y_{i}\right) \quad(i=0,1,2, \ldots) .
\end{aligned}
$$

Example 2. Using Euler's method for the equation

$$
y^{\prime}=\frac{x y}{2}
$$

find $y(1)$, if $y(0)=1(h=0.1)$.
We construct the table:

\boldsymbol{t}	x_{i}	y_{i}	$\Delta y_{i}=\frac{x_{i} y_{i}}{20}$
0	0	1	0
1	0.1	1	0005
2	0.2	1.005	0.010
3	0.3	1015	0005
4	04	1.030	0021
5	0.5	1.051	0026
.6	0.6	1.077	0032
7	0.7	1.109	0.039
8	0.8	1.148	0046
9	0.9	1.194	0.054
10	1.0	1.248	

Thus, $y(1)=1.248$. For the sake of comparison, the exact value is $y(1)=e^{\frac{1}{4}} \approx 1.284$

Using Euler's method, find the particular solutions to the given differential equations for the indicated values of x :
2738. $y^{\prime}=y, y(0)=1$; find $y(1)(h=0.1)$.
2739. $y^{\prime}=x+y, y(1)=1$; find $y(2), \quad(h=0.1)$.
2740. $y^{\prime}=-\frac{y}{1+x}, y(0)=2$; find $y(1)(h=0.1)$.
2741. $y^{\prime}=y-\frac{2 x}{v}, y(0)=1$; find $y(1)(h=0.2)$.

Sec. 3. First-Order Differential Equations with Variables Separable. Orthogonal Trajectories

1^{1}. First-order equations with variables separable. An equation with variables separable is a first-order equation of the type

$$
\begin{equation*}
y^{\prime}=f(x) g(y) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
X(x) Y(y) d x+X_{1}(x) Y_{1}(y) d y=0 \tag{I'}
\end{equation*}
$$

Dividing both sides of equation (1) by $g(y)$ and multiplying by $d x$, we get $\frac{d u}{g(y)}=f(x) d x$ Whence, by integrating, we get the general integral of equathon (1) in the form

$$
\begin{equation*}
\int \frac{d y}{g(y)}=\int f(x) d x+C \tag{2}
\end{equation*}
$$

Similarly, dividing both sides of equation (1') by $X_{1}(x) Y(y)$ and integrating, we get the general integral of $\left(1^{\prime}\right)$ in the form

$$
\int \frac{X(r)}{X_{1}(x)} d x+\int \frac{Y_{1}(y)}{Y(y)} d y=C
$$

If for some value $y=y_{0}$ we have $g\left(\mu_{0}\right)=0$, then the function $y=\mu_{0}$ is also (as is directly evident) a solution of equation (1) Similarly, the straight lines $x=a$ and $y=b$ will be the intersal curves of equation (1^{\prime}), if a and b are, respectively, the roots of the equations $X,(x)=0$ and $Y(y)=0$, by the left sides of which we had to divide the initial equation.

Example 1. Solve the equation

$$
\begin{equation*}
y^{\prime}=-\frac{y}{x} \tag{3}
\end{equation*}
$$

In particular, find the solution that satisfies the initial conditions

$$
y(1)=2
$$

Solution. Equation (3) may be written in the torm

$$
\frac{d y}{d x}=-\frac{y}{x} .
$$

Whence, separating variables, we have

$$
\frac{d y}{y}=-\frac{d x}{x}
$$

and, consequently,

$$
\ln |y|=-\ln |x|+\ln C_{\mathrm{r}},
$$

where the arbitrary constant $\ln C_{1}$ is taken in logarithmic form. After taking antilogarithms we get the general solution

$$
\begin{equation*}
y=\frac{C}{x}, \tag{4}
\end{equation*}
$$

where $C= \pm C_{1}$.
When dividing by y we could lose the solution $y=0$, but the latter is contanned in the formula (4) for $C=0$.

Utilizing the given mitial conditıons, we get $C=2$; and, hence, the desired particular solution is

$$
y=\frac{2}{x} .
$$

$\mathbf{2}^{0}$ Certain differential equations that reduce to equations with variables separable. Differential equations of the form

$$
y^{\prime}=f(a x+b y+c) \quad(b \neq 0)
$$

reduce to equations of the form (1) by means of the substitution $u=a x+b y+c$. where u is the new sought-for function
3° Orthogonal trajectories are curves that intersect the lines of the given family $\Phi(x, y, a)=0$ is a parameter) at a right angle. If $F\left(x, y, y^{\prime}\right)=0$ is the differental equation of the family, then

$$
F\left(x, y,-\frac{1}{y^{\prime}}\right)=0
$$

is the differential equation of the orthogonal trajectories.
Example 2. Find the orthosonal trajectories of the family of ellipses

$$
\begin{equation*}
x^{2}+2 y^{2}=a^{2} . \tag{5}
\end{equation*}
$$

Solution Differentiating the equation (5), we find the daderential equation of the famly

$$
x+2 y y^{\prime}=0
$$

Fig. 106
Whence, replacing y^{\prime} by $-\frac{1}{y^{\prime}}$, we get the differential equation of the orthogonal trajectories

$$
x-\frac{2 y}{y^{\prime}}=0 \text { or } y^{\prime}=\frac{2 y}{x} .
$$

Integrating, we have $y=C_{x^{2}}$ (family of parabolas) (Fig. 106).
4°. Forming differential equations. When forming differential equations in geometrical problems, we can frequently make use of the geometrical meaning of the derivative as the tangent of an angle formed by the tangent line to the curve in the pos'tive x-direction. In many cases this makes it fossible straightway to establish a relationship between the ordinate y of the desired curve, its abscisea x, and the tangent of the angle of the tangent line y^{\prime}, that is to say, to obtain the differential equation. In other instances (see Problems 2783, 2890, 2895), use is made of the geometrical significance of the definite integral as the area of a curvilinear trapezoid or the length of an arc. In this case, by hypothesis we have a simple integral equation (since the desired function is under the sign of the integral): however, we can readily pass to a differential equation by difterentiating both sides.

Example 3. Find a curve passing through the point (3,2) for which the segment of any tangent line contained between the coordinate axes is divided in half at the point of tangency.

Solution. Let $M(x, y)$ be the mid-point of the tangent line $A B$. which by hypothesis is the point of tangency (the points A and B are points of intersection of the tangent line with the y - and x-axes). It is given that $O A=2 y$ and $O B=2 x$. The slope of the tangent to the curve at $M(x, y)$ is

$$
\frac{d y}{d x}=-\frac{O A}{O B}=-\frac{y}{x} .
$$

This is the differential equation of the sought-for curve. Transforming, we gel

$$
\frac{d x}{x}+\frac{d y}{y}=0
$$

and, consequently,

$$
\ln x+\ln y=\ln C \text { or } x y=C \text {. }
$$

Utilizing the initual condition, we determıne $C=3 \cdot 2=6$. Hence, the desired curve is the hyperbola $1 y=6$.

Solve the differential equations:
2742. $\tan x \sin ^{2} y d x+\cos ^{2} x \cot y d y=0$.
2743. $x y^{\prime}--y=y^{3}$.
2744. xy $y^{\prime}=1-x^{2}$.
2745. $y-x y^{\prime}=\mathrm{a}\left(1+x^{2} y^{\prime}\right)$.
2746. $3 e^{x} \tan y d x+\left(1-e^{x}\right) \sec ^{2} y d y=0$.
2747. $y^{\prime} \tan x=!$.

Find the particular solutions of equations that satisfy the indicated initial conditions:
2748. $\left(1+e^{x}\right) y y^{\prime}=e^{x} ; y=1$ when $x=0$.
2749. $\left(x y^{2}+x\right) d x+\left(x^{2} y-y\right) d y=0 ; y=1$ when $x=0$.
2750. $y^{\prime} \sin x=y \ln y ; y=1$ when $x=\frac{\pi}{2}$.

Solve the differential equations by changing the variables:
2751. $y^{\prime}=(x+y)^{2}$.
2752. $y=(8 x+2 y+1)^{2}$.
2753. $(2 x+3 y-1) d x+(4 x+6 y-5) d y=0$.
2754. $(2 x-y) d x+(4 x-2 y+3) d y=0$.

In Examples 2755 and 2756, pass to polar coordinates:
2755. $y^{\prime}=\frac{\sqrt{x^{2}+y^{2}}-x}{y}$.
2756. $\left(x^{2}+y^{2}\right) d x-x y d y=0$.

2757*. Find a curve whose segment of the tangent is equal to the distance of the point of tangency from the origin.
2758. Find the curve whose segment of the normal at any point of a curve lying between the coordinate axes is divided in two at this point.
2759. Find a curve whose subtangent is of constant length a.
2760. Find a curve which has a subtangent twice the abscissa of the point of tangency.

2761*. Find a curve whose abscissa of the centre of gravity of an area bounded by the coordinate axes, by this curve and the ordinate of any of its points is equal to $3 / 4$ the abscissa of this point.
2762. Find the equation of a curve that passes through the point $(3,1)$, for which the segment of the tangent between the point of tangency and the x-axis is divided in half at the point of intersection with the y-axis.
2763. Find the equation of a curve which passes through the point $(2,0)$, if the segment of the tangent to the curve between the point of tangency and the y-axis is of constant length 2 .

Find the orthogonal trajectories of the given families of curves (a is a parameter), construct the families and their orthogonal trajectories.
$\begin{array}{ll}\text { 2764. } x^{2}+y^{2}=a^{2} . & \text { 2766. } x y=a . \\ \text { 2765. } y^{2}=a x . & \text { 2767. }(x-a)^{2}+y^{2}=a^{2} .\end{array}$

Sec. 4. First-Order Homogeneous Differential Equations

1°. Homogeneous equations. A differential equation

$$
\begin{equation*}
P(x, y) d x+Q(x, y) d y=0 \tag{1}
\end{equation*}
$$

is called homogeneous, if $P(x, y)$ and $Q(x, y)$ are homogeneous functions of the same degree. Equation (1) may be reduced to the form

$$
y^{\prime}=f\left(\frac{y}{x}\right) ;
$$

and by means of the substitution $y=x u$, where u is a new unknown function, it is transformed to an equation with variables separable. We can also apply the substitution $x=y u$.

Example 1. Find the general solution to the equation

$$
y^{\prime}=e^{\frac{y}{x}}+\frac{y}{x} .
$$

Solution. Put $y=u x$; then $u+x u^{\prime}=e^{u}+u$ or

$$
e^{-u} d u=\frac{d x}{x}
$$

Integrating, we get $u=-\ln \ln \frac{C}{x}$, whence

$$
y=-x \ln \ln \frac{C}{x}
$$

2°. Equations that reduce to homogeneous equations.

If

$$
\begin{equation*}
y^{\prime}=f\left(\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\right) \tag{2}
\end{equation*}
$$

and $\delta=\left|\begin{array}{l}a_{1} b_{1} \\ a_{2} b_{2}\end{array}\right| \neq 0$, then, putting into equation (2) $x=u+\alpha, y=v+\beta$, where the constants α and β are found from the following system of equations,

$$
a_{1} \alpha+b_{1} \beta+c_{1}=0, \quad a_{2} \alpha+b_{2} \beta+c_{2}=0
$$

we get a homogeneous differential equation in the variables u and v. If $\delta=0$, then, putting in (2) $a_{1} x+b_{1} y=u$, we get an equation with variables separable.

Integrate the differential equations:
2768. $y^{\prime}=\frac{y}{x}-1 . \quad$ 2770. $(x-y) y d x-x^{2} d y=0$.
2769. $y^{\prime}=-\frac{x+y}{x}$.
2771. For the equation $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$ find the family of integral curves, and also indicate the curves that pass through the points $(4,0)$ and $(1,1)$, respectively.
2772. $y d x+(2 \sqrt{x y}-x) d y=0$.
2773. $x d y-y d x=\sqrt{x^{2}+-y^{2}} d x$.
2774. $\left(4 x^{2}+3 x y+y^{2}\right) d x+\left(4 y^{2}+3 x y+x^{2}\right) d y=0$.
2775. Find the particular solution of the equation $\left(x^{2}-3 y^{2}\right) d x+$ $+2 x y d y=0$, provided that $y=1$ when $x=2$.

Solve the equations:
2776. $(2 x-y+4) d y+(x-2 y+5) d x=0$.
2777. $y^{\prime}=\frac{1-3 x-3 y}{1+x+y} . \quad$ 2778. $y^{\prime}=\frac{x+2 y+1}{2 x+4 y+3}$.
2779. Find the equation of a curve that passes through the point $(1,0)$ and has the property that the segment cut off by the tangent line on the y-axis is equal to the radius vector of the point of tangency.

2780**. What shape should the reflector of a search light have so that the rays from a point source of light are rellected as a parallel beam?
2781. Find the equation of a curve whose subtangent is equal to the arithmetic mean of the coordinates of the point of tangency.
2782. Find the equation of a curve for which the segment cut off on the y-axis by the normal at any point of the curve is equal to the distance of this point from the origin.

2783*. Find the equation of a curve for which the area contained between the x-axis, the curve and two ordinates, one of which is a constant and the other a variable, is equal to the ratio of the cube of the variable ordinate to the appropriate abscissa.
2784. Find a curve for which the segment on the y-axis cut off by any tangent line is equal to the abscissa of the point of tangency.

Sec. 5. First-Order Linear Differential Equations.
 Bernoulli's Equation

1°. Linear equations. A differential equation of the form

$$
\begin{equation*}
y^{\prime}+P(x) \cdot y=Q(x) \tag{1}
\end{equation*}
$$

of degree one in y and y^{\prime} is called linear.
If a function $Q(x) \equiv 0$, then equation (1) takes the form

$$
\begin{equation*}
y^{\prime}+P(x) \cdot y=0 \tag{2}
\end{equation*}
$$

and is called a homogeneous linear differential equation. In this case, the variables may be separated, and we get the general solution of (2) in the form

$$
\begin{equation*}
y=C \cdot e^{-\int P(x) d x} . \tag{3}
\end{equation*}
$$

To solve the inhomogeneous linear equation (1), we apply a method that is called variation of parameters, which consists in first finding the general solution of the respective homogeneous linear equation, that is, relationship (3). Then, assuming here that C is a function of x, we seek the solution of the inhomogeneous equation (1) in the form of (3). To do this, we put into (1) y and y^{\prime} which are found from (3), and then from the differential equation thus obtained we determine the function $C(x)$. We thus get the general solution of the inhomogeneous equation (1) in the form

$$
y=C(x) \cdot e^{-\int P(x) d x}
$$

Example 1. Solve the equation

$$
\begin{equation*}
y^{\prime}=\tan x \cdot y+\cos x \tag{4}
\end{equation*}
$$

Solution. The corresponding homogeneous equation is
Solving it we get:

$$
y^{\prime}-\tan x \cdot y=0 .
$$

$$
y=-c \cdot \frac{1}{\cos x} .
$$

Considering C as a function of x, and differentiating, we find;

$$
y=\frac{1}{\cos x} \cdot \frac{d C}{d x}+\frac{\sin x}{\cos ^{2} x} \cdot C .
$$

Putting y and y^{\prime} into (4). we get:

$$
\frac{1}{\cos x} \cdot \frac{d C}{d x}+\frac{\sin x}{\cos ^{2} x} \cdot C=\tan x \cdot \frac{C}{\cos x}+\cos x, \text { or } \frac{d C}{d x}=\cos ^{2} x
$$

whence

$$
C(x)=\int \cos ^{2} x d x=\frac{1}{2} x+\frac{1}{4} \sin 2 x+C_{1} .
$$

Hence, the general solution of equation (4) has the form

$$
y=\left(\frac{1}{2} x+\frac{1}{4} \sin 2 x+C_{1}\right) \cdot \frac{1}{\cos x}
$$

In solving the linear equation (1) we can also make use of the substitution

$$
\begin{equation*}
y=u v \tag{5}
\end{equation*}
$$

where u and v are functions of x. Then equation (1) will have the form

$$
\begin{equation*}
\left[u^{\prime}+P(x) u\right] v+v^{\prime} u=Q(x) \tag{6}
\end{equation*}
$$

If we require that

$$
\begin{equation*}
u^{\prime}+P(x) u=0 \tag{7}
\end{equation*}
$$

then from (7) we find u, and from (6) we find v; hence, from (5) we find y.
2'. Bernoulli's equation. A first order equation of the form

$$
y^{\prime}+P(x) y=Q(x) y^{x}
$$

where $a \neq 0$ and $\alpha \neq 1$, is called Bernothli's equation it is reduced to a linear equation by means of the substitution $z=y^{1^{-x}}$. It is also possible to apply directly the substitution $y=u v$, or the method of variation of parameters.

Example 2. Solve the equation

$$
y^{\prime}=\frac{4}{x} y+x \sqrt{y} .
$$

Solution. This is Bernoull's equation. Putting
we get

$$
y=u \cdot v
$$

$$
\begin{equation*}
u^{\prime} v+v^{\prime} u=\frac{4}{x} u v+x \sqrt{u v} \text { or } v\left(u^{\prime}-\frac{4}{x} u\right)+v^{\prime} u=x \sqrt{u v} . \tag{8}
\end{equation*}
$$

To determine the function u we require that the relation

$$
u^{\prime}-\frac{4}{x} u=0
$$

be fulfilled, whence we have

$$
u=x^{4}
$$

Putting this expression into (8), we get

$$
v^{\prime} x^{4}=x \sqrt{v x^{4}}
$$

whence we find v :

$$
v=\left(\frac{1}{2} \ln x+c\right)^{2}
$$

and, consequently, the general solution is obtained in the form

$$
y=x^{4}\left(\frac{1}{2} \ln x+C\right)^{2} .
$$

Find the general integrals of the equations:
2785. $\frac{d y}{d x}-\frac{y}{x}=x$.
2786. $\frac{d y}{d x}+\frac{2 y}{x}=x^{2}$.

2787*. $\left(1+y^{2}\right) d x=\left(\sqrt{1+y^{2}} \sin y-x y\right) d y$.
2788. $y^{2} d x-(2 x y+3) d y=0$.

Find the particular solutions that satisfy the indicated conditions:
2789. $x y^{\prime}+y-e^{x}=0 ; y=b$ when $x=a$.
2790. $y^{\prime}-\frac{y}{1-x^{2}}-1-x=0 ; y=0$ when $x=0$.
2791. $y^{\prime}-y \tan x=\frac{1}{\cos x} ; y=0$ when $x=0$.

Find the general solutions of the equations:
2792. $\frac{d y}{d x}+\frac{y}{x}=-x y^{2}$.
2793. $2 x y \frac{d y}{d x}-y^{2}+x=0$.
2794. $y d x+\left(x-\frac{1}{2} x^{3} y\right) d y=0$.
2795. $3 x d y=y\left(1+x \sin x-3 y^{3} \sin x\right) d x$.
2796. Given three particular solutions y, y_{1}, y_{2} of a linear equation. Prove that the expression $\frac{y_{2}-y}{y-y_{1}}$ remains unchanged for any x. What is the geometrical significance of this result?
2797. Find the curves for which the area of a triangle formed by the x-axis, a tangent line and the radius vector of the point of tangency is constant.
2798. Find the equation of a curve, a segment of which, cut off on the x-axis by a tangent line, is equal to the square of the ordinate of the point of tangency.
2799. Find the equation of a curve, a segment of which, cut off on the y-axis by a tangent line, is equal to the subnormal.
2800. Find the equation of a curve, a segment of which, cut off on the y-axis by a tangent line, is proportional to the square of the ordinate of the point of tangency.
2801. Find the equation of the curve for which the segment of the tangent is equal to the distance of the point of intersection of this tangent with the x-axis from the point $M(0, a)$.

Sec. 6. Exact Differential Equations.

Integrating Factor

1°. Exact differential equations. If for the differential equation

$$
\begin{equation*}
P(x, y) d x+Q(x, y) d y=0 \tag{1}
\end{equation*}
$$

the equality $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ is fulfilled, then equation (1) may be written in the form $d U(x, y)=0$ and is then called an exact differential equation. The general integral of equation (1) is $U(x, y)=C$. The function $U(x, y)$ is determined by the technique given in $\mathrm{Ch} . \mathrm{VI}, \mathrm{Sec} .8$, or from the formula

$$
U=\int_{x_{0}}^{x} P(x, y) d x+\int_{y_{0}}^{y} Q\left(x_{0}, y\right) d y
$$

see Ch. VII, Sec. 9).
Example 1. Find the general integral of the differential equation

$$
\left(3 x^{2}+6 x y^{2}\right) d x+\left(6 x^{2} y+4 y^{8}\right) d y=0
$$

Solution. This is an exact differential equation, since $\frac{\partial\left(3 x^{2}+6 x y^{2}\right)}{\partial y}=$ $=\frac{\partial\left(6 x^{2} y+4 y^{3}\right)}{\partial x}=12 x y$ and, hence, the equation is of the form $d U=0$.

Here,

$$
\frac{\partial U}{\partial x}=3 x^{2}+6 x y^{2} \text { and } \frac{\partial U}{\partial y}=6 x^{2} y+4 y^{3} ;
$$

whence

$$
U=\int\left(3 x^{2}+6 x y^{2}\right) d x+\varphi(y)=x^{3}+3 x^{2} y^{2}+\varphi(y) .
$$

Differentiating U with respect to y, we find $\frac{\partial U}{\partial y}=6 x^{2} y+\varphi^{\prime}(y)=6 x^{2} y+4 y^{2}$ (by hypothesis); from this we get $\varphi^{\prime}(y)=4 y^{8}$ and $\varphi(y)=y^{4}+C_{0}$. We finally get $U(\mathrm{r}, y)=x^{3}+3 x^{2} y^{2}+y^{4}+C_{n}$, consequently, $x^{3}+3 x^{2} y^{2}+y^{4}=C$ is the sought-for general integral of the equation.
2°. Integrating factor. If the left side of equation (1) is not a total (exact) differential and the conditions of the Cauchy theorem are fulfilled, then there exists a function $\mu=\mu(x, y)$ (integrating factor) such that

$$
\begin{equation*}
\mu(P d x+Q d y)=d U \tag{2}
\end{equation*}
$$

Whence it is found that the function μ satisfies the equation

$$
\frac{\partial}{\partial y}(\mu P)=\frac{\partial}{\partial x}(\mu Q) .
$$

The integrating factor μ is readily found in two cases:

1) $\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=F(x)$, then $\mu=\mu(x)$;
2) $\frac{1}{P}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=F_{1}(y)$, then $\mu=\mu(y)$.

Example 2. Solve the equation $\left(2 x y+x^{2} y+\frac{y^{3}}{3}\right) d x+\left(x^{2}+y^{2}\right) d y=0$.
Solution. Here $P=2 x y+x^{2} y+\frac{y^{3}}{3}, Q=x^{2}+y^{2}$
and $\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=\frac{2 x+x^{2}+y^{2}-2 x}{x^{2}+y^{2}}=1$, hence, $\mu=\mu(x)$.
Since $\frac{\partial(\mu P)}{\partial y}=\frac{\partial(\mu Q)}{\partial x}$ or $\mu \frac{\partial P}{\partial y}=\mu \frac{\partial Q}{\partial x}+Q \frac{d \mu}{d x}$,
it follows that

$$
\frac{d \mu}{\mu}=\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right) d x=d x \text { and } \ln \mu=x, \mu=e^{x} .
$$

Multiplying the equation by $\mu=e^{x}$, we obtain

$$
e^{x}\left(2 x y+x^{2} y+\frac{y^{3}}{3}\right) d x+-e^{x}\left(x^{2}+y^{2}\right) d y=0
$$

which is an exact differential equation. Integrating it, we get the general integral

$$
y e^{x}\left(x^{2}+\frac{y^{2}}{3}\right)=C
$$

Find the general integrals of the equations:
$2802(x+y) d x+(x+2 y) d y=0$.
2803. $\left(x^{2}+y^{2}+2 x\right) d x+2 x y d y=0$.
2804. $\left(x^{3}-3 x y^{2}+2\right) d x-\left(3 x^{2} y-y^{2}\right) d y=0$.
2805. $x d x-y d y=\frac{x d y-y d x}{\lambda^{2}+y^{2}}$.
2806. $\frac{2 x d x}{y^{3}}+\frac{y^{2}-3 x^{2}}{y^{4}} d y=0$.
2807. Find the particular integral of the equation

$$
\left(x+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0,
$$

which satisfies the initial condition $y(0)=2$.
Solve the equations that admit of an integrating factor of the form $\mu=\mu(x)$ or $\mu=\mu(y)$:
2808. $\left(x+y^{2}\right) d x-2 x y d y=0$.
2809. $y(1+x y) d x-x d y=0$.
2810. $\frac{y}{x} d x+\left(y^{3}-\ln x\right) d y=0$.
2811. $(x \cos y-y \sin y) d y+(x \sin y+y \cos y) d x=0$.

Sec. 7. First-Order Differential Equations not Solved for the Derivative

1°. First-order differential equations of higher powers. If an equation

$$
\begin{equation*}
F\left(x, y, y^{\prime}\right)=0 \text {, } \tag{1}
\end{equation*}
$$

Which for example is of degree two in y^{\prime}, the.. by solving (1) for y^{\prime} we get two equations:

$$
\begin{equation*}
y^{\prime}=f_{1}(x, y), \quad y^{\prime}=f_{2}(x, y) . \tag{2}
\end{equation*}
$$

Thus, generally speaking, through each point $M_{n}\left(x_{0}, y_{n}\right)$ of some region of a plane there pass two integral curves. The general integral of equation (1) then, generally speaking, h as the form

$$
\begin{equation*}
\Phi(x, y, C) \equiv \Phi_{1}(x, y, C) \Phi_{2}(x, y, C)=0 \tag{3}
\end{equation*}
$$

where Φ_{1} and Φ_{2} are the general integrals of equations (2).
Besides, there may be a singular integral for equation(1). Geometrically, a sincular integral is the envelope of a family of curves (3) and may be obtained by eliminating C from the system of equations

$$
\begin{equation*}
\mathscr{D}(x, y, C)=0, \quad \Phi_{C}^{\dot{C}}(x, y, C)=0 \tag{4}
\end{equation*}
$$

or by eliminating $p=y^{\prime}$ from the system of equations

$$
\begin{equation*}
F(x, y, p)=0, \quad F_{p}^{\prime}(x, y, p)=0 . \tag{5}
\end{equation*}
$$

We note that the curves defined by the equations (4) or (5) are not alwave solutions of equation (1); therefore, in each case, a check is necessary.

Example 1. Find the general and singular integrals of the equation

$$
x u^{\prime 2}+2 x u^{\prime}-y=0 .
$$

Solution. Solving for y^{\prime} we have two homogeneous equations:

$$
y^{\prime}=-1+\sqrt{1+\frac{y}{x}}, \quad y^{\prime}=-1-\sqrt{1+\frac{y}{x}}
$$

defined in the region

$$
x(x+y)>0
$$

the general integrals of which are

$$
\left(\sqrt{1+\frac{y}{x}}-1\right)^{2}=\frac{C}{x}, \quad\left(\sqrt{1+\frac{y}{x}}+1\right)^{2}=\frac{C}{x}
$$

or

$$
(2 x+y-C)-2 \sqrt{x^{2}+x y}=0, \quad(2 x+y-C)+2 \sqrt{x^{2}+x y}=0 .
$$

Multiplying, we get the general integral of the given equation
or

$$
\begin{gathered}
(2 x+y-C)^{2}-4\left(x^{2}+x y\right)=0 \\
(y-C)^{2}=4 C x
\end{gathered}
$$

(a family of parabolas).
Differentiating the general integral with respect to C and eliminating C, we find the singular integral

$$
y+x=0
$$

(It may be verifled that $y+x=0$ is the solution of this equation.)

It is also possible to find the singular integral by differentiating $x p^{2}+2 x p-y=0$ with respect to p and eliminating p.
2°. Solving a differential equation by introducing a parameter. If a firstorder differential equation is of the form

$$
x=\varphi\left(y, y^{\prime}\right),
$$

then the variables y and x may be determined from the system of equations

$$
\frac{1}{p}=\frac{\partial \varphi}{\partial y}+\frac{\partial \varphi}{\partial} \frac{d \rho}{d y}, \quad x=\varphi(y, p),
$$

where $p=y^{\prime}$ plays the part of a parameter.
Similarly, if $y=\psi\left(x, y^{\prime}\right)$, then x and y are determined from the system of equations

$$
\rho=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial p} \frac{d \rho}{d x}, \quad y=\psi(x, p) .
$$

Example 2. Find the general and singular integrals of the equation

$$
y=y^{\prime 2}-x y^{\prime}+\frac{x^{2}}{2}
$$

Solution. Making the substitution $y^{\prime}=p$, we rewrite the equation in the form

$$
y=p^{2}-x p+\frac{x^{2}}{2} .
$$

Differentiating with respect to x and considering p a function of x, we have

$$
p=2 p \frac{d p}{d x}-p-x \frac{d p}{d x}+x
$$

or $\frac{d p}{d x}(2 p-x)=x(2 p-x)$, or $\frac{d p}{d x}=1$. Integrating we get $p=x+C$. Substituting into the original equation, we have the general solution

$$
y=(x+C)^{2}-x(x+C)+\frac{x^{2}}{2} \text { or } y=\frac{x^{2}}{2}+C x+C^{2} .
$$

Differentiating the general solution with respect to C and eliminating C, we obtain the singular solution: $y=\frac{x^{2}}{4}$. (It may be verified that $y=\frac{x^{2}}{4}$ is the solution of the given equation.)

If we equate to zero the factor $2 \rho-x$, which was cancelled out, we get $p=\frac{x}{2}$ and, putting ρ into the given equation, we get $y=\frac{x^{2}}{4}$, which is the same singular solution.

Find the general and singular integrals of the equations: (In Problems 2812 and 2813 construct the field of integral curves.)
2812. $y^{\prime 2}-\frac{2 y}{x} y^{\prime}+1=0$.
2813. $4 y^{\prime 2}-9 x=0$.
2814. $y y^{\prime 2}-(x y+1) y^{\prime}+x=0$.
2815. $y y^{\prime 2}-2 x y^{\prime}+y=0$.
2816. Find the integral curves of the equation $y^{\prime 2}+y^{2}=1$ that pass through the point $M\left(0, \frac{1}{2}\right)$.

Introducing the parameter $y^{\prime}=p$, solve the equations:
2817. $x=\sin y^{\prime}+\ln y^{\prime} . \quad$ 2820. $4 y=x^{2}+y^{\prime 2}$.
2818. $y=y^{\prime 2}, y^{\prime \prime}$.
2819. $y=y^{\prime 2}+2 \ln y^{\prime}$.
2821. $e^{x}=\frac{y^{2}+y^{\prime 2}}{2 y^{\prime}}$.

Sec. 8. The Lagrange and Clairaut Equaticns

1°. Lagrange's equation. An equation of the form

$$
\begin{equation*}
y=x \psi(p)+\psi(p), \tag{1}
\end{equation*}
$$

where $p=y^{\prime}$ is called Lagrange's equation Equation (1) is reduced to a linear equation in x by differentiation and taking into consideration that $d y=\rho d x$:

$$
\begin{equation*}
\rho d x=\Psi(\rho) d x+\left[x \varphi^{\prime}(p)+\Psi^{\prime}(p)\right] d p \tag{2}
\end{equation*}
$$

If $p \not \equiv \varphi(p)$, then from (1) and (2) we get the general solution in parametric form:

$$
x=C f(p)+g(p), y=[C f(p)+g(p)] \psi(p)+\psi(p),
$$

where p is a parameter and $f(p)_{k} g(p)$ are certan known functions. Besides, there may be a singular solution that is found in the usual way.
2°. Clairaut's equation. If in equation (1) $p=\varphi(p)$, then we get Clairaut's equation

$$
y=x p+\psi(p) .
$$

Its general solution is of the form $y=C x+\psi(C)$ (a family of stranght lines). There is also a particular solution (envelope) that results by eliminating the parameter p from the system of equations

$$
\left\{\begin{array}{l}
x=-\psi^{\prime}(p), \\
y==p x+\psi(p) .
\end{array}\right.
$$

Example. Solve the equation

$$
\begin{equation*}
y-2 y^{\prime} x+\frac{1}{y^{\prime}} \tag{3}
\end{equation*}
$$

Solution. Putting $y^{\prime}==p$ we have $y=2 p_{i}+\frac{1}{p}$; differentiating and replacing $d y$ by $p d x$, we get

$$
p d x=2 p d x+2 x d p-\frac{d p}{p^{2}}
$$

or

$$
\frac{d x}{d p}=-\frac{2}{p} x+\frac{1}{p^{3}} .
$$

Solving this linear equation, we will have

$$
x=\frac{1}{p^{2}}(\ln p+C)
$$

Hence, the general integral will be

$$
\left\{\begin{array}{l}
x=\frac{1}{p^{2}}(\ln p+C) \\
y=2 p x+\frac{1}{p}
\end{array}\right.
$$

To find the singular integral, we form the system
in the usual way. Whence

$$
y=2 p x+\frac{1}{p}, \quad 0=2 x-\frac{1}{p^{2}}
$$

$$
x=\frac{1}{2 p^{2}}, \quad y=\frac{2}{p}
$$

and, consequently,

$$
y= \pm 2 \sqrt{2 x}
$$

Putting y into (3) we are convinced that the function obtained is not a solution and, therefore, equation (3) does not have a singular integral.

Solve the Lagrange equations:
2822. $y=\frac{1}{2} x\left(y^{\prime}+\frac{y}{y^{\prime}}\right)$.
2824. $y=\left(1+y^{\prime}\right) x+y^{\prime 2}$.
2823. $y=y^{\prime}+\sqrt{1-y^{\prime 2}}$.

2825*. $y=-\frac{1}{2} y^{\prime}\left(2 x+y^{\prime}\right)$.
Find the general and singular integrals of the Clairaut equations and construct the field of integral curves:
2826. $y=x y^{\prime}+y^{\prime 2}$.
2827. $y=x y^{\prime}+y^{\prime}$.
2828. $y=x y^{\prime}+\sqrt{1+\left(y^{\prime}\right)^{2}}$.
2529. $y=x y^{\prime}+\frac{1}{y^{\prime}}$.
2830. Firid the curve for which the area of a triangle formed by a tangent at any point and by the coordinate axes is constant.
2831. Find the curve if the distance of a given point to any tangent to this curve is constant.
2832. Find the curve for which the segment of any of its tangents lying between the coordinate axes has constant length l.

Sec. 9. Miscellaneous Exercises on First-Order Differential Equation;

2833. Determine the types of differential equations and indicate methods for their solution:
a) $(x+y) y^{\prime}=x \arctan \frac{y}{x}$;
b) $(x-y) y^{\prime}=y^{2}$;
c) $y^{\prime}=2 x y+x^{3}$;
d) $y^{\prime}=2 x y+y^{3}$;
e) $x y^{\prime}+y=\sin y$;
f) $\left(y-x y^{\prime}\right)^{2}=y^{\prime 3}$;
g) $y=x e^{y \prime}$;
h) $\left(y^{\prime}-2 x y\right) \sqrt{y}=x^{3}$;
i) $y^{\prime}=(x+y)^{2}$;
1) $\left(x^{2}+2 x y^{3}\right) d x+$
j) $x \cos y^{\prime}+y \sin y^{\prime}=1$; $+\left(y^{2}+3 x^{2} y^{2}\right) d y=0 ;$
k) $\left(x^{2}-x y\right) y^{\prime}=y^{4}$;
m) $\left(x^{3}-3 x y\right) d x+\left(x^{2}+3\right) d y=0$;
n) $\left(x y^{3}+\ln x\right) d x=y^{2} d y$.

Solve the equations:
2834. a) $\left(x-y \cos \frac{y}{x}\right) d x+x \cos \frac{y}{x} d y=0$;
b) $x \ln \frac{x}{y} d y-y d x=0$.
2835. $x d x=\left(\frac{x^{2}}{y}-y^{3}\right) d y$.
2836. $\left(2 x y^{2}-y\right) d x+x d y=0$.
2837. $x y^{\prime}+y=x y^{2} \ln x$.
2838. $y=x y^{\prime}+y^{\prime} \ln y^{\prime}$.
2839. $y=x y^{\prime}+\sqrt{-a y^{\prime}}$.
2840. $x^{2}(y+1) d x+\left(x^{3}-1\right)(y-1) d y=0$.
2841. $\left(1+y^{2}\right)\left(e^{2 x} d x-e^{y} d y\right)-(1+y) d y=0$.
2842. $y^{\prime}-y^{2 x-1} \frac{\lambda^{2}}{\lambda^{2}}=1$.
2845. $\left(1-x^{2}\right) y^{\prime}+x y=a$.
2843. $y e^{y}=\left(y^{3}+2 x e^{y}\right) y^{\prime}$.
2846. $x y^{\prime}-\frac{y}{x+1}-x=0$.
2844. $y^{\prime}+y \cos x=\sin x \cos x$. 2847. $y^{\prime}(x \cos y+a \sin 2 y)=1$.
2848. $\left(x^{2} y-x^{2}+y-1\right) d x+(x y+2 x-3 y-6) d y=0$.
2849. $y^{\prime}=\left(1+\frac{y-1}{2 x}\right)^{2}$.
2850. $x y^{3} d x=\left(x^{2} y+2\right) d y$.
2851. $y^{\prime}==\frac{3 x^{2}}{x^{3}+y+1}$.
2852. $2 d x+\sqrt{\frac{x}{y}} d y-\sqrt{\frac{y}{x}} d x=0$.
2853. $y^{\prime}=\frac{y}{x}+\tan \frac{y}{x}$.
2861. $e^{y} d x+\left(x e^{y}-2 y\right) d y=0$.
2854. $y y^{\prime}+y^{\prime \prime}=\cos x$.
2862. $y=2 x y^{\prime}+\sqrt{1+y^{\prime 2}}$.
2855. $x d y+y d x=y^{2} d x$.
2863. $y^{\prime}=\frac{y}{\lambda}(1+\ln y-\ln x)$.
2856. $y^{\prime}(x+\sin y)=1$.
2857. $y \frac{d p}{d y}=-p+p^{2}$.
2858. $x^{3} d x-\left(x^{4}+y^{3}\right) d y=0$.
2864. $\left(2 e^{x}+y^{4}\right) d y-$
2865. $y^{\prime}=2\left(\frac{y+2}{x+y-1}\right)^{2}$.
2859. $x^{2} y^{\prime 2}+3 x y y^{\prime}+y^{2}=0$.
2860. $\frac{x d x+y d t}{\sqrt{x^{2}+y^{2}}}+十$
2866. $x y\left(x y^{2}+1\right) d y-d x=$ $=0$.
$+\frac{x d y-y d x}{y^{2}}=0$.
2867. $a\left(x y^{\prime}+2 y\right)=x y y^{\prime}$.
2868. $x d y-y d x=y^{2} d x$.
2869. $\left(x^{2}-1\right)^{3 / 2} d y+\left(x^{3}+3 x y \sqrt{x^{2}-1}\right) d x=0$.
2870. $\tan x \frac{d y}{d x}-y=a$.
2871. $\sqrt{a^{2}+x^{2}} d y+\left(x+y-\sqrt{a^{2}+x^{2}}\right) d x=0$.
2872. $x y y^{\prime 2}-\left(x^{2}+y^{2}\right) y^{\prime}+x y=0$.
2873. $y=x y^{\prime}+\frac{1}{y^{\prime 2}}$.
2874. $\left(3 x^{2}+2 x y-y^{2}\right) d x+\left(x^{2}-2 x y-3 y^{2}\right) d y=0$.
2875. $2 y p \frac{d p}{d y}=3 p^{2}+4 y^{2}$.

Find solutions to the equations for the indicated initial conditions:
2876. $y^{\prime}=\frac{y+1}{x} ; y=0$ for $x=1$.
2877. $e^{x-y} y^{\prime}=1 ; y=1$ for $x=1$.
2878. cot $x y^{\prime}+y=2 ; y=2$ for $x=0$.
2879. $e^{y}\left(y^{\prime}+1\right)=1 ; y=0$ for $x=0$.
2880. $y^{\prime}+y=\cos x ; y=\frac{1}{2}$ for $x=0$.
2881. $y^{\prime}-2 y=-x^{2} ; y=\frac{1}{4}$ for $x=0$.
2882. $y^{\prime}+y=2 x ; y=-1$ for $x=0$.
2883. $x y^{\prime}=y$; a) $y=1$ for $x=1$; b) $y=0$ for $x=0$.
2884. $2 x y^{\prime}=y$; a) $y=1$ for $x=1$; b) $y=0$ for $x=0$.
2885. 2xy $y^{\prime}+x^{2}-y^{2}=0$; а) $y=0$ for $x=0$; b) $y=1$ for $x=0$;
c) $y=0$ for $x=1$.
2886. Find the curve passing through the point $(0,1)$, for which the subtangent is equal to the sum of the coordinates of the point of tangency.
2887. Find a curve if we know that the sum of the segments cut off on the coordinate axes by a tangent to it is constant and equal to $2 a$.
2888. The sum of the lengths of the normal and subnormal is equal to unity. Find the equation of the curve if it is known that the curve passes through the coordinate origin.

2889*. Find a curve whose angle formed by a tangent and the radius vector of the point of tangency is constant.
2890. Find a curve knowing that the area contained between the coordinate axes, this curve and the ordinate of any point on it is equal to the cube of the ordinate.
2891. Find a curve knowing that the area of a sector bounded by the polar axis, by this curve and by the radius vector of any point of it is proportional to the cube of this radius vector.
2892. Find a curve, the segment of which, cut of by the tangent on the x-axis, is equal to the length of the tangent.
2893. Find the curve, of which the segment of the tangent contained between the coordinate axes is divided into half by the parabola $y^{2}=2 x$.
2894. Find the curve whose normal at any point of it is equal to the distance of this point from the origin.

2895*. The area bounded by a curve, the coordinate axes, and the ordinate of some point of the curve is equal to the length of the corresponding arc of the curve. Find the equation of this curve if it is known that the latter passes through the point $(0,1)$.
2896. Find the curve for which the area of a triangle formed by the x-axis, a tangent, and the radius vector of the point of tangency is constant and equal to a^{2}.
2897. Find the curve if we know that the mid-point of the segment cut off on the x-axis by a tangent and a normal to the curve is a constant point ($a, 0$).

When forming first-order differential equations, particularly in phisical problems, it is frequently advisable to apply the so-called method of differentials, which consists in the fact that approximate relationships between infintesimal increments of the desired quantities (these relationships are accurate to infinitesimals of higher order) are replaced by the corresponding relationships between their differentials. This does not affect the result.

Problem. A tank contans 100 hitres of an aqueous solution containing 10 kg of salt. Water is entering the tank at the rate of 3 litres per minute, and the mixture is flowing out at 2 hitres per minute. The concentration is maintained untorm by stirring. How much salt will the tank contain at the end of one hour?

Solution. The concentration c of a substance is the quantity of it in unit volume. If the concentration is uniform, then the quantity of substance in volume V is $c V$.

Let the quantity of salt in the tank at the end of t minutes be $x \mathrm{~kg}$. The quantity of solution in the tank at that instant will be $100+t$ litres, and, consequently, the concentration $c=\frac{x}{100+t} \mathrm{~kg}$ per litre.

During time $d t$, $2 d t$ litres of the solution flows out of the tank (the solution contains $2 c d t \mathrm{~kg}$ of salt). Therefore, a change of $d x$ in the quantity of salt in the tank is given by the relationship

$$
-d x=2 c d t=\frac{2 x}{100+t} d t
$$

This is the sought-for differential equation. Separating variables and integrating, we obtain
or

$$
\ln x=-2 \ln (100+t)+\ln C
$$

$$
x=\frac{C}{(100+t)^{2}}
$$

The constant C is found from the fact that when $t=0,1=10$, that is, $C=100,000$. At the expiration of one hour, the tank will contain $x=\frac{100,000}{160^{2}} \approx 3.9$ kilograms of salt.

2898*. Prove that for a heavy liquid rotating about a vertical axis the free surface has the form of a paraboloid of revolution.

2899*. Find the relationship between the air pressure and the altitude if it is known that the pressure is 1 kgf on $1 \mathrm{~cm}^{2}$ at sea level and 0.92 kgi on $1 \mathrm{~cm}^{2}$ at an allitude of 500 metres.

2900*. According to Hooke's law an elastic band of length l increases in length $k l F(k=$ const $)$ due to a tensile force F. By how much will the band increase in length due to its weight W if the band is suspended at one end? (The initial lengith of the band is l.)
2901. Solve the same problem for a weight P suspended from the end of the band.

When solving Problems 2902 and 2903, make use of Newton's law, by which the rate of cooling of a body is proportional to the difference of temperatures of the body and the ambient medium.
2902. Find the relationship between the temperature T and the time t if a body, heated to T_{0} degrees, is brought into a room at constant temperature (a degrees).
2903. During what time will a body heated to 100° cool off to 30° if the temperature of the room is 20° and during the first 20 minutes the body cooled to 60° ?
2904. The retarding action of friction on a disk rotating in a liquid is proportional to the angular velocity of rotation. Find the relationship between the angular velocity and time if it is known that the disk began rotating at 100 rpm and after one minute was rotating at 60 rpm .

2905*. The rate of disintegration of radium is proportional to the quantity of radium present. Radium disintegrates by one half in 1600 years. Find the percentage of radium that has disintegrated after 100 years.

2906*. The rate of outflow of water from an aperture at a vertical distance h from the free surface is defined by the formula

$$
v=c \sqrt{2 g h},
$$

where $c \approx 0.6$ and g is the acceleration of gravity.
During what period of time will the water filling a hemispherical boiler of diameter 2 metres flow out of it through a circular opening of radius 0.1 m in the bottom.

2907*. The quantity of light absorbed in passing through a thin layer of water is proportional to the quantity of incident light and to the thickness of the layer. If one half of the original quantity of light is absorbed in passing through a three-metrethick layer of water, what part of this quantity will reach a depth of 30 metres?

2908*. The air resistance to a body falling with a parachute is proportional to the square of the rate of fall. Find the limiting velocity of descent.

2909*. The bottom of a tank with a capacity of 300 litres is covered with a mixture of salt and some insoluble substance. Assuming that the rate at which the salt dissolves is proportional to the diflerence between the concentration at the given time and the concentration of a saturated solution (1 kg of salt per 3 litres of water) and that the given quantity of pure water dissolves $1 / 3 \mathrm{~kg}$ of salt in 1 minute, find the quantity of salt in solution at the expiration of one hour.

2910*. The electromotive force e in a circuit with current i, resistance R and self-induction L is made up of the voltage drop $R i$ and the electromotive force of self-induction $L \frac{d t}{d t}$. Determine the current i at time t if $e=E \sin \omega t$ (E and ω are constants) and $i=0$ when $t=0$.

Sec. 10. Higher-Order Differential Equations
1°. The case of direct integration. If

$$
y^{(n)}=f(1),
$$

then

$$
y=\underbrace{\int d x \int_{\text {mes }}}_{n} \cdots \int f(\lambda) d x+C_{1} x^{n-1}+C_{2} x^{n-2}+\ldots+C_{n} .
$$

2°. Cases of reduction of order. 1) If a differential equation does not contan y explicitly, for instance,

$$
F\left(x, u^{\prime}, y^{\prime \prime}\right)=0,
$$

then, assuming $y^{\prime}=p$, we get an equation of an order one unt lower:

$$
F\left(x, p, p^{\prime}\right)=0 .
$$

Example \mathbf{t}. Find the particular solution of the equation

$$
x y^{\prime \prime}+y^{\prime}+x=0,
$$

that satisfies the conditions

$$
y=0, y^{\prime}=0 \text { when } x=0 \text {. }
$$

Solution. Putting $y^{\prime}=p$, we have $y^{\prime}=p^{\prime}$, whence

$$
x p^{\prime}+p+x=0 .
$$

Solving the latter equation as a linear equation in the function $p_{\text {. }}$ we get

$$
p x=C_{1}-\frac{x^{2}}{2} .
$$

From the fact that $y^{\prime}=p=0$ when $x=0$, we have $0=C_{1}-0$, i.e., $C_{1}=0$. Hence,

$$
p=-\frac{x}{2}
$$

or

$$
\frac{d y}{d x}=-\frac{x}{2},
$$

whence, integrating once again, ws obtain

$$
y=-\frac{x^{2}}{4}+C_{2}
$$

Putting $y=0$ when $x=0$, we find $C_{2}=0$. Hence, the desired particular solution is

$$
y=-\frac{1}{4} x^{2} .
$$

2) If a differential equation does not contain x explicitly, for instance, $F\left(y, y^{\prime}, y^{\prime \prime}\right)=0$
then, putting $y^{\prime}=p, y^{\prime \prime}=\rho \frac{d p}{d y}$, we get an equation of an order one unit lower:

$$
F\left(y, p, p \frac{d \rho}{d y}\right)=0 .
$$

Example 2. Find the particular solution of the equation

$$
y y^{\prime \prime}-y^{\prime 2}=y^{4}
$$

provided that $y=1, y^{\prime}=0$ when $x=0$.
Solution. Put $y^{\prime}=p$, then $y^{\prime \prime}=p \frac{d p}{d y}$ and our equation becomes

$$
u p \frac{d \rho}{d y}-p^{2}=u^{4} .
$$

We have obtained an equation of the Bernoulli type in p (y is considered the argument). Solving it, we find

$$
p= \pm y \sqrt{C_{1}+y^{2}}
$$

From the fact that $y^{\prime}=p=0$ when $y=1$, we have $C_{1}=-1$. Hence,

$$
p= \pm y \sqrt{y^{2}-1}
$$

or

$$
\frac{d y}{d x}= \pm y \sqrt{y^{2}-1} .
$$

Integrating, we have

$$
\arccos \frac{1}{y} \pm x=C_{2}
$$

Putting $y=1$ and $x=0$, we obtain $C_{2}=0$, whence $\frac{1}{y}=\cos x$ or $y=\sec x$.

Solve the following equations:
2911. $y^{\prime \prime}=\frac{1}{x}$.
2912. $y^{\prime \prime}=-\frac{2}{2 y^{3}}$.
2913. $y^{n}=1-y^{\prime 2}$.
2914. $x y^{\prime \prime}+y^{\prime}=0$.
2915. $y y^{\prime \prime}=y^{\prime 2}$.
2916. $y y^{\prime \prime}+y^{\prime 2}=0$.
2917. $\left(1+x^{2}\right) y^{\prime \prime}+y^{\prime 2}+1=0$.
2918. $y^{\prime}\left(1+y^{\prime 2}\right)=a y^{\prime \prime}$.
2919. $x^{2} y^{\prime \prime}+x y^{\prime}=1$.

Find the particular solutions for the indicaled initial conditions:
2928. $\left(1+x^{2}\right) y^{\prime \prime}-2 x y^{\prime}=0 ; \quad y=0, \quad y^{\prime}=3 \quad$ for $x=0$.
2929. $1+y^{\prime 2}=2 y y^{\prime \prime} ; \quad y=1, \quad y^{\prime}=1$ for $x=1$.
2930. $y y^{\prime \prime}+y^{\prime 2}=y^{\prime 3} ; y=1, \quad y^{\prime}=1 \quad$ for $x=0$.
2931. $x y^{\prime \prime}=y^{\prime} ; \quad y=0, y^{\prime}=0$ for $x=0$.

Find the general integrals of the following equations:
2932. $y y^{\prime}=\sqrt{y^{2}+y^{\prime 2}} y^{\prime \prime}-y^{\prime} y^{\prime \prime}$.
2933. $y y^{\prime \prime}=y^{\prime 2}+y^{\prime} \sqrt{y^{2}+y^{\prime 2}}$.
2934. $y^{\prime 2}-y y^{\prime \prime}=y^{2} y^{\prime}$.
2935. $y y^{\prime \prime}+y^{\prime 2}-y^{\prime 2} \ln y=0$.

Find solutions that satisfy the indicated conditions:
2936. $y^{\prime \prime} y^{3}=1 ; y=1, y^{\prime}=1$ for $x=\frac{1}{2}$.
2937. $y y^{\prime \prime}+y^{\prime 2}=1 ; y=1, y^{\prime}=1$ for $x=0$.
2938. $x y^{\prime \prime}=\sqrt{1+y^{\prime 2}} ; y=0$ for $x=1 ; y=1$ for $x=e^{3}$.
2939. $y^{\prime \prime}(1+\ln x)+\frac{1}{x} \cdot y^{\prime}=2+\ln x ; y=\frac{1}{2}, y^{\prime}=1$ tor $x=1$.
2940. $y^{\prime \prime}=\frac{y^{\prime}}{x}\left(1+\ln \frac{y^{\prime}}{x}\right) ; y=\frac{1}{2}, y^{\prime}=1$ for $x=1$.
2941. $y^{\prime \prime}-y^{\prime 2}+y^{\prime}(y-1)=0 ; y=2, y^{\prime}=2$ for $x=0$.
2942. $3 y^{\prime} y^{\prime \prime}=y+y^{\prime \prime}+1 ; y=-2, y^{\prime}=0$ for $x=0$.
2943. $y^{2}+y^{\prime 2}-2 y y^{\prime \prime}=0 ; y=1, y^{\prime}=1$ for $x=0$.
2944. $y y^{\prime}+y^{\prime 2}+y y^{\prime \prime}=0 ; y=1$ for $x=0$ and $y=0$ for $x=-1$.
2945. $2 y^{\prime}+\left(y^{\prime 2}-6 x\right) \cdot y^{\prime \prime}=0 ; y=0, y^{\prime}=2$ for $x=2$.
2946. $y^{\prime} y^{2}+y y^{\prime \prime}-y^{\prime 2}=0 ; y=1, y^{\prime}=2$ for $x=0$.
2947. $2 y y^{\prime \prime}-3 y^{\prime 2}=4 y^{2} ; y=1, y^{\prime}=0$ for $x=0$.
2948. $2 y y^{\prime \prime}+y^{2}-y^{\prime 2}=0 ; y=1, y^{\prime}=1$ for $x=0$.
2949. $y^{\prime \prime}=y^{\prime 2}-y ; y=-\frac{1}{4}, y^{\prime}=\frac{1}{2}$ for $x=1$.
2950. $y^{\prime \prime}+\frac{1}{y^{2}} e^{y^{2}} y^{\prime}-2 y y^{\prime 2}=0 ; y=1, y^{\prime}=e$ for $x=-\frac{1}{2 e}$.
2951. $1+y y^{\prime \prime}+y^{\prime 2}=0 ; y=0, y^{\prime}=1$ for $x=1$.
2952. $\left(1+y y^{\prime}\right) y^{\prime \prime}=\left(1+y^{\prime 2}\right) y^{\prime} ; y=1, y^{\prime}=1$ for $x=0$.
2953. $(x+1) y^{\prime \prime}+x y^{\prime 2}=y^{\prime} ; y=-2, y^{\prime}=4$ for $x=1$.

Solve the equations:
2954. $y^{\prime}=x y^{\prime 2}+y^{\prime \prime 2}$.
2055. $y^{\prime}=x y^{\prime \prime}+y^{\prime \prime}-y^{n^{2}}$.
2956. $y^{\prime \prime \prime 2}=4 y^{\prime \prime}$.
2957. $y y^{\prime} y^{\prime \prime}=y^{\prime 3}+y^{\prime 2}$. Choose the integral curve passing through the point $(0,0)$ and tangent, at it, to the straight line $y+x=0$.
2958. Find the curves of constant radius of curvature.
2959. Find a curve whose radius of curvature is proportional to the cube of the normal.
2960. Find a curve whose radius of curvature is equal to the normal.
2961. Find a curve whose radius of curvature is double the normal.
2962. Find the curves whose projection of the radius of curvature on the y-axis is a constant.
2963. Find the equation of the cable of a suspension bridge on the assumption that the load is distributed uniformly along the projection of the cable on a horizontal straight line. The weight of the cable is neglected.

2964*. Find the position of equilibrium of a flexible nontensile thread, the ends of which are attached at two points and which has a constant load q (including the weight of the thread) per unit length.

2965*. A heavy body with no initial velocity is sliding along an inclined plane. Find the law of motion if the angle of inclination is α, and the coefficient of friction is μ.
(Hint. The frictional force is μN, where N is the force of reaction of the plane.)

2966*. We may consider that the air resistance in free fall is proportional to the square of the velocity. Find the law of motion if the initial velocity is zero..

2967*. A motor-boat weighing 300 kgf is in rectilinear motion with initial velocity $66 \mathrm{~m} / \mathrm{sec}$. The resistance of the water is proportional to the velocity and is 10 kgf at $1 \mathrm{metre} / \mathrm{sec}$. How long will it be before the velocity becomes $8 \mathrm{~m} / \mathrm{sec}$?

Sec. 11. Linear Differential Equations

1°. Homogeneous equations. The functions $y_{1}=\varphi_{1}(x), y_{2}=\varphi_{2}(x), \ldots$ $\ldots, y_{n}=\varphi_{n}(x)$ are called lineorly dependent if there are constants $C_{1}, C_{2}, \ldots, \dot{C}_{n}$ not all equal to zero, such that

$$
C_{1} y_{1}+C_{2} y_{2}+\ldots+C_{n} y_{n}=0
$$

otherwise, these functions are called linearly independent.
The general solution of a homogeneous linear differential equation

$$
\begin{equation*}
y^{(n)}+P_{1}(x) y^{(n-1)}+\ldots+P_{n}(x) y=0 \tag{1}
\end{equation*}
$$

$w^{i t h}$ continuous coefficients $P_{i}(x)(i=1,2, \ldots, n)$ is of the form

$$
y=C_{1} l_{1}+C_{a} y_{2}+\ldots+C_{n} y_{n},
$$

where $y_{1}, y_{2}, \ldots, y_{n}$ are linearly independent solutions of equation (1) (jundamental system of solitions).
$\mathbf{2}^{\circ}$. Inhomogeneous equalions. The general solution of an inhomogeneous linear differential equation

$$
\begin{equation*}
y^{(n)}+P_{1}(\cdot v) y^{(n-1)}+\ldots+P_{n}(x) y=f(x) \tag{2}
\end{equation*}
$$

with continuous coefficients $P_{i}(x)$ and the right side $f(x)$ has the form

$$
y=y_{0}+Y
$$

where y_{0} is the general solution of the corresponding homogeneous equation (1) and Y is a particular solution of the given inhomogeneous equation (2).

If the fundamental system of solutions $y_{1}, y_{2}, \ldots, y_{n}$ of the homogeneous equation (1) is known, then the gencral solution of the corresponding inhomogeneous equation (2) may be found from the formula

$$
y=C_{1}(x) y_{1}+C_{2}(x) y_{2}+\ldots+C_{n}(x) y_{n}
$$

where the functions $C_{i}(x)(i=1,2, \ldots, n)$ are determined from the following system of equations:

$$
\begin{gather*}
C_{1}^{\prime}(x) y_{1}+C_{2}^{\prime}(x) y_{2} \quad+\ldots+C_{n}^{\prime}(x) y_{1}=0, \\
C_{1}^{\prime}(x) y_{1}^{\prime}+C_{2}^{\prime}(x) y_{2}^{\prime} \quad+\ldots+C_{n}^{\prime}(1) y_{n}^{\prime}=0, \tag{3}\\
\cdots \cdot \cdots \cdot \cdots \cdot \\
C_{1}^{\prime}(x) y_{1}^{(n-2)}+C_{2}^{\prime}(x) y_{2}^{(n-2)}+\ldots+C_{n}^{\prime}(x) y_{n}^{(n-2)}=0, \\
C_{1}^{\prime}(x) y_{1}^{(n-1)}+C_{2}^{\prime}(x) y_{2}^{(n-1)}+\ldots+C_{n}^{\prime}(x) y_{n}^{(n-1)}=f(x)
\end{gather*}
$$

(the method of variation of parameters).
Example. Solve the equation

$$
\begin{equation*}
x y^{\prime \prime}+y^{\prime}=x^{2} \tag{4}
\end{equation*}
$$

Solution. Solving the homogeneous equation

$$
x y^{\prime \prime}+y^{\prime}=0,
$$

we get

$$
\begin{equation*}
y=C_{1} \ln x+C_{2} . \tag{5}
\end{equation*}
$$

Hence, it may be taken that

$$
y_{1}=\ln x \text { and } y_{2}=1
$$

and the solution of equation (4) may be sought in the form

$$
y=C_{1}(x) \ln x+C_{2}(x) .
$$

Forming the system (3) and taking into account that the reduced form of the equation (4) is $y^{\prime \prime}+\frac{y^{\prime}}{x}=x$, we obtain

$$
\left\{\begin{array}{l}
C_{1}^{\prime}(x) \ln x+C_{2}^{\prime}(x) 1=0, \\
C_{1}^{\prime}(x) \frac{1}{x}+C_{2}^{\prime}(x) 0=x
\end{array}\right.
$$

Whence

$$
C_{1}(x)=\frac{x^{2}}{3}+A \quad \text { and } \quad C_{2}(x)=-\frac{x^{2}}{3} \ln x+\frac{x^{2}}{9}+B
$$

and, consequently,

$$
y=\frac{x^{3}}{9}+A \ln x+B
$$

where A and B are arbitrary constants.
2968. Test the following systems of functions for linear relationships:
a) $x, x+1$;
b) $x^{2},-2 x^{2}$;
c) $0,1, x$;
d) $x, x+1, x+2$;
e) x, x^{2}, x^{2};
f) $e^{x}, e^{2 x}, e^{3 x}$;
g) $\sin x, \cos x, 1$;
h) $\sin ^{2} x, \cos ^{2} x, 1$.
2969. Form a linear homogeneous differential equation, knowing its fundamental system of equations:
a) $y_{1}=\sin x, y_{2}=\cos x$;
b) $y_{1}=e^{x}, y_{2}=x e^{x}$;
c) $y_{1}=x, y_{2}=x^{2}$.
d) $y_{1}=e^{x}, y_{2}=e^{x} \sin x, y_{3}=e^{x} \cos x$.
2970. Knowing the fundamental system of solutions of a linear homogeneous differential equation

$$
y_{1}=x, y_{2}=x^{2}, y_{3}=x^{2},
$$

find its particular solution y that satisfies the initial conditions

$$
\left.y\right|_{x=1}=0,\left.\quad y^{\prime}\right|_{x=1}=-1,\left.\quad y^{\prime \prime}\right|_{x=1}=2
$$

2971*. Solve the equation

$$
y^{\prime \prime}+\frac{2}{x} y^{\prime}+y=0
$$

knowing its particular solution $y_{3}=\frac{\sin x}{x}$.
2972. Solve the equation

$$
x^{2}(\ln x-1) y^{\prime \prime}-x y^{\prime}+y=0
$$

knowing its particular solution $y_{1}=x$.
By the method of variation of parameters, solve the following inhomogeneous linear equations.
2973. $x^{2} y^{\prime \prime}-x y^{\prime}=3 x^{4}$.

2974*. $x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2}$.
2975. $y^{\prime \prime \prime}+y^{\prime}=\sec x$.

Sec. 12. Linear Differential Equations of Second Order with Constant Coefficients
1°. Homogeneous equations. A second-order linear equation with constant coefficients p and q without the right side is of the form

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=0 \tag{i}
\end{equation*}
$$

If k_{1} and k_{2} are roots of the characteristic equation

$$
\begin{equation*}
\Psi(k)=k^{2}+p k+q=0, \tag{2}
\end{equation*}
$$

then the general solution of equation (1) is written in one of the following three ways:

1) $y=C_{1} e^{k_{1} x}+C_{2} e^{k} x$ if k_{1} and k_{2} are real and $k_{1} \neq k_{2}$;
2) $y=e^{k_{1} x}\left(C_{1}+C_{2} x\right)$ if $k_{1}=k_{2}$;
3) $y=e^{x x}\left(C_{1} \cos \beta x+C_{2} \sin \beta,\right)$ if $k_{1}=\alpha+\beta l$ and $k_{2}=\alpha-\beta l(\beta \neq 0)$.
2°. Inhomogeneous equations. The general solution of a linear inhomoseneous differential equation

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+q y=f(x) \tag{3}
\end{equation*}
$$

may be written in the form of a sum:

$$
y=y_{0}+Y
$$

where y_{0} is the general solution of the corresponding equation (I) without right side and determined from formulas (1) to (3), and Y is a particular solution of the given equation (3).

The function Y may be found by the method of undetermined roeffictents in the following simple cases:

1. $f(x)=e^{a x} P_{n}(x)$, where $P_{n}(x)$ is a polynomial of degree n.

If a is not a root of the characteristic equation (2), that is, $\varphi(a) \neq 0$, then we put $Y=e^{z x} Q_{n}(x)$ where $Q_{n}(x)$ is a polynomial of degree n with undetermined coefllicients.

If a is a root of the characleristic equation (2), that is, $\varphi(a)=0$, then $Y=x^{r} e^{a x} Q_{n}(x)$, where r is the multiplicity of the root $a(r=1$ or $r=2)$.
2. $f(x)=e^{a x}\left[P_{n}(x) \cos b x+Q_{m}(x) \sin b x\right]$.

If $\varphi(a \pm b i) \neq 0$, then we put

$$
Y=e^{a x}\left[S_{N}(x) \cos b x+T_{N}(x) \sin b x\right],
$$

where $S_{N}(x)$ and $T_{N}(x)$ are polynomials of degree N-max $\{n, m\}$. But if $\varphi(a \pm b i)=0$, then

$$
Y=x^{r} e^{a x}\left[S_{N}(x) \cos b x+T_{N}(x) \sin b x\right],
$$

where r is the multiplicity of the roots $a \pm b_{l}$ (for second-order equations, $r=1$).
in the general case, the method of variation of parameters (see Sec. 11) is used to solve equation (3).

Example 1. Find the general solution of the equation $2 y^{\prime \prime}-y^{\prime}-y=4 x e^{2 x}$.
Solution. The characteristic equation $2 k^{2}-k-1=0$ has roots $k_{1}=1$ and $k_{2}=-\frac{1}{2}$. The general solution of the corresponding homogeneous equation (first type) is $y_{0}=C_{1} e^{x}+C_{2} e^{-\frac{x}{2}}$. The right side of the given equation is $f(x)=$ $=4 x e^{2 x}=t^{a x} P_{n}^{\prime}(x)$. Hence, $Y=e^{2 x}(A x+B)$, since $n=1$ and $r=0$. Difterentiating Y twice and putting the derivatives into the given equation, we obtain:

$$
2 e^{2 x}(4 A x+4 B+4 A)-e^{2 x}(2 A x+2 B+A)-e^{2 x}(A x+B)=4 x e^{2 x} .
$$

Cancelling out $e^{2 x}$ and equating the coefficients of identical powers of x and the absolute terms on the left and right of the equality, we have $5 A=4$ and $7 A+5 B=0$, whence $A=\frac{4}{5}$ and $B=-\frac{28}{25}$.

Thus, $Y e^{2 x}\left(\frac{4}{5} x-\frac{28}{25}\right)$, and the general solution of the given equation is

$$
y=C_{1} e^{x}+C_{2} e^{-\frac{1}{2}}+e^{2 x}\left(\frac{4}{5} x-\frac{28}{25}\right) .
$$

Example 2. Find the general solution of the equation $y^{n}-2 y^{\prime}+y=x e^{x}$.
Solution. The characteristic equation $k^{2}-2 k+1=0$ has a double root $k=1$ The right side of the equation is of the form $f(x)=x e^{x}$; here, $a=1$ and $n=1$. The particular solution is $Y=x^{2} e^{x}(A x+B)$, since a coincides with the double root $k=1$ and, consequently, $r=2$.

Differentating Y twice, substituting into the equation, and equating the coefficients, we obtain $A=\frac{1}{6}, B=0$. Hence, the general solution of the given equation will be written in the form

$$
y=\left(C_{1}+C_{2} x\right) e^{x}+\frac{1}{6} x^{3} e^{x} .
$$

Example 3. Find the general solution of the equation $y^{n}+y=x \sin x$.
Solution. The characteristic equation $k^{2}+1=0$ has roots $k_{1}=i$ and $k_{2}=-1$. The general solution of the corresponding homogeneous equation will |see 3 , where $\alpha=0$ and $\beta=1 \mid$ be

$$
y_{0}=C_{1} \cos x+C_{2} \sin x
$$

The right side is of the form
$f(x)=e^{\Delta x}\left[P_{n}(x) \cos b x+Q_{m}(x) \sin b x\right]$,
where $a=0, b=1, P_{n}(x)=0, Q_{m}(x)=x$. To this side there corresponds the particular solution Y,

$$
Y=x[(A x+B) \cos x+(C x+D) \sin x]
$$

(here, $N=1, a=0, b=1, r=1$).
Differentiating twice and substituting into the equation, we equate the coeffictents of both sides in $\cos x, x \cos x, \sin x$, and $x \sin x$. We then get four equations $2 A+2 D=0,4 C=0,-2 B+2 C=0$. $-4 A=1$, from which we determine $A=-\frac{1}{4}, B=0, C=0, D=\frac{1}{4}$. Therefore, $Y=-\frac{x^{2}}{4} \cos x+\frac{x}{4} \sin x$.

The general solution is

$$
y=C_{1} \cos x+C_{2} \sin x-\frac{x^{2}}{4} \cos x+\frac{x}{4} \sin x
$$

3°. The principle of superposition of solutions. If the right side of equation (3) is the sum of several functions

$$
f(x)=f_{1}(x)+f_{2}(x)+\ldots+f_{n}(x)
$$

and $Y_{i}(i=1,2,3, \ldots, n)$ are the corresponding solutions of the equations

$$
y^{n}+p y^{\prime}+q y=f_{i}(x) \quad(i=1,2, \ldots, n),
$$

then the sum

$$
y=Y_{1}+Y_{2}+\ldots+Y_{n}
$$

is the solution of equation (3).
Find the general solutions of the equations:
2976. $y^{\prime \prime}-5 y^{\prime}+6 y=0$.
2977. $y^{\prime \prime}-9 y=0$.
2978. $y^{\prime \prime}-y^{\prime}=0$.
2979. $y^{\prime \prime}+y=0$.
2980. $y^{\prime \prime}-2 y^{\prime}+2 y=0$.
2981. $y^{\prime \prime}+4 y^{\prime}+13 y=0$. 2982. $y^{\prime \prime}+2 y^{\prime}+y=0$. 2983. $y^{\prime \prime}-4 y^{\prime}+2 y=0$.
2984. $y^{\prime \prime}+k y=0$.
2985. $y=y^{\prime \prime}+y^{\prime}$.
2986. $\frac{y^{\prime}-y}{y^{\prime \prime}}=3$.

Find the particular solutions that satisfy the indicated conditions:
2987. $y^{\prime \prime}-5 y^{\prime}+4 y=0 ; \quad y=5, y^{\prime}=8$ for $x=0$
2988. $y^{\prime \prime}+3 y^{\prime}+2 y=0 ; \quad y=1, y^{\prime}=-1$ for $x=0$.
2989. $y^{\prime \prime}+4 y=0 ; y=0, y^{\prime}=2$ for $x=0$.
2990. $y^{\prime \prime}+2 y^{\prime}=0 ; \quad y=1, y^{\prime}=0$ for $x=0$
2991. $y^{\prime \prime}=\frac{y}{a^{2}} ; y=a, y^{\prime}=0$ for $x=0$.
2992. $y^{\prime \prime}+3 y^{\prime}=0 ; y=0$ for $x=0$ and $y=0$ for $x=3$.
2993. $y^{\prime \prime}+\pi^{2} y=0 ; y=0$ for $x=0$ and $y=0$ for $x=1$.
2994. Indicate the type of particulas solutions for the given inhomogeneous equations:
a) $y^{\prime \prime}-4 y=x^{2} e^{2 x}$;
b) $y^{\prime \prime}+9 y=\cos 2 x$;
c) $y^{\prime \prime}-4 y^{\prime}+4 y=\sin 2 x+e^{2 x}$;
d) $y^{\prime \prime}+2 y^{\prime}+2 y=e^{x} \sin x$;
e) $y^{\prime \prime}-5 y^{\prime}+6 y=\left(x^{2}+1\right) e^{x}+x e^{2 x}$;
f) $y^{\prime \prime}-2 y^{\prime}+5 y=x e^{x} \cos 2 x-x^{2} e^{x} \sin 2 x$.

Find the general solutions of the equations:
2995. $y^{\prime \prime}-4 y^{\prime}+4 y=x^{2}$.
2996. $y^{\prime \prime}-y^{\prime}+y=x^{2}+6$.
2997. $y^{\prime \prime}+2 y^{\prime}+y=e^{2 x}$.
2998. $y^{\prime \prime}-8 y^{\prime}+7 y=14$.
2999. $y^{\prime \prime}-y=e^{x}$.
3000. $y^{\prime \prime}+y=\cos x$.
3001. $y^{\prime \prime}+y^{\prime}-2 y=8 \sin 2 x$.
3002. $y^{\prime \prime}+y^{\prime}-6 y=x e^{2 x}$.
3003. $y^{\prime \prime}-2 y^{\prime}+y=\sin x+\sinh x$.
3004. $y^{\prime \prime}+y^{\prime}=\sin ^{2} x$.
3005. $y^{\prime \prime}-2 y^{\prime}+5 y=e^{x} \cos 2 x$.
3006. Find the solution of the equation $y^{n}+4 y=\sin x$ that satisfies the conditions $y=1, y^{\prime}=1$ for $x=0$.

Solve the equations:
3007. $\frac{d^{2} x}{d t^{2}}+\omega^{2} x=A \sin p t$. Consider the cases: 1) $p \neq \omega$;
2) $p=\omega$.
3008. $y^{\prime \prime}-7 y^{\prime}+12 y=-e^{4 x}$.
3009. $y^{\prime \prime}-2 y^{\prime}=x^{2}-1$.
3010. $y^{\prime \prime}-2 y^{\prime}+y=2 e^{x}$.
3011. $y^{\prime \prime}-2 y^{\prime}=e^{2 x}+5$.
3012. $y^{\prime \prime}-2 y^{\prime}-8 y=e^{x}-8 \cos 2 x$.
3013. $y^{\prime \prime}$ it $y^{\prime}=5 x+2 e^{x}$.
3014. $y^{\prime \prime}-y^{\prime}=2 x-1-3 e^{x}$.
3015. $y^{\prime \prime}+2 y^{\prime}+y=e^{x}+e^{-x}$.
3016. $y^{\prime \prime}-2 y^{\prime}+10 y=\sin 3 x+e^{x}$.
3017. $y^{\prime \prime}-4 y^{\prime}+4 y=2 e^{2 x}+\frac{x}{2}$.
3018. $y^{\prime \prime}-3 y^{\prime}=x+\cos x$.
3019. Find the solution to the equation $y^{\prime \prime}-2 y^{\prime}=e^{2 x}+x^{2}-1$
that satisfies the conditions $y=\frac{1}{8}, y^{\prime}=1$ for $x=0$.
Solve the equations:
3020. $y^{\prime \prime}-y=2 x \sin x$.
3021. $y^{\prime \prime}-4 y=e^{2 x} \sin 2 x$.
3022. $y^{\prime \prime}+4 y=2 \sin 2 x-3 \cos 2 x+1$.
3023. $y^{\prime \prime}-2 y^{\prime}+2 y=4 e^{x} \sin x$.
3024. $y^{\prime \prime}=x e^{x}+y$.
3025. $y^{\prime \prime}+9 y=2 x \sin x+x e^{2 x}$.
3026. $y^{\prime \prime}-2 y^{\prime}-3 y=x\left(1+e^{2 x}\right)$.
3027. $y^{\prime \prime}-2 y^{\prime}=3 x+2 x e^{x}$.
3028. $y^{\prime \prime}-4 y^{\prime}+4 y=x e^{2 x}$.
3029. $y^{\prime \prime}+2 y^{\prime}-3 y=2 x e^{-3 x}+(x+1) e^{x}$.

3030*. $y^{\prime \prime}+y=2 x \cos x \cos 2 x$.
3031. $y^{\prime \prime}-2 y=2 x e^{x}(\cos x-\sin x)$.

Applying the method of variation of parameters, solve the following equations:
3032. $y^{\prime \prime}+y=\tan x$.
3036. $y^{n}+y=\frac{1}{\cos x}$.
3033. $y^{\prime \prime}+y=\cot x$.
3034. $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x}$.
3037. $y^{n}+y=\frac{1}{\sin x}$.
3035. $y^{\prime \prime}+2 y^{\prime}+y=\frac{e^{-x}}{x}$.
3038. a) $y^{\prime \prime}-y=\tanh x$.
3039. Two identical loads are suspended from the end of a spring. Find the equation of motion that will be performed by one of these loads if the other falls.

Solution. Let the increase in the length of the spring under the action' of one load in a state of rest be a and the mass of the load, m. Denote by x the coordinate of the load reckoned vertically from the position of equilıbrium in the case of a single load. Then

$$
m \frac{d^{2} x}{d t^{2}}=m g-k(x+a)
$$

where, obviously, $k=\frac{m g}{a}$ and, consequently, $\frac{d^{2} x}{d t^{2}}=-\frac{g}{a} x$. The general solution is $x=C_{1} \cos \sqrt{\frac{\bar{g}}{a}} t+C_{2} \sin \sqrt{\frac{\bar{g}}{a}} t$. The initial conditions yseld $x=a$ and $\frac{d x}{d l}=0$ when $t=0$; whence $C_{1}=a$ and $C_{2}=0$; and so

$$
x=a \cos \sqrt{\frac{\bar{g}}{a}} t
$$

3040*. The force stretching a spring is proportional to the increase in its length and is equal to 1 kgf when the length increases by 1 cm . A load weighing 2 kgf is suspended from the spring. Find the period of oscillatory motion of the load if it is pulled downwards slightly and then released.

3041*. A load weighing $P=4 \mathrm{kgf}$ is suspended from a spring and increases the length of the spring by 1 cm . Find the law of motion of the load if the upper end of the spring performs a vertical harmonic oscillation $y=2 \sin 30 t \mathrm{~cm}$ and if at the initial instant the load was at rest (resistance of the medium is neglected).
3042. A material point of mass m is attracted by each of two centres with a force proportional to the distance (the constant of proportionality is k). Find the law of motion of the point knowing that the distance between the centres is $2 b$, at the initial instant the point was located on the line connecting the centres (at a distance c from its midpoint) and had a velocity of zero.
3043. A chain of length 6 metres is sliding from a support without friction. If the motion begins when 1 m of the chain is hanging from the support, how long will it take for the entire chain to slide down?

3044*. A long narrow tube is revolving with constant angular velocity ω about a vertical axis perpendicular to it. A ball inside the tube is sliding along it without friction. Find the law of motion of the ball relative to the tube, considering that
a) at the initial instant the ball was at a distance a from the axis of rotation; the initial velocity of the ball was zero;
b) at the initial instant the ball was located on the axis of rotation and had an initial velocity v_{0}.

Sec. 13. Linear Differential Equations of Order Higher than Two with Constant Coefficients
1°. Homogeneous equations. The fundamental system of solutions y_{1}, y_{2}, \ldots, y_{n} of a homogeneous linear equation with constant coefficients

$$
\begin{equation*}
y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n-1} y^{\prime}+a_{n} y=0 \tag{1}
\end{equation*}
$$

is constructed on the basis of the character of the roots of the characteristic equation

$$
\begin{equation*}
k^{n}+a_{1} k^{n-1}+\ldots+a_{n-1} k+a_{n}=0 \tag{2}
\end{equation*}
$$

Namely, 1) if k is a real root of the equation (2) of multiplicity m, then to this root there correspond m linearly independent solutions of equation (1):

$$
y_{1}=e^{k x}, y_{2}=x e^{k x}, \ldots, y_{m}=x^{m-1} e^{k x} ;
$$

2) if $\alpha \pm \beta l$ Is a pair of complex roots of equation (2) of multiplicity m, then to the latter there correspond $2 m$ linearly independent solutions of equation (1):
$y_{3}=e^{2 x} \cos \beta x, y_{2}=e^{\pi x} \sin \beta x, y_{2}=x e^{2 x} \cos \beta x, y_{4}=x e^{2 x} \sin \beta x, \ldots$

$$
\cdots, y_{2 m-1}=x^{m-1} e^{2 x} \cos \beta x, y_{2 m}=x^{m-1} e^{x x} \sin \beta x
$$

$\mathbf{2}^{\mathbf{2}}$. Inhomogeneous equations. A particular solution of the inhomogeneous equation

$$
\begin{equation*}
y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n-1} y^{\prime}+a_{n} y=f(x) \tag{3}
\end{equation*}
$$

is sought on the basis of rules 2° and 3° of Sec .12 .

Find the general solutions of the equations:
3045. $y^{\prime \prime \prime}-13 y^{\prime \prime}+12 y^{\prime}=0$.
3058. $y^{\prime V}+2 y^{n}+y=0$.
3046. $y^{\prime \prime \prime}-y^{\prime}=0$.
3047. $y^{\prime \prime \prime}+y=0$.
3059. $y^{(n)}+\frac{n}{1} y^{(n-1)}+$
3048. $y^{\prime V}-2 y^{\prime \prime}=0$.
3049. $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$.
$+\frac{n(n-1)}{1 \cdot 2} y^{(n-2)}+\ldots+$
3050. $y^{\prime V}+4 y=0$.
3051. $y^{\prime v}+8 y^{\prime \prime}+16 y=0$.
3052. $y^{\prime v}+y^{\prime}=0$.
$+\frac{n}{1} y^{\prime}+y=0$.
3053. $y^{\prime v}-2 y^{\prime \prime}+y=0$.
3060. $y^{\prime V}-2 y^{\prime \prime \prime}+y^{\prime \prime}=e^{x}$.
3061. $y^{\prime V}-2 y^{\prime \prime \prime}+y^{\prime \prime}=x^{2}$.
8054. $y^{\prime v}-a^{4} y=0$.
3062. $y^{\prime \prime \prime}-y=x^{2}-1$.
3055. $y^{\prime \prime}-6 y^{\prime \prime}+9 y=0$.
3063. $y^{\prime V}+y^{\prime \prime \prime}=\cos 4 x$.
3056. $y^{\prime V}+a^{2} y^{\prime \prime}=0$.
3064. $y^{\prime \prime \prime}+y^{\prime \prime}=x^{2}+1+3 x e^{x}$.
3057. $y^{\prime V}+2 y^{\prime \prime \prime}+y^{\prime \prime}=0$.
3065. $y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=x e^{x}$.
3066. $y^{\prime \prime \prime}+y^{\prime}=\tan x \sec x$.
3067. Find the particular solution of the equation

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}+2 y^{\prime}+y=x
$$

that satisfies the initial conditions $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$.

Sec. 14. Euler's Equations

A linear equation of the form
$(a x+b)^{n} y^{(n)}+A_{1}(a x+b)^{n-1} y^{(n-1)}+\ldots+A_{n-1}(a x+b) y+A_{n} y=f(x),(1)$
where $a, b, A_{1}, \ldots, A_{n-1}, A_{n}$ are constants, is called Euler's equation.
Let us introduce a new independent variable t, putting
Then

$$
a x+b=e^{t} .
$$

$$
\begin{aligned}
y^{\prime} & =a e^{-t} \frac{d y}{d t}, \quad y^{\prime \prime}=a^{2} e^{-2 t}\left(\frac{d^{\prime} u}{d t^{2}}-\frac{d y}{d t}\right) \\
y^{\prime \prime \prime} & =a^{3} e^{-3 t}\left(\frac{d^{3} y}{d t^{3}}-3 \frac{d^{2} u}{d t^{2}}+2 \frac{d y}{d t}\right) \text { and so forth }
\end{aligned}
$$

and Euler's equation is transformed into a linear equation with constant coefficients.

Fxample 1. Solve the equation $x^{2} y^{\prime \prime}+x y^{\prime}+y=1$.
Solution. Putting $x=e^{l}$, we get

$$
\frac{d y}{d x}=e^{-t} \frac{d y}{d t}, \quad \frac{d^{2} u}{d x^{2}}=e^{-2 t}\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right) .
$$

Consequently, the given equation takes on the form

$$
\frac{d^{2} y}{d t^{2}}+y=1
$$

whence
or

$$
\begin{gathered}
y=C_{1} \cos t+C_{2} \sin t+1 \\
y=C_{1} \cos (\ln x)+C_{2} \sin (\ln x)+1
\end{gathered}
$$

For the homogeneous Euler equation

$$
\begin{equation*}
x^{n} y^{(n)}+A_{1} x^{n-3} y^{(n-1)}+\ldots+A_{n-1} x y^{\prime}+A_{n} y=0 \tag{2}
\end{equation*}
$$

the solution may be sought in the form

$$
\begin{equation*}
y=x^{k} . \tag{3}
\end{equation*}
$$

Putting into (2) $y, y^{\prime}, \ldots y^{(n)}$ found from (3), we get a characteristic equation from which we can find the exponent k.

If k is a real root of the characteristic equation of multiplicity m, then to it correspond m linearly independent solutions

$$
y_{1}=x^{k}, y_{2}=x^{k} \cdot \ln x, y_{3}=x^{k}(\ln x)^{2}, \ldots, y_{m}=x^{k}(\ln x)^{m-1} .
$$

If $\alpha \pm \beta i$ is a pair of complex roots of multiplicity m, then to it there correspond $2 m$ linearly independent solutions

$$
\begin{gathered}
y_{1}=x^{\alpha} \cos (\beta \ln x), y_{2}=x^{\alpha} \sin (\beta \ln x), y_{\mathrm{a}}=x^{\alpha} \ln x \cos (\beta \ln x), \\
y_{4}=x^{\alpha} \ln x \cdot \sin (\beta \ln x), \ldots y_{2 m-1}=x^{a}(\ln x)^{m-1} \cos (\beta \ln x), \\
y_{2 m}=x^{\alpha}(\ln x)^{m-1} \sin (\beta \ln x) .
\end{gathered}
$$

Example 2. Solve the equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 .
$$

Solution. We put

$$
y=x^{k}, \quad y^{\prime}=k x^{k-1}, \quad y^{\prime \prime}=k(k-1) x^{k-2} .
$$

Substituting into the given equation, after cancelling out x^{k}, we get the characteristic equation

$$
k^{2}-4 k+4=0
$$

Solving it we find

$$
k_{1}=k_{2}=2 .
$$

Hence, the general solution will be

$$
y=C_{1} x^{2}+C_{2} x^{2} \ln x
$$

Solve the equations:
3068. $x^{2} \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+y=0$.
3069. $x^{2} y^{\prime \prime}-x y^{\prime}-3 y=0$.
3070. $x^{2} y^{\prime \prime}+x y^{\prime}+4 y=0$.
3071. $x^{2} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+6 x y^{\prime}-6 y=0$.
3072. $(3 x+2) y^{\prime \prime}+7 y^{\prime}=0$.
3073. $y^{\prime \prime}=\frac{2 y}{x^{2}}$.
3074. $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{y}{x^{2}}=0$.
3075. $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x$.
3076. $(1+x)^{2} y^{\prime \prime}-3(1+x) y^{\prime}+4 y=(1+x)^{8}$.
3077. Find the particular solution of the equation

$$
x^{2} y^{\prime \prime}-x y^{\prime}+y=2 x
$$

that satisfies the initial conditions $y=0, y^{\prime}=1$ when $x=1$.

Sec. 15. Systems of Differential Equations

Method of elimination. To find the solution, for instance, of a normal system of two ilrst-order differential equations, that is, of a system of the form

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y, z), \quad \frac{d z}{d x}=g(x, y, z) \tag{1}
\end{equation*}
$$

solved for the derivatives of the desired functions, we differentiate one of them with respect to x. We have, for example,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f+\frac{\partial f}{\partial z} g \tag{2}
\end{equation*}
$$

Determining z from the first equation of the system (1) and substituting the value found,

$$
\begin{equation*}
z=\varphi\left(x, y, \frac{d y}{d x}\right) \tag{3}
\end{equation*}
$$

into equation (2), we get a second-order equation with one unknown function y. Solving it, we find

$$
\begin{equation*}
y=\psi\left(x, C_{1}, C_{2}\right) \tag{4}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary constants. Substituting function (4) into formula (3), we determine the function z without new integrations. The set of formulas (3) and (4), where y is replaced by ψ, yields the general solution of the system (1).

Example. Solve the system

$$
\left\{\begin{array}{l}
\frac{d y}{d x}+2 y+4 z=1+4 x \\
\frac{d z}{d x}+y-z=\frac{3}{2} x^{2}
\end{array}\right.
$$

Solution. We differentiate the first equation with respect to x :

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+4 \frac{d z}{d x}=4
$$

From the first equation we determine $z=\frac{1}{4}\left(1+4 x-\frac{d y}{d x}-2 y\right)$ and then from the second we will have $\frac{d z}{d x}=\frac{3}{2} x^{2}+x+\frac{1}{4}-\frac{3}{2} y-\frac{1}{4} \frac{d y}{d x}$. Putting z and $\frac{d z}{d x}$ into the equation obtained after differentiation, we arrive at a secordorder equation in one unknown y :

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-6 y=-6 x^{2}-4 x+3
$$

Solving it we find:

$$
y=C_{1} e^{2 x}+C_{2} e^{-3 x}+x^{2}+x
$$

and then

$$
z=\frac{1}{4}\left(1+4 x-\frac{d y}{d x}-2 y\right)=-C_{1} e^{2 x}+\frac{C_{2}}{4} e^{-3 x}-\frac{1}{2} x^{2}
$$

We can do likewise in the case of a system with a larger number of equations.

Solve the systems:
3078. $\left\{\begin{array}{l}\frac{d y}{d x}=z, \\ \frac{d z}{d x}=-y .\end{array}\right.$
3085. $\left\{\begin{array}{l}\frac{d y}{d x}+3 y+4 z=2 x, \\ \frac{d z}{d x}-y-z=x,\end{array}\right.$
3079. $\left\{\begin{array}{l}\frac{d y}{d x}=y+5 z, \\ \frac{d z}{d x}+y+3 z=0 .\end{array}\right.$
$y=0, z=0$ when $x=0$.
3080. $\left\{\begin{array}{l}\frac{d y}{d x}=-3 y-z, \\ \frac{d z}{d x}=y-z .\end{array}\right.$
3086.
$\left\{\begin{array}{l}\frac{d x}{d t}-4 x-y+36 t=0 \\ \frac{d y}{d t}+2 x-y+2 e^{t}=0\end{array}\right.$
$x=0, y=1$ when $t=0$.
3081. $\left\{\begin{array}{l}\frac{d x}{d t}=y, \\ \frac{d y}{d t}=z, \\ \frac{d z}{d t}=x .\end{array}\right.$
3087. $\left\{\begin{array}{l}\frac{d y}{d x}=\frac{y^{2}}{z}, \\ \frac{d z}{d x}=\frac{1}{2} y .\end{array}\right.$

3088*. a) $\frac{d x}{x^{3}+3 x y^{2}}=\frac{d y}{2 y^{3}}=\frac{d z}{2 y^{2} z}$;
b) $\frac{d x}{x-y}=\frac{d y}{x+y}=\frac{d z}{z}$;
3082. $\left\{\begin{array}{l}\frac{d x}{d t}=y+z, \\ \frac{d y}{d t}=x+z, \\ \frac{d z}{d t}=x+y .\end{array}\right.$
3083.

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=y+z \\
\frac{d z}{d x}=x+y+z
\end{array}\right.
$$

c) $\frac{d x}{y-z}=\frac{d y}{z-x}=\frac{d z}{x-y}$,
isolate the integral curve passing through the point ($1,1,-2$).
3084. $\left\{\begin{array}{l}\frac{d y}{d x}+2 y+z=\sin x, \\ \frac{d z}{d x}-4 y-2 z=\cos x .\end{array}\right.$
3089.

$$
\left\{\begin{array}{l}
\frac{d y}{d x}+z=1 \\
\frac{d z}{d x}+\frac{2}{x^{2}} y=\ln x
\end{array}\right.
$$

3090. $\left\{\begin{array}{l}\frac{d^{2} y}{d x^{2}}+2 y+4 z=e^{x}, \\ \frac{d^{2} z}{d x^{2}}-y-3 z=-x .\end{array}\right.$

3091**. A shell leaves a gun with initial velocity v_{0} at an angle a to the horizon. Find the equation of motion if we take the air resistance as proportional to the velocity.

3092*. A material point is attracted by a centre O with a force proportional to the distance. The motion begins from point A at a distance a from the centre with initial velocity v_{0} perpendicular to $O A$. Find the trajectory.

Sec. 16. Integration of Differential Equations by Means of Power Series

If it is not possible to integrate a differential equation with the help of elementary functions, then in some cases its solution may be sought in the form of a power series:

$$
\begin{equation*}
y=\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n} \tag{1}
\end{equation*}
$$

The undetermined coefficients $c_{n}(n=1,2, \ldots)$ are found by putting the series (1) into the equation and equating the coefficients of identical powers of the binomial $x-x_{0}$ on the left-hand and right-hand sides of the resulting equation.

We can also seek the solution of the equation

$$
\begin{equation*}
y^{\prime}=f(x, y) ; \quad y\left(x_{0}\right)=y_{0} \tag{2}
\end{equation*}
$$

in the form of the Taylor's series

$$
\begin{equation*}
y(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}, \tag{3}
\end{equation*}
$$

where $y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=f\left(x_{0}, y_{0}\right)$ and the subsequent derivatives $y^{(n)}\left(x_{0}\right)$ ($n=2,3, \ldots$) are successively found by differentiating equation (2) and by putting x_{0} in place of x

Example 1. Find the solution of the equation

$$
y^{\prime \prime}-x y=0
$$

if $y=y_{0}, y^{\prime}=y_{0}^{\prime}$ for $x=0$.
Solution. We put

$$
y=c_{0}+c_{1} x+\ldots+c_{n} x^{n}+\ldots
$$

whence, differentiating, we get

$$
\begin{aligned}
& y^{n}=2 \cdot 1 c_{2}+3 \cdot 2 c_{3} x+\ldots+n(n-1) c_{n} x^{n-2}+(n+1) n c_{n+1} x^{n-1}+ \\
&+(n+2)(n+1) c_{n+2} x^{n}+\ldots
\end{aligned}
$$

Substituting y and $y^{\prime \prime}$ into the given equation, we arrive at the identity

$$
\begin{aligned}
& {\left[2 \cdot 1 c_{2}+3 \cdot 2 c_{3} x+\ldots+n(n-1) c_{n} x^{n-2}+(n+1) n c_{n+1} x^{n-1}+\right.} \\
& \left.\quad+(n+2)(n+1) c_{n+2} x^{n}+\ldots\right]-x\left[c_{0}+c_{1} x+\ldots+c_{n} x^{n}+\ldots\right] \equiv 0
\end{aligned}
$$

Collecting together, on the left of this equation, the terms with identical powers of x and equating to zero the coefficients of these powers, we will
have

$$
\begin{gathered}
c_{2}=0 ; 3 \cdot 2 c_{3}-c_{0}=0, \quad c_{3}=\frac{c_{0}}{3 \cdot 2} ; 4 \cdot 3 c_{4}-c_{1}=0, c_{4}=\frac{c_{1}}{4 \cdot 3} ; 5 \cdot 4 c_{3}-c_{2}=0, \\
c_{5}=\frac{c_{2}}{5 \cdot 4} \text { and so forth. }
\end{gathered}
$$

Generally

$$
\begin{gathered}
c_{3 k}=\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot \ldots \cdot(3 k-1) 3 k}, \quad c_{3 k+1}=\frac{c_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot \ldots \cdot 3 k(3 k+1)^{r}} \\
c_{3 k+2}=0 \quad(k=1,2,3, \ldots) .
\end{gathered}
$$

Consequently,

$$
\begin{align*}
y=c_{0}(1 & \left.+\frac{x^{3}}{2 \cdot 3}+\frac{x^{8}}{2 \cdot 3 \cdot 5 \cdot 6}+\ldots+\frac{x^{3 k}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot \ldots \cdot(3 k-1) 3 k}+\ldots\right)+ \\
& \quad+c_{1}\left(x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{3 \cdot 4 \cdot 6 \cdot 7}+\ldots+\frac{x^{3 k 41}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot \ldots \cdot 3 k(3 k+1)}+\ldots\right), \tag{4}
\end{align*}
$$

where $c_{0}=y_{0}$ and $c_{1}=y_{0}^{\prime}$.
Applying d'Alembert's test, it is readily seen that series (4) converges for $-\infty<x<+\infty$.

Example 2. Find the solution of the equation

$$
y^{\prime}=x+y ; \quad y_{0}=y(0)=1 .
$$

Solution. We put

$$
y=y_{0}+y_{0}^{\prime} x+\frac{y_{0}^{\prime \prime}}{2!} x^{2}+\frac{y_{0}^{\prime \prime \prime}}{3!} x^{3}+\ldots
$$

We have $y_{0}=1, y_{0}^{\prime}=0+1=1$. Differentiating equation $y^{\prime}=x+y$, we successively find $y^{\prime \prime}=1+y^{\prime}, y_{0}^{\prime \prime}=1+1=2, y^{\prime \prime \prime}=y^{\prime \prime}, y_{0}^{\prime \prime \prime}=2$, etc. Consequently,

$$
y=1+x+\frac{2}{2!} x^{2}+\frac{2}{3!} x^{2}+\ldots
$$

For the example at hand, this solution may be written in final form as

$$
y=1+x+2\left(e^{x}-1-x\right) \text { or } y=2 e^{x}-1-x .
$$

The procedure is similar for differential equations of higher orders. Testing the resulting series for convergence is, generally speaking, complicated and is not obligatory when solving the problems of this section.

With the help of power series, find the solutions of the equations for the indicated initial conditions.

In Examples 3097, 3098, 3099, 3101, test the solutions obtained for convergence.
3093. $y^{\prime}=y+x^{2} ; \quad y=-2$ for $x=0$.
3094. $y^{\prime}=2 y+x-1 ; y=y_{0}$ for $x=1$.
3095. $y^{\prime}=y^{2}+x^{3} ; y=\frac{1}{2}$ for $x=0$.
3096. $y^{\prime}=x^{2}-y^{2} ; y=0$ for $x=0$.
3097. $(1-x) y^{\prime}=1+x-y ; y=0$ for $x=0$.

3098*. $x y^{\prime \prime}+y=0 ; y=0, y^{\prime}=1$ for $x=0$.
3099. $y^{\prime \prime}+x y=0 ; y=1, y^{\prime}=0$ for $x=0$.

3100*. $y^{\prime \prime}+\frac{2}{x} y^{\prime}+y=0 ; y=1, y^{\prime}=0$ for $x=0$.
3101* $\cdot y^{\prime \prime}+\frac{1}{x} y^{\prime}+y=0 ; y=1, y^{\prime}=0$ for $x=0$.
3102. $\frac{d^{2} x}{d t^{2}}+x \cos t=0 ; x=a ; \quad \frac{d x}{d t}=0$ for $t=0$.

Sec. 17. Problems on Fourier's Method

To find the solutions of a linear homogeneous partial differential equation by Fourier's method, first seek the particular solutions of this special-type equation, each of which represents the product of functions that are dependent on one argument only. In the simplest case, there is an infinite set of such solutions $u_{n}(n=1,2, \ldots)$, which are linearly independent among themselves in any finite number and which satisfy the given boundary conditions. The desired solution u is represented in the form of a series arranged according to these particular solutions:

$$
\begin{equation*}
u=\sum_{n=1}^{\infty} C_{n} u_{n} \tag{1}
\end{equation*}
$$

The coefficients C_{n} which remain undetermined are found from the initial conditions.

Problem. A transversal displacement $u=u(x, t)$ of the points of a string with abscissa x satisfies, at time t, the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}, \tag{2}
\end{equation*}
$$

where $a^{2}=\frac{T_{0}}{0}\left(T_{0}\right.$ is the tensile force and ϱ is the linear density of the string). Find the form of the string at time t if its ends $x=0$ and $x=l$ are

Fig. 107
fixed and at the initial instant, $t=0$, the string had the form of a parabola $u=\frac{4 h}{l^{2}} x(l-x)$ (Fig. 107) and its points had zero velocity.

Solution. It is required to find the solution $u=u(x, t)$ of equation (2) that satisfles the boundary conditions

$$
\begin{equation*}
u(0, t)=0, \quad u(l, t)=0 \tag{3}
\end{equation*}
$$

and the initial conditions

$$
\begin{equation*}
u(x, 0)=\frac{4 h}{l^{2}} x(l-x), u_{t}^{\prime}(x, 0)=0 \tag{4}
\end{equation*}
$$

We seek the nonzero solutions of equation (2) of the special form

$$
u=X(x) T(t) .
$$

Putting this expression into equation (2) and separating the variables, we get

$$
\begin{equation*}
\frac{T^{\prime \prime}(t)}{a^{2} T(t)}=\frac{X^{n}(x)}{X(x)} . \tag{5}
\end{equation*}
$$

Since the variables x and t are independent. equation (5) is possible only when the general quantity of relation (5) is constant Denoting this constant by $-\lambda^{2}$, we find two ordinary differential equations:

$$
T^{\prime \prime}(t)+(a \lambda)^{2} \cdot T(t)=0 \text { and } X^{\prime \prime}(x)+\lambda^{2} X(x)=0
$$

Solving these equations, we get

$$
\begin{aligned}
& T(t)=A \cos a \lambda t+B \sin a \lambda t, \\
& X(x)=C \cos \lambda x+D \sin \lambda x
\end{aligned}
$$

where A, B, C, D are arbitrary constants. Let us determine the constants. From condition (3) we have $X(0)=0$ and $X(l)=0$; hence, $C=0$ and $\sin \lambda l=0$ (since D cannot be equal to zero at the same time as C is zero). For this reason, $\lambda_{k}=\frac{k \pi}{l}$, where k is an integer. It will seadily be seen that we do not lose generality by taking for k only positive values ($k=1,2,3, \ldots$).

To every value λ_{k} there corresponds a particular solution

$$
u_{k}=\left(A_{k} \cos \frac{k a \pi}{l} t+B_{k} \sin \frac{k a \pi}{l} t\right) \sin \frac{k \pi x}{l}
$$

that satisfies the boundary conditions (3).
We construct the series

$$
u=\sum_{k=1}^{\infty}\left(A_{k} \cos \frac{k a \pi t}{l}+B_{k} \sin \frac{k a \pi t}{l}\right) \sin \frac{k \pi x}{l}
$$

whose sum obviously satisfies equation (2) and the boundary conditions (3).
We choose the constants A_{k} and B_{k} so that the sum of the series should satisfy the initial conditions (4). Since

$$
\frac{\partial u}{\partial t}=\sum_{k=1}^{\infty} \frac{k a \pi}{l}\left(-A_{k} \sin \frac{k a \pi t}{l}+B_{k} \cos \frac{k \pi \pi t}{l}\right) \sin \frac{k \pi x}{l}
$$

it follows that, by putting $t=0$, we obtain

$$
u(x, 0)=\sum_{k=1}^{\infty} A_{k} \sin \frac{k \pi x}{l}=\frac{4 h}{l^{2}} x(l-x)
$$

and

$$
\frac{\partial u(x, 0)}{\partial t}=\sum_{k=1}^{\infty} \frac{k a \pi}{l} B_{k} \sin \frac{k \pi x}{l}=0 .
$$

Hence, to determine the coefficients A_{k} and B_{k} it is necessary to expand in a Fourier series, in sines only, the function $u(x, 0)=\frac{4 \dot{h}}{l^{2}} x(l-x)$ and the Iunction $\frac{\partial u(x, 0)}{\partial t} \equiv 0$.

From familiar formulas (Ch. VIII, Sec. $4,3^{\circ}$) we have

$$
A_{k}=\frac{2}{l} \int_{0}^{l} \frac{4 h}{l^{2}} x(l-x) \sin \frac{k \pi x}{l} d x=\frac{32 h}{\pi^{1} k^{2}},
$$

if k is odd, and $A_{k}=0$ if k is even;

$$
\frac{k a \pi}{l} B_{k}=\frac{2}{l} \int_{0}^{l} 0 \sin \frac{k \pi x}{l} d x=0, B_{k}=0 .
$$

The sought-for solution will be

$$
u=\frac{32 h}{\pi^{5}} \sum_{n=0}^{\infty} \frac{\cos \frac{(2 n+1) a \pi t}{l}}{(2 n+1)^{3}} \sin \frac{(2 n+1) \pi x}{l} .
$$

3103*. At the initial instant $t=0$, a sfring, attached at its ends, $x=0$ and $x=l$, had the form of the sine curve $u=A \sin \frac{\pi x}{l}$, and the points of it had zero velocity. Find the form of the string at time t.

3104*. At the initial time $t=0$, the points of a straight string $0<x<l$ receive a velocity $\frac{\partial u}{\partial t}=1$. Find the form of the string at time t if the ends of the string $x=0$ and $x=l$ are fixed (see Problem 3103).

3105*. A string of lenglh $l=100 \mathrm{~cm}$ and attached at its ends, $x=0$ and $x=l$, is pulled out to a distance $h=2 \mathrm{~cm}$ at point $x=50 \mathrm{~cm}$ at the initial time, and is then released without any impulse. Deiermine the shape of the string at any time t.

3106*. In longitudinal vibrations of a thin homogeneous and rectilinear rod, whose axis coincides with the x-axis, the displacement $u=u(x, t)$ of a cross-section of the rod with abscissa x satisfies, at time t, the equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

where $a^{2}=\frac{E}{\varrho}$ (E is Young's modulus and ϱ is the density of the rod). Determine the longitudinal vibrations of an elastic horizontal rod of length $l=100 \mathrm{~cm}$ fixed at the end $x=0$ and pulled back at the end $x=100$ by $\Delta l=1 \mathrm{~cm}$, and then released without impulse.

3107*. For a rectilinear homogeneous rod whose axis coincides with the x-axis, the temperature $u=u(x, t)$ in a cross-section with abscissa x at time t, in the absence of sources of heat, satisfies the equation of heat conduction

$$
\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}},
$$

where a is a constant. Determine the temperature distribution for any time t in a rod of length 100 cm if we know the initial temperature distribution

$$
u(x, 0)=0.01 x(100-x)
$$

Chapter X
 APPROXIMATE CALCULATIONS

Sec. 1. Operations on Approximate Numbers

1°. Absolute error. The absolute error of an approximate number a which replaces the exact number A is the absolute value of the difference between them. The number Δ, which satisfles the inequality

$$
\begin{equation*}
|A-a| \leqslant \Delta, \tag{1}
\end{equation*}
$$

is called the limiting absolute error. The exact number A is located within the limits $a-\Delta \leqslant A \leqslant a+\Delta$ or, more briefly, $A=a \pm \Delta$
2°. Relative error. By the relative error of an approximate number a replacing an exact number $A(A>0)$ we understand the ratio of the absolute error of the number a to the exact number A. The number δ, which satisfies the inequality

$$
\begin{equation*}
\frac{|A-a|}{A} \leq \delta \tag{2}
\end{equation*}
$$

is called the limiting relative error of the approximate number a. Since in actual practice $A \approx a$, we often take the number $\delta=\frac{\Delta}{a}$ for the limiting relative error.
3°. Number of correct decimals. We say that a positive approximate number a written in the form of a decimal expansion has n correct decimal places in a narrow sense if the absolute error of this number does not exceed one half unit of the nth decimal place. In this case, when $n>1$ we can take, for the limiting relative error, the number

$$
\delta=\frac{1}{2 k}\left(\frac{1}{10}\right)^{n-1},
$$

where k is the first significant digit of the number a. And conversely, if it is known that $\delta \leqslant \frac{1}{2(k+1)}\left(\frac{1}{10}\right)^{n-1}$, then the number a has n correct decimal places in the narrow meaning of the word. In particular, the number a definitely has n correct decimals in the narrow meaning if $\delta \leqslant \frac{1}{2}\left(\frac{1}{10}\right)^{n}$.

If the absolute error of an approximate number a does not exceed a unit of the last decimal place (such, for example, are numbers resulting from measurements made to a definite accuracy), then it is said that all decimal places of this approximate number are correct in a broad sense. If there is a larger number of significant digits in the approximate number, the latter (if it is the final result of calculations) is ordinarily rounded of so that all the remaining digits are correct in the narrow or broad sense.

Hencetorth, we shall assume that all digits in the initial data are correct (if not otherwise stated) in the narrow sense. The results of intermediate calculations may contain one or two reserve digits.

We note that the examples of this section are, as a rule, the results of final calculations, and for this reason the answers to them are given as approximate numbers with only correct decimals.
4°. Addition and subtraction of approximate numbers. The limiting absolute error ot an algebraic sum of several numbers is equal to the sum of the limiting absolute errors of these numbers. Therefore, in order to have, in the sum of a small number of approximate numbers (all decimal places of which are correct), only correct digits (at least in the broad sense), all summands should be put into the form of that summand which has the smallest number of decimal places, and in each summand a reserve digit should be retained. Then add the resulting numbers as exact numbers, and round off the sum by one decimal place

If we have to add approximate numbers that have not been rounded off, they should be rounded off and one or two reserve digits should be retained. Then be guided by the foregoong rule of addition while retaining the appropriate extra digits in the sum up to the end of the calculations.

Example 1. $215.21+14.182+21.4=215.2(1)+14.1(8)+214=250.8$.
The relative error of a sum of positive terms lies between the least and greatest relative errors of these lerms.

The relative error of a difference is not amenable to simple counting. Particularly unfavourable in this sense is the difference of two close numbers.

Example 2. In subtracting the atproximate numbers 6135 and 6.131 to four correct decimal places, we get the difference 0004 . The limiting relative error is $\delta=\frac{\frac{1}{2} 0.001+\frac{1}{2} 0.001}{0.004}$ $=\frac{1}{4}=0.25$. Hence, not one of the decimals of the difference is correct. Therefore, it is always advisable to avoid subtracting close approximate numbers and to transform the given expression, if need be, so that this undesirable operation is omitted.
5°. Multiplication and division of approximate numbers. The limiting relative error of a product and a quotient of approximate numbers is equal to the sum of the limiting relative errors of these numbers Proceeding from this and applying the rule for the number of correct decimals (3°), we retain in the answer only a definite number of decimals

Example 3. The product of the approximate numbers $25.3 \cdot 4.12=104.236$.
Assuming that all decimals of the factors are correct, we find that the limiting relative error of the product is

$$
\delta=\frac{1}{2 \cdot 2} 0.01+\frac{1}{4 \cdot 2} 0.01 \approx 0.003
$$

Whence the number of correct decimals of the product is three and the result, if it is final, should be written as follows: $25.3 \cdot 412=104$, or more correctly, $253 \cdot 4.12=1042 \pm 0.3$.
6°. Powers and roots of approximate numbers. The limiting relative error of the m th power of an approximate number a is equal to the m-fold limiting relative error of this number

The limiting relative error of the m th root of an approximate number a is the $\frac{1}{m}$ th part of the limiting relative error of the number a.
7°. Calculating the error of the result of various operations on approximate numbers. If $\Delta a_{1}, \ldots, \Delta a_{n}$ are the limiting absolute errors of the appro-
ximate numbers a_{1}, \ldots, a_{n}, then the limiting absolute error ΔS of the result

$$
S=f\left(a_{\mathrm{r}}, \ldots, a_{n}\right)
$$

may be evaluated approximately from the formula

$$
\Delta S=\left|\frac{\partial f}{\partial a_{1}}\right| \Delta a_{1}+\ldots+\left|\frac{\partial f}{\partial a_{n}}\right| \Delta a_{n} .
$$

The limiting relative error S is then equal to

$$
\begin{aligned}
\delta S & =\frac{\Delta S}{|S|}=\left|\frac{\partial f}{\partial a_{1}}\right| \cdot \frac{\Delta a_{1}}{|f|}+\ldots+\left|\frac{\partial f}{\partial a_{n}}\right| \frac{\Delta a_{n}}{|f|}= \\
& =\frac{\partial \ln f}{\partial a_{1}}\left|\Delta a_{1}+\ldots+\left|\frac{\partial \ln f}{\partial a_{n}}\right| \Delta a_{n} .\right.
\end{aligned}
$$

Example 4. Evaluate $S=\ln (10.3+\sqrt{4.4})$; the approximate numbers 10.3 and 4.4 are correct to one decimal place.

Solution. Let us first compute the limiting absolute error ΔS in the general form: $S=\ln (a+\sqrt{b}), \quad \Delta S=\frac{1}{a+\sqrt{b}}\left(\Delta a+\frac{1}{2} \frac{\Delta b}{\sqrt{b}}\right)$. We have $\Delta a=\Delta b \approx \frac{1}{20} ; \sqrt{4.4}=2.0976 \ldots$; we leave 2.1 , since the relative error of the approximate number $\sqrt{4.4}$ is equal to $\approx \frac{1}{2} \cdot \frac{1}{40}=\frac{1}{80}$; the absolute error is then equal to $\approx 2 \frac{1}{80}=\frac{1}{40}$; we can be sure of the first decimal place. Hence,

$$
\Delta S=\frac{1}{10.3+2.1}\left(\frac{1}{20}+\frac{1}{2} \cdot \frac{1}{20 \cdot 2.1}\right)=\frac{1}{12.4 \cdot 20}\left(1+\frac{1}{4.2}\right)=\frac{13}{2604} \approx 0.005 .
$$

Thus, two decimal places will be correct.
Now let us do the calculations with one reserve decimal:
$\log (10.3+\sqrt{44}) \approx \log 124=1.093, \ln (103+\sqrt{4.4}) \approx 1.093 \cdot 2.303=2.517$. And we efel the answer: 252
8°. Establishing admissible errors of approximate numbers for a given error in the result of operations on them. Arplying the formulas of 7° for the quantities ΔS or δS given us and considering all particular differentials $\left|\frac{\partial f}{\partial a_{k}}\right| \Delta a_{k}$ or the quantities $\left|\frac{\partial f}{\partial a_{k}}\right| \frac{\Delta a_{k}}{|\eta|}$ equal, we calculate the admissible absolute errors $\Delta a_{1}, \ldots, \Delta a_{n}, \ldots$ of the approximate numbers $a_{1}, \ldots, a_{n}, \ldots$ that enter into the operations (the principle of equal effects).

It should be pointed out that somelimes when calculating the admissible errors of the arguments of a function it is not advantageous to use the principle of equal effects, since the latter may make demands that are practically unfulfilable In these cases it is advisable to make a reasonable redistribution of errors (if this is possible) so that the overall total error does not exceed a specified quantity. Thus, strictly speaking, the problem thus posed is indeterminate.

Example 5. The volume of a "cylindrical segment", that is, a solid cut off a circular cylinder by a plane passing through the diameter of the base (equal to $2 R$) at an angle α. to the base, is computed from the formula $V=\frac{2}{3} R^{2} \tan \alpha$. To what degree of accuracy should we measure the radius
$R \approx 60 \mathrm{~cm}$ and the angle of inclination α so that the volume of the cylindrical segment is found to an accuracy up to 1% ?

Solution. If $\Delta V, \Delta R$ and $\Delta \alpha$ are the limiting absolute errors of the quantities V, R and α, then the limiting relative error of the volume V that we are calculating is

$$
\delta=\frac{3 \Delta R}{R}+\frac{2 \Delta \alpha}{\sin 2 a} \leqslant \frac{1}{100} .
$$

We assume $\frac{3 \Delta R}{R} \leqslant \frac{1}{200}$ and $\frac{2 \Delta \alpha}{\sin 2 \alpha} \leqslant \frac{1}{200}$. Whence

$$
\begin{gathered}
\Delta R \leqslant \frac{R}{600} \approx \frac{60 \mathrm{~cm}}{600}=1 \mathrm{~mm} \\
\Delta \alpha \leqslant \frac{\sin 2 \alpha}{400} \leqslant \frac{1}{400} \text { radian } \approx 9^{\prime}
\end{gathered}
$$

Thus, we ensure the desired accuracy in the answer to 1% if we measure the radius to 1 mm and the angle of inclination a to 9^{\prime},
3108. Measurements yielded the following approximate numbers that are correct in the broad meaning to the number of decimal places indicated:
a) $12^{\circ} 07^{\prime} 14^{\prime \prime}$; b) 38.5 cm ; c) 62.215 kg .

Compute their absolute and relative errors.
3109. Compute the absolute and relative errors of the following approximate numbers which are correct in the narrow sense to the decimal places indicated:
a) 241.7 ; b) 0.035 ; c) 3.14 .
3110. Determine the number of correct (in the narrow sense) decimals and write the approximate numbers:
a) 48.361 for an accuracy of 1%;
b) 14.9360 for an accuracy of 1%;
c) 592.8 for an accuracy of 2%.
3111. Add the approximate numbers, which are correct to the indicated decimals:
a) $25.386+0.49+3.10+0.5$;
b) $1.2 \cdot 10^{2}+41.72+0.09$;
c) $38.1+2.0+3.124$.
3112. Subtract the approximate numbers, which are correct to the indicated decimals:
a) $148.1-63.871$; b) $29.72-11.25$; c) $34.22-34.21$.

3113*. Find the difference of the areas of two squares whose measured sides are 15.28 cm and 15.22 cm (accurate to 0.05 mm).
3114. Find the product of the approximate numbers, which are correct to the indicated decimals:
a) $3.49 \cdot 8.6$; b) $25.1 \cdot 1.743$; c) $0.02 \cdot 16.5$. Indicate the possible limits of the results.
3115. The sides of a rectangle are 4.02 and 4.96 m (accurate to 1 cm). Compute the area of the rectangle.
3116. Find the quotient of the approximate numbers, which are correct to the indicated decimals:
a) $5.684: 5.032$; b) $0.144: 1.2$; c) $216: 4$.
3117. The legs of a right triangle are 12.10 cm and 25.21 cm (accurate to 0.01 cm). Compute the tangent of the angle opposite the first leg.
3118. Compute the indicated powers of the approximate numbers (the bases are correct to the indicated decimals):
а) 0.4158^{2}; b) 65.2^{3}; c) 1.5^{2}.
3119. The side of a square is 45.3 cm (accurate to 1 mm). Find the area.
3120. Compute the values of the roots (the radicands are correct to the indicated decimals):
a) $\sqrt{2.715}$; b) $\sqrt[3]{65.2}$; c) $\sqrt{\prime} \overline{81.1}$.
3121. The radii of the bases and the generatrix of a truncated cone are $R=23.64 \mathrm{~cm} \pm 0.01 \mathrm{~cm} ; r=17.31 \mathrm{~cm} \pm 0.01 \mathrm{~cm} ; l=$ $=10.21 \mathrm{~cm} \pm 0.01 \mathrm{~cm} ; \pi=3.14$. Use these data to compute the total surface of the truncated cone. Evaluate the absolute and relative errors of the result.
3122. The hypotenuse of a right triangle is $15.4 \mathrm{~cm} \pm 0.1 \mathrm{~cm}$; one of the legs is $6.8 \mathrm{~cm} \pm 0.1 \mathrm{~cm}$. To what degree of accuracy can we determine the second leg and the adjacent acute angle? Find their values.
3123. Calculate the specific weight of aluminium if an aluminium cylinder of diameter 2 cm and altitude 11 cm weighs 93.4 gm . The relative error in measuring the lengths is 0.01 , while the relative error in weighing is 0.001 .
3124. Compute the current if the electromotive force is equal to 221 volts ± 1 volt and the resistance is 809 ohms ± 1 ohm.
3125. The period of oscillation of a pendulum of length l is equal to

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

where g is the acceleration of gravity. To what degree of accuracy do we have to measure the length of the pendulum, whose period is close to 2 sec , in order to obtain its oscillation period with a relative error of 0.5% ? How accurate must the numbers π and g be taken?
3126. It is required to measure, to within 1%, the lateral surface of a truncated cone whose base radii are 2 m and 1 m , and the generatrix is 5 m (approximately). To what degree of
accuracy do we have to measure the radii and the generatrix and to how many decimal places do we have to take the number π ?
3127. To determine Young's modulus for the bending of a rod of rectangular cross-section we use the formula

$$
E=\frac{1}{4} \cdot \frac{l^{s} P}{d^{3} b s}
$$

where l is the rod length, b and d are the basis and altitude of the cross-section of the rod, s is the sag, and P the load. To what degree of accuracy do we have to measure the length l and the sag s so that the error E should not exceed 5.5%, provided that the load P is known to 0.1%, and the quantities d and b are known to an accuracy of $1 \%, l \approx 50 \mathrm{~cm}, s \approx 2.5 \mathrm{~cm}$?

Sec. 2. Interpolation of Functions

1^{0}. Newton's interpolation formula. Let $x_{0}, x_{1}, \ldots, x_{n}$ be the tabular values of an argument, the difference of which $h=\Delta x_{i}\left(\Delta x_{i}=x_{i+1}-x_{i} ; i=0,1\right.$, $\ldots, n-1$) is constant (table interval) and $y_{0}, y_{1}, \quad, y_{n}$ are the corresponding values of the function y Then the value of the function y for an intermedıate value of the argument x is approximately given by Newton's inter. polation formula

$$
\begin{equation*}
y=y_{0}+q \cdot \Delta y_{0}+\frac{q(q-1)}{2!} \Delta^{2} y_{0}+\ldots+\frac{q(q-1) \ldots(q-n+1)}{n!} \Delta^{n} y_{0} \tag{1}
\end{equation*}
$$

where $q=\frac{x-x_{0}}{h}$ and $\Delta y_{0}=y_{1}-y_{0}, \Delta^{2} y_{0}=\Delta y_{1}-\Delta y_{0}, \ldots$ are successive finite diflerences of the furction y. When $x=x_{i}(t=0,1, \ldots, n)$, the nolynomial (1) takes on, accordingly, the tabular values $y_{i}(t=0,1, \ldots n)$. As particular cases of Newton's formula we obtain: for $n=1$, linear interpolcition; for $n=2$, quadratic interpolation. To simplify the use of Newton's formula, it is advisabie first to set up a table of finite differences.

If $y=f(x)$ is a polynomial of degree n, then

$$
\Delta^{n} y_{i}=\text { const and } \Delta^{n+1} y_{i}=0
$$

and, hence, formula (1) is exact
In the general case, if $f(x)$ has a continuous derivative $f^{(n+1)}(x)$ on the interval $\{a, b]$, which includes the points $x_{0}, x_{1}, \ldots, x_{n}$ and x, then the error of formula (1) is

$$
\begin{align*}
R_{n}(x) & =y-\sum_{i=0}^{n} \frac{q(q-1) \ldots(q-i+1)}{11} \Delta^{\prime} y_{0}= \\
& =h^{n+1} \frac{q(q-1) \ldots(q-n)}{(n+1)^{1}} f^{(n+1)}(\xi) \tag{2}
\end{align*}
$$

where ξ is some intermediate value between $x_{i}(t=0,1, \ldots, n)$ and x. For practical use, the following approximate formula is more convenient:

$$
R_{n}(x) \approx \frac{\Delta^{n+1} \mu_{0}}{(n+1)!} q(q-1) \ldots(q-n) .
$$

If the number n may be any number, then it is best fo choose it so that the difference $\Delta^{n+1} y_{0} \approx 0$ within the limits of the given accuracy; in other words. the difierences $\Delta^{n} y_{0}$ should be constant to within the given places of decimals

Example 1. Find $\sin 26^{\circ} 15^{\prime}$ using the tabular data $\sin 26^{\circ}=0,43837$, $\sin 27^{\circ}=0.45399$, sill $28^{\circ}-0.46947$.

Solution. We set up the table

1	x_{1}	y_{1}	Δy_{1}	$\Delta^{2} y_{1}$
0	26°	0	42837	1562
1	27°	0	-14	
2	28°	0	46999	1548

Here, $h=60^{\prime}, q=\frac{26^{\circ} 15^{\prime}-26^{\circ}}{60^{\prime}}=\frac{1}{4}$.
Applying formula (1) and using the first horizontal line of the table, we have

$$
\sin 26^{\circ} 15^{\prime}=0.43837+\frac{1}{4} 0.01562+\frac{\frac{1}{4}\left(\frac{1}{4}-1\right)}{2^{\prime}} \cdot(-0.00014)=0.44229 .
$$

Let us evaluate the error R_{2} Using formula (2) and taking into account that if $y=\sin x$, then $\left|y^{|n|}\right| \leqslant 1$, we will have:

$$
\left|R_{2}\right| \leqslant \frac{\frac{1}{4}\left(\frac{1}{4}-1\right)\left(\frac{1}{4}-2\right)}{31}\left(\frac{\pi}{180}\right)^{s}=\frac{7}{128} \cdot \frac{1}{57.33^{3}} \approx \frac{1}{4} \cdot 10^{-1} .
$$

Thus, all the decimals of $\sin 26^{\circ} 15^{\prime}$ are correct.
Using Newton's formula, it is alsc possible, from a given intermediate value of the function y, to find the correspoading value of the argument x (inverse interpolation). To do this, first determine the corresponding value \boldsymbol{q} by the method of successive approximation, putting

$$
\begin{gathered}
q^{(0)}=\frac{y-y_{0}}{\Delta y_{0}} \\
q^{(t+1)}=q^{(0)}-\frac{q^{(1)}\left(q^{(1)}-1\right)}{2!} \cdot \frac{\Lambda^{2} y_{0}}{\Delta y_{0}}-\ldots-\frac{q^{(1)}\left(q^{(1)}-1\right) \ldots\left(q^{(1)}-n+1\right)}{n!} \frac{\Delta^{n} y_{0}}{\Delta y_{0}} \\
(z=0,1,2 \ldots) .
\end{gathered}
$$

and

Here, for q we take the common value (to the given accuracyl) of two successive approximations $q^{(m)}=q^{(m+1)}$. Whence $x=x_{0}+q \cdot h$.

Example 2. Using the table

x	$u=\sin 1 x$	Δu	$\Delta^{2} u$
22	4.457	1.009	0.220
24	5.466	1229	
26	6.695		

approximate the root of the equation $\sinh x=5$.

Solution. Taking $y_{0}=4.457$, we have

$$
\begin{gathered}
q^{(0)}=\frac{5-4.457}{1.009}=\frac{0.543}{1.009}=0.538 ; \\
\begin{array}{r}
q^{(1)}=q^{(0)}+\frac{q^{(0)}\left(1-q^{(0)}\right)}{2} \cdot \frac{\Delta^{2} y_{0}}{\Delta y_{0}}=0.538+\frac{0.538 .0 .462}{2} \cdot \frac{0.220}{1.009}= \\
\\
=0.538+0.027=0.565 ; \\
q^{(2)}=0.538+\frac{0.565 \cdot 0.435}{2} \cdot \frac{0.220}{1.009}=0.538+0.027=0.565 .
\end{array}
\end{gathered}
$$

We can thus take

$$
x=2.2+0.565 \cdot 0.2=2.2+0.113=2.313 .
$$

2°. Lagrange's interpolation formula. In the general case, a polynomial of degree n, which for $x=x_{i}$ takes on given values $y_{i}(i=0,1, \ldots, n)$, is given by the Lagrange interpolation formula

$$
\begin{aligned}
& y=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} y_{1}+\ldots \\
& \quad \ldots+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \ldots\left(x-x_{n}\right)}{\left(x_{k}-x_{0}\right)\left(x_{k}-x_{1}\right) \ldots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \ldots\left(x_{k}-x_{n}\right)} y_{k}+\ldots \\
& \ldots+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)} y_{n} .
\end{aligned}
$$

3128. Given a table of the values of x and y :

x	1	2	3	4	5	6
y	3	10	15	12	9	5

Set up a table of the finite differences of the function y.
3129. Set up a table of differences of the function $y=x^{3}$ -$-5 x^{2}+x-1$ for the values $x=1,3,5,7,9,11$. Make sure that all the finite differences of order 3 are equal.
3130^{*}. Utilizing the constancy of fourth-order differences, set up a table of differences of the function $y=x^{4}-10 x^{2}+2 x^{2}+3 x$ for integral values of x lying in the range $1 \leqslant x \leqslant 10$.
3131. Given the table

$$
\begin{aligned}
& \log 1=0.000, \\
& \log 2=0.301, \\
& \log 3=0.477, \\
& \log 4=0.602, \\
& \log 5=0.699 .
\end{aligned}
$$

Use linear interpolation to compute the numbers: $\log 1.7, \log 2.5$, $\log 3.1$, and $\log 4.6$.
3132. Given the table

$$
\begin{array}{ll}
\sin 10^{\circ}=0.1736, & \sin 13^{\circ}=0.2250, \\
\sin 11^{\circ}=0.1908, & \sin 14^{\circ}=0.2419, \\
\sin 12^{\circ}=0.2079, & \sin 15^{\circ}=0.2588 .
\end{array}
$$

Fill in the table by computing (with Newton's formula, for $n=2$) the values of the sine every half degree.
3133. Form Newton's interpolation polynomial for a function represented by the table

x	0	1	2	3	4
y	1	4	15	40	85

3134*. Form Newton's interpolation polynomial for a function represented by the table

x	2	4	6	8	10
y	3	11	27	50	83

Find y for $x=5.5$. For what x will $y=20$?
3135. A function is given by the table

x	-2	1	2	4
y	25	-8	-15	-23

Form Lagrange's interpolation polynomial and find the value of y for $x=0$.
3136. Experiment has yielded the contraction of a spring ($x \mathrm{~mm}$) as a function of the load ($P \mathrm{~kg}$) carried by the spring:

x	5	10	15	20	25	30	35	40
P	49	105	172	253	352	473	619	793

Find the load that yields a contraction of the spring by 14 mm .
3137. Given a table of the quantities x and y

x	0	1	3	4	5
y	1	-3	25	129	381

Compute the values of y for $x=0.5$ and for $x=2$: a) by means of linear interpolation; b) by Lagrange's formula.

Sec. 3. Computing the Real Roots of Equations

1^{1}. Establishing initial approximations of roots. The approximation of the roots of a given equation

$$
\begin{equation*}
f(x)=0 \tag{1}
\end{equation*}
$$

consists of two stages: 1) separating the roots, that is, establishing the intervals (as small as possible) within which lies one and only one root of equation (1); 2) computing the roots to a given degree of accuracy

If a function $f(\lambda)$ is defined and continuous on an interval $[a, b]$ and $f(a) \cdot f(b)<0$, then on $[a, b]$ there is at least one root ξ of equation (1). This root will definitely be the only one if $f^{\prime}(x)>0$ or $f^{\prime}(x)<0$ when $a<x<b$.

In approximating the root ξ it is advisable to use millimetre paper and construct a graph of the function $y=f(x)$. The abscissas of the points of intersection of the graph with the x-axis are the roo's of the equation $f(x)=0$. It is sometimes convenient to replace the given equation with an equivalent equation $\varphi(x)=\Psi(x)$. Then the roots of the equation are found as the abscissas of points of intersection of the granhs $y=\varphi(x)$ and $y=\psi(x)$.
2°. The rule of proportionate parts (chord method). If on an interval $[a, b]$ there is a unique root ξ of the equation $f(x)=0$, where the function $f(x)$ is continuous on $[a, b]$, then by replating the curve $y=f(x)$ by a chord passing through the points $[a, f(a)]$ and $[b, f(b)]$, we obtain the first approximation of the root

$$
\begin{equation*}
c_{1}=a-\frac{f(a)}{f(b)-f(a)}(b-a) . \tag{2}
\end{equation*}
$$

To obtain a second approximation c_{2}, we apply formula (2) to that one of the intervals $\left[a_{1} c_{3}\right]$ or $\left[c_{1}, b\right]$ at the ends of which the function $f(x)$ has values of opposite sign. The succeeding approximations are constructed in the same manner. The sequence of numbers $c_{n}(n=1,2, \ldots)$ converges to the root ξ, that is,

$$
\lim _{n \rightarrow \infty} c_{n}=\xi .
$$

Generally speaking, we should continue to calculate the approximations c_{4}, c_{2}, \ldots until the decimals retained in the arswer cease to change (in accord with the specified degree of accuracy!); for intermediate calculations, take one or two reserve decimals This is a general remark.

If the function $f(x)$ has a nonzero continuous derivative $f^{\prime}(x)$ on the interval [a,b], then to evaluate the absolute error of the approximate root
c_{n}, we can make use of the formula

$$
\left|\xi-c_{n}\right| \leqslant \frac{\left|f\left(c_{n}\right)\right|}{\mu}
$$

where $\mu=\min _{a \leqslant x \leqslant b}\left|f^{\prime}(x)\right|$.
3. Newton's method (method of tangents). If $f^{\prime}(x) \neq 0$ and $f^{\prime \prime}(x) \neq 0$ for $a \leqslant x \leqslant b$, where $f(a) f(b)<0, f(a) f^{\prime \prime}(a)>0$, then the successive approximations $x_{n}(n=0,1,2, \ldots)$ to the root ξ of an equation $f(x)=0$ are computed from the formulas

$$
\begin{equation*}
x_{0}=a, x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)} \quad(n=1,2, \ldots) . \tag{3}
\end{equation*}
$$

Under the given assumptions, the sequence $x_{n}(n=1,2, \ldots)$ is monotonic and

$$
\lim _{n \rightarrow \infty} x_{n}=\xi .
$$

To evaluate the errors we can use the formula

$$
\left|x_{n}-\xi\right| \leqslant \frac{\left|f\left(x_{n}\right)\right|}{\mu},
$$

where $\mu=\min _{a \leqslant x \leqslant b}\left|f^{\prime}(x)\right|$.
For practical purposes it is more convenient to use the simpler formulas

$$
x_{0}=a, x_{n}=x_{n-1}-\alpha f\left(x_{n-1}\right) \quad(n=1,2, \ldots),
$$

where $\alpha=\frac{1}{f^{\prime}(a)}$, which yield the same accuracy as formulas (3).
If $f(b) f^{\prime \prime}(b)>0$, then in formulas (3) and (3^{\prime}) we should put $x_{0}=b$.
4°. Iterative method. Let the given equation be reduced to the form

$$
\begin{equation*}
x=\varphi(x), \tag{4}
\end{equation*}
$$

where $\left|\psi^{\prime}(x)\right| \leqslant r<1$ (r is constant) for $a \leqslant x \leqslant b$. Proceeding from the initial value x_{0}, which belongs to the interval $[a, b]$, we build a sequence of numbers x_{1}, x_{2}, \ldots according to the following law:

$$
\begin{equation*}
x_{1}=\varphi\left(x_{0}\right), x_{2}=\varphi\left(x_{1}\right), \ldots, x_{n}=\varphi\left(x_{n-1}\right), \ldots \tag{5}
\end{equation*}
$$

If $a \leqslant x_{n} \leqslant b(n=1,2, \ldots)$, then the limit

$$
\xi=\lim _{n \rightarrow \infty} x_{n}
$$

is the only root of equation (4) on the interval $[a, b]$; that is, x_{n} are successive approximations to the root ξ.

The evaluation of the absolute error of the nth approximation to x_{n} is given by the formula

$$
\left|\xi-x_{n}\right| \leqslant \frac{\left|x_{n+1}-x_{n}\right|}{1-r}
$$

Therefore, if x_{n} and x_{n+1} coincide to within ε, then the limiting absolute error for x_{n} will be $\frac{\varepsilon}{1-r}$.

In order to transform equation $f(x)=0$ to (4), we replace the latter with an equivalent equation

$$
x=x-\lambda f(x),
$$

where the number $\lambda \neq 0$ is chosen so that the function $\frac{d}{d x}[x-\lambda f(x)]=1-\lambda f^{\prime}(x)$
should be small in absolute value in the neighbourhood of the point x_{0} ffor example, we can put $1-\lambda f^{\prime}\left(x_{0}\right)=0$].

Example 1. Reduce the equation $2 x-\ln x-4=0$ to the form (4) for the initial approximation to the root $x_{0}=2.5$.

Solution. Here, $f(x)=2 x-\ln x-4 ; f^{\prime}(x)=2-\frac{1}{x}$. We write the equivalent equation $x=x-\lambda(2 x-\ln x-4)$ and take 0.5 as one of the suitable values of λ; this number is close to the root of the equation $\left|1-\lambda\left(2-\frac{1}{x}\right)\right|_{x=2.5}=0$, that is, close to $\frac{1}{1.6} \approx 0.6$.

The initial equation is reduced to the form
or

$$
x=x-0.5(2 x-\ln x-4)
$$

$$
x=2+\frac{1}{2} \ln x
$$

Example 2. Compute, to two decimal places, the roof ξ of the preceeding equation that lies between 2 and 3 .

Computing the root by the iterative method. We make use of the result of Example 1, putting $x_{0}=2.5$. We carry out the calculations using formulas (5) with one reserve decimal.

$$
\begin{aligned}
& x_{1}=2+\frac{1}{2} \ln 2.5 \approx 2.458 \\
& x_{2}=2+\frac{1}{2} \ln 2.458 \approx 2.450 \\
& x_{3}=2+\frac{1}{2} \ln 2.450 \approx 2.448 \\
& x_{4}=2+\frac{1}{2} \ln 2.448 \approx 2.448
\end{aligned}
$$

And so $=245$ (we can stop here since the third decimal place has become fixed)

Let us now evaluate the error. Here,

$$
\varphi(x)=2+\frac{1}{2} \ln x \text { and } \varphi^{\prime}(x)=\frac{1}{2 x} .
$$

Considering that all approximations to x_{n} lie in the interval [2.4, 2.5], we get

$$
r=\max \left|\varphi^{\prime}(x)\right|=\frac{1}{2 \cdot 2.4}=0.21
$$

Hence, the limiting absolute error in the approximation to x_{3} is, by virtue of the remark made above,

$$
\Delta=\frac{0.001}{1-0.21}=0.0012 \approx 0.001
$$

Thus, the exact root ξ of the equation lies within the limits

$$
2447<\xi<2.449
$$

we can take $\xi \approx 2.45$, and all the decimals of this approximate number will be correct in the narrow sense.

Calculating the root by Newton's method. Here,

$$
f(x)=2 x-\ln x-4, \quad f^{\prime}(x)=2-\frac{1}{x}, \quad f^{\prime \prime}(x)=\frac{1}{x^{2}}
$$

On the interval $2 \leqslant x \leqslant 3$ we have: $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0 ; f(2) f(3)<0$; $f(3) f^{\prime \prime}(3)>0$. Hence, the conditions of 3° for $x_{0}=3$ are fulfilled.

We take

$$
\alpha=\left(2-\frac{1}{3}\right)^{-1}=0.6
$$

We carry out the calculations using formulas (3^{\prime}) with two reserve decimals:

$$
\begin{aligned}
& x_{1}=3-0.6(2.3-\ln 3-4)=24592 ; \\
& x_{2}=2.4592-0.6(2 \cdot 24592-\ln 24592-4)=24481 ; \\
& x_{3}=2.4481-0.6(2 \cdot 2.4481-\ln 2.4481-4)=2.4477 ; \\
& x_{4}=2.4477-0.6(2.24477-\ln 2.4477-4)=24475 .
\end{aligned}
$$

At this stage we stop the calculations, since the third decimal place does not change any more. The answer is: the rooi,$\xi=2.45$. We omit the evaluation of the error
5°. The case of a system of two equations. Let it be required to calculate the real roots of a system of two equations in two unknowns (to a given degree of accuracy):

$$
\left\{\begin{array}{l}
f(x, y)=0 \tag{b}\\
\varphi(x, y)=0
\end{array}\right.
$$

and let there be an initial approximation to one of the solutions (ξ, η) of this system $x=x_{0}, y=y_{0}$.

This initial approximation may be obtained, for example, graphically, by plotting (in the same Cartesian coordinate system) the curves $f(x, y)=0$ and $\varphi(x, y)=0$ and by determining the coordinates of the points of intersection of these curves.
a) Newton's method. Let us suppose that the functional determinant

$$
I=\frac{\partial(f, \varphi)}{\partial(x, y)}
$$

does not vanish near the initial approximation $x=x_{0}, y=y_{0}$. Then by Newton's method the first approximate solution to the system (6) has the form $x_{1}=x_{0}+\alpha_{0}, y_{1}=y_{0}+\beta_{0}$, where α_{0}, β_{0} are the solution of the system of two. linear equations

$$
\left\{\begin{array}{l}
1\left(x_{0}, y_{0}\right)+\alpha_{0} f_{x}^{\prime}\left(x_{0}, y_{0}\right)+\beta_{0} f_{y}^{\prime}\left(x_{0}, y_{0}\right)=0 \\
\varphi\left(x_{0}, y_{0}\right)+\alpha_{0} \varphi_{x}^{\prime}\left(x_{0}, y_{0}\right)+\beta_{0} \varphi_{y}^{\prime}\left(x_{0}, y_{0}\right)=0
\end{array}\right.
$$

The second approximation is obtained in the very same way:

$$
x_{2}=x_{1}+\alpha_{1}, \quad y_{2}=y_{1}+\beta_{1},
$$

where α_{1}, β_{1} are the solution of the system of linear equations

$$
\left\{\begin{array}{l}
f\left(x_{1}, y_{1}\right)+\alpha_{1} f_{x}^{\prime}\left(x_{1}, y_{1}\right)+\beta_{1} f_{y}^{\prime}\left(x_{1}, y_{1}\right)=0 \\
\varphi\left(x_{1}, y_{1}\right)+\alpha_{1} \varphi_{x}^{\prime}\left(x_{1}, y_{1}\right)+\beta_{1} \varphi_{y}^{\prime}\left(x_{1}, y_{1}\right)=0 .
\end{array}\right.
$$

Similarly we obtain the third and succeeding approximations.
b) Iterative method. We can also apply the iterative method to solving the system of equations (6), by transforming this system to an equivalent one

$$
\left\{\begin{array}{l}
x=F(x, y), \tag{7}\\
y=\Phi(x, y)
\end{array}\right.
$$

and assuming that

$$
\begin{equation*}
\left|F_{x}^{\prime}(x, y)\right|+\left|\Phi_{x}^{\prime}(x, y)\right| \leqslant r<1 ;\left|F_{y}^{\prime}(x, y)\right|+\left|\Phi_{y}^{\prime}(x, y)\right| \leqslant r<1 \tag{8}
\end{equation*}
$$

in some two-dimensional neighbourhood U of the initial approximation $\left(x_{0}, y_{0}\right)$, which neighbourhood also contains the exact solution (ξ, η) of the system.

The sequence of approximations (x_{n}, y_{n}) $(n=1,2, \ldots)$, which converges to the solution of the system (7) or, what is the same thing, to the solution of (6), is constructed according to the following law:

$$
\begin{gathered}
x_{1}=F\left(x_{0}, y_{0}\right), \quad y_{1}=\Phi\left(x_{0}, y_{0}\right), \\
x_{2}=F\left(x_{1}, y_{1}\right), y_{2}=\Phi\left(x_{1}, y_{1}\right) \\
x_{2}=F\left(x_{2}, y_{2}\right), \quad y_{3}=\Phi\left(x_{2}, y_{2}\right), \\
\ldots . . .
\end{gathered}
$$

If all $\left(x_{n}, y_{n}\right)$ belong to U, then $\lim _{n \rightarrow \infty} x_{n}=\xi, \lim _{n \rightarrow \infty} y_{n}=\eta$.
The following technique is advised for transforming the system of equations (6) to (7) with condition (8) observed. We consider the system of equations

$$
\left\{\begin{array}{l}
\alpha f(x, y)+\beta \varphi(x, y)=0, \\
\gamma f(x, y)+\delta \varphi(x, y)=0,
\end{array}\right.
$$

which is equivalent to (6) provided that $\left|\begin{array}{ll}\alpha, & \beta \\ \gamma, \delta\end{array}\right| \neq 0$. Rewrite it in the form

$$
\begin{aligned}
& x=x+\alpha f(x, y)+\beta \varphi(x, y) \equiv F(x, y) \\
& y=y+\gamma f(x, y)+\delta \varphi(x, y)=\Phi(x, y) .
\end{aligned}
$$

Chnose the parameters $\alpha, \beta, \gamma, \delta$ such that the partial derivatives of the functions $F(x, y)$ and $\Phi(x, y)$ will be equal or close to zero in the initial approximation; in other words, we find u, β, γ, δ as approximate solutions of the system of equations

$$
\left\{\begin{array}{r}
1+\alpha f_{x}^{\prime}\left(x_{0}, y_{0}\right)+\beta \varphi_{x}^{\prime}\left(x_{0}, y_{0}\right)=0, \\
\alpha f_{4}^{\prime}\left(x_{0}, y_{0}\right)+\beta \varphi_{y}^{\prime}\left(x_{0}, y_{0}\right)=0 \\
\gamma f_{x}^{\prime}\left(x_{0}, y_{0}\right)+\delta \varphi_{x}^{\prime}\left(x_{0}, y_{0}\right)=0, \\
1+\gamma f_{\prime \prime}^{\prime}\left(x_{0}, y_{0}\right)+\delta \varphi_{y \prime}\left(x_{0}, y_{0}\right)=0 .
\end{array}\right.
$$

Condition (8) will be observed in such a choice of parameters $\alpha, \beta, \gamma, \delta$ on the assumption that the partial derivatives of the functions $f(x, y)$ and $\varphi(\lambda, y)$ do not vary very rapidly in the nemghbourhood of the initial approximation (x_{0}, y_{0}).

Example 3. Reduce to the form (7) the system of equations

$$
\left\{\begin{array}{l}
x^{2}+y^{2}-1=0, \\
x^{3}-4=0
\end{array}\right.
$$

given the initial approximation to the root $x_{0}=0.8, y_{0}=0.55$.

Solution. Here, $f(x, y)=x^{2}+y^{2}-1, \varphi(x, y)=x^{2}-y_{;} f_{x}^{\prime}\left(x_{0}, y_{0}\right)=1.6$, $f_{y}^{\prime}\left(x_{0}, y_{0}\right)=1.1 ; \varphi_{x}^{\prime}\left(x_{0}, y_{0}\right)=1.92, \varphi_{y}^{\prime}\left(x_{0}, y_{0}\right)=-1$.

Write down the system (that is equivalent to the initial one)
in the form

$$
\left\{\begin{array}{l}
\alpha\left(x^{2}+y^{2}-1\right)+\beta\left(x^{3}-y\right)=0, \\
\gamma\left(x^{2}+y^{2}-1\right)+\delta\left(x^{2}-y\right)=0
\end{array} \quad\left(\left|\begin{array}{cc}
\alpha, & \beta \\
\gamma, & \delta
\end{array}\right| \neq 0\right)\right.
$$

$$
\begin{aligned}
& x=x+\alpha\left(x^{2}+y^{2}-1\right)+\beta\left(x^{3}-y\right), \\
& y=y+\gamma\left(x^{2}+y^{2}-1\right)+\delta\left(x^{3}-y\right) .
\end{aligned}
$$

For suitable numerical values of α, β, γ and δ choose the solution of the system of equations

$$
\left\{\begin{array}{c}
1+1.6 \alpha+1.92 \beta=0, \\
1.1 \alpha-\beta=0 \\
1.6 \gamma+1.92 S=0 \\
1+1.1 \gamma-\delta=0
\end{array}\right.
$$

i. e., we put $\alpha \approx-0.3, \beta \approx-0.3, \gamma \approx-0.5, \delta \approx 0.4$.

Then the system of equations

$$
\left\{\begin{array}{l}
x=x-0.3\left(x^{2}+y^{2}-1\right)-0.3\left(x^{3}-y\right), \\
y=y-0.5\left(x^{2}+y^{2}-1\right)+04\left(x^{3}-y\right),
\end{array}\right.
$$

which is equivalent to the initial system, has the form (7); and in a sufficiently small neighbourhood of the point (x_{0}, y_{0}) condition (8) will be fulfilled.

Isolate the real roots of the equations by trial and error, and by means of the rule of proportional parts compute them to two decimal places.
3138. $x^{3}-x+1=0$.
3139. $x^{4}+05 x-1.55=0$.
3140. $x^{3}-4 x-1=0$.

Proceeding from the graphically found initial approximations, use Newton's method to compute the real roots of the equations to two decimal places:
3141. $x^{3}-2 x-5=0$.
3143. $2^{x}=4 x$.
3142. $2 x-\ln x-4=0$.
3144. $\log x=\frac{1}{x}$.

Utilizing the graphically found initial approximations, use the iterative method to compute the real roots of the equations to two decimal places:
3145. $x^{3}-5 x+0.1=0 . \quad$ 3147. $x^{3}-x-2=0$.
3146. $4 x=\cos x$.

Find graphically the initial approximations and compute the real roots of the equations and systems to two decimals:
3148. $x^{3}-3 x+1=0$.
3149. $x^{3}-2 x^{2}+3 x-5=0$.
3150. $x^{4}+x^{2}-2 x-2=0$.
3151. $x \cdot \ln x-14=0$.
3152. $x^{3}+3 x-0.5=0$.
3153. $4 x-7 \sin x=0$.
3154. $x^{x}+2 x-6=0$.
3155. $e^{x}+e^{-3 x}-4=0$.
3157. $\left\{\begin{array}{l}x^{2}+y-4=0, \\ y-\log x-1=0 .\end{array}\right.$
3156. $\left\{\begin{array}{l}x^{2}+y^{2}-1=0, \\ x^{2}-y=0 .\end{array}\right.$
3158. Compute to three decimals the smallest positive root of the equation $\tan x=x$.
3159. Compute the roots of the equation $x \cdot \tanh x=1$ to four decimal places.

Sec. 4. Numerical Integration of Functions

1°. Trapezoidal formula. For the approximate evaluation of the integral

$$
\int_{a}^{b} f(x) d x
$$

[$f(x)$ is a function continuous on $[a, b]$] we divide the interval of integration $[a, b]$ into n equal parts and choose the interval of calculations $h=\frac{b-a}{n}$. Let $x_{i}=x_{0}+i h\left(x_{0}=a, x_{n}=b, i=0,1,2, \ldots, n\right)$ be the abscissas of the partition points, and let $y_{i}=f\left(x_{i}\right)$ be the corresponding values of the integrand $y=f(x)$. Then the trapezoidal formula yields

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx h\left(\frac{y_{0}+y_{n}}{2}+y_{1}+y_{2}+\ldots+y_{n-1}\right) \tag{1}
\end{equation*}
$$

with an absolute error of

$$
R_{n} \leqslant \frac{h^{2}}{12}(b-a) \cdot M_{2},
$$

where $M_{2}=\max \left|f^{\prime \prime}(x)\right|$ when $a \leqslant x \leqslant b$.
To attain the specified accuracy $\&$ when evaluating the integral, the interval h is found from the inequality

$$
\begin{equation*}
h^{2} \leqslant \frac{12 e}{(b-a) M_{2}} . \tag{2}
\end{equation*}
$$

That is, h must be of the order of $\sqrt{\bar{\varepsilon}}$. The value of h obtained is rounded off to the smaller value so that

$$
\frac{b-a}{h}=n
$$

should be an integer; this is what gives us the number of partitions n. Having established h and n from (1), we compute the integral by taking the values of the integrand with one or two reserve decimal places.
$\mathbf{2}^{\circ}$. Simpson's formula (parabolic formula). If n is an even number, then in the notation of 1° Simpson's formula
$\int_{a}^{b} f(x) d x \approx \frac{h}{3}\left[\left(y_{0}+y_{n}\right)+4\left(y_{1}+y_{3}+\ldots+y_{n-1}\right)+\right.$
+2 $\left.+2\left(y_{2}+y_{4}+\ldots+y_{n-2}\right)\right]$
holds with an absolute error of

$$
\begin{equation*}
R_{n} \leqslant \frac{h^{4}}{180}(b-a) M_{4}, \tag{4}
\end{equation*}
$$

where $M_{4}=\max \left|f^{I V}(x)\right|$ when $a \leqslant x \leqslant b$.
To ensure the specified accuracy ε when evaluating the Integral, the interval of calculations h is determined from the inequality

$$
\begin{equation*}
\frac{h^{4}}{180}(b-a) M_{4} \leqslant e . \tag{5}
\end{equation*}
$$

That is, the interval h is of the order $\sqrt[4]{8}$. The number h is rounded off to the smaller value so that $n=\frac{b-a}{n}$ is an even integer.

Remark. Since, generally speaking, it is difficult to determine the interyal h and the number n associated with it from the inequalities (2) and (5), in practical work h is determined in the form of a rough estimate. Then, after the result is obtained, the number n is doubled; that is, h is halved. If the new result coincides with the earlier one to the number of decimal places that we retain, then the calculations are stopped, otherwise the procedure is repeated, etc.

For an approximate calculation of the absolute error R of Simpson's quadrature formula (3), use can also be made of the Runge principle, according to which

$$
R=\frac{|\mathbf{\Sigma}-\overline{\mathbf{\Sigma}}|}{15}
$$

where $\mathbf{\Sigma}$ and $\overline{\mathbf{\Sigma}}$ are the resulte of calculations from formula (3) with interval h and $H=2 h$, respectively.
3160. Under the action of a variable force \bar{F} directed along the x-axis, a material point is made to move along the x-axis from $x=0$ to $x=4$. Approximate the work A of a force \bar{F} if a table is given of the values of its modulus F :

x	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
F	1.50	0.75	0.50	0.75	1.50	2.75	4.50	6.75	10.00

Carry out the calculations by the trapezoidal formula and by the Simpson formula.
3161. Approximate $\int_{0}^{1}\left(3 x^{2}-4 x\right) d x$ by the trapezoidal formula putting $n=10$. Evaluate this integral exactly and find the absolute and relative errors of the result. Establish the upper limit Δ of absolute error in calculating for $n=10$, utilizing the error formula given in the text.
3162. Using the Simpson formula, calculate $\int_{0}^{1} \frac{x d x}{x+1}$ to four decimal places, taking $n=10$. Establish the upper limit Δ of absolute error, using the error formula given in the text.

Calculate the following definite integrals to two decimals:
3163. $\int_{0}^{1} \frac{d x}{1+x}$.
3168. $\int_{0}^{2} \frac{\sin x}{x} d x$.
3164. $\int_{0}^{1} \frac{d x}{1+x^{2}}$.
3169. $\int_{0}^{\pi} \frac{\sin x}{x} d x$.
3165. $\int_{0}^{1} \frac{d x}{1+x^{3}}$.
3170. $\int_{1}^{2} \frac{\cos x}{x} d x$.
3166. $\int_{1}^{2} x \log x d x$.
3171. $\int_{0}^{2} \frac{\cos x}{1+x} d x$.
3167. $\int_{1}^{2} \frac{\log x}{x} d x$.
3172. $\int_{0}^{1} e^{-x^{2}} d x$.
3173. Evaluate to two decimal places the improper integral $\int_{1}^{\infty} \frac{d x}{1+x^{2}}$ by applying the substitution $x=\frac{1}{t}$. Verify the calculations by applying Simpson's formula to the integral $\int_{1}^{b} \frac{d x}{1+x^{2}}$, where b is chosen so that $\int_{b}^{+\infty} \frac{d x}{1+x^{2}}<\frac{1}{2} \cdot 10^{-2}$.
3174. A plane figure bounded by a half-wave of the sine curve $y=\sin x$ and the x-axis is in rotation about the x-axis. Using the Simpson formula, calculate the volume of the solid of rotation to two decimal places.

3175*. Using Simpson's formula, calculate to two decimal places the length of an arc of the ellipse $\frac{x^{2}}{1}+\frac{y^{2}}{(0.6222)^{2}}=1$ situated in the first quadrant.

Sec. 5. Numerical Integration of Ordinary Differential Equations

1°. A method of successive approximation (Picard's method). Let there be given a first-order differential equation

$$
\begin{equation*}
y^{\prime}=f(x, y) \tag{1}
\end{equation*}
$$

subject to the initial condition $y=y_{0}$ when $x=x_{0}$.

The solution $y(x)$ of (1), which satisfies the given initial condition, can, generally speaking, be represented in the form

$$
\begin{equation*}
y(x)=\lim _{l \rightarrow \infty} y_{i}(x) \tag{2}
\end{equation*}
$$

where the successive approximations $y_{i}(x)$ are determined from the formulas

$$
\begin{aligned}
& y_{0}(x)=y_{0} \\
& y_{i}(x)=y_{0}+\int_{x_{0}}^{x} f\left(x, y_{i-1}(x)\right) d x \\
& \quad(i=0,1,2, \ldots)
\end{aligned}
$$

If the right side $f(x, y)$ is defined and continuous in the neighbourhood

$$
R\left\{\left|x-x_{0}\right| \leqslant a, \quad\left|y-y_{0}\right| \leqslant b\right\}
$$

and satisfies, in this neighbourhood, the Lipschitz condition

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leqslant L\left|y_{1}-y_{2}\right|
$$

(L, is constant), then the process of successive approximation (2) definitely converges in the interval

$$
\left|x-x_{0}\right| \leq h,
$$

where $h=\min _{R}\left(a, \frac{b}{M}\right)$ and $M=\max _{R}|f(x, y)|$. And the error here is

$$
R_{n}=\left|y(x)-y_{n}(x)\right| \leqslant M L^{n} \frac{\left|x-x_{0}\right|^{n+1}}{(n+1) \mid},
$$

if

$$
\left|x-x_{0}\right| \leqslant h .
$$

The method of successive approximation (Picard's method) is also applicable, with slight modifications, to normal systems of differential equations. Differential equations of higher orders may be written in the form of systems of differential equations.
2°. The Runge-Kutta method. Let it be required, on a given interval $x_{0} \leqslant x \leqslant X$, to find the solution $y(x)$ of (1) to a specified degree of accuracy ε.

To do this, we choose the interval of calculations $h=\frac{X-x_{0}}{n}$ by dividing the interval $\left[x_{0}, X\right]$ into n equal parts so that $h^{4}<\varepsilon$. The partition points x_{i} are determined from the formula

$$
x_{i}=x_{0}+i h \quad(t=0,1,2, \ldots, n)
$$

By the Runge-Kutta method, the corresponding values $y_{i}=y\left(x_{i}\right)$ of the desired function are successively computed from the formulas

$$
\begin{aligned}
y_{i+1} & =y_{i}+\Delta y_{i} \\
\Delta y_{i} & =\frac{1}{6}\left(k_{1}^{(i)}+2 k_{2}^{(i)}+2 k_{i}^{(i)}+k_{a}^{(i)}\right),
\end{aligned}
$$

where

$$
\begin{align*}
& \quad i=0,1,2, \ldots, n \text { and } \\
& k_{1}^{(l)}=f\left(x_{i}, y_{i}\right) h, \\
& k_{2}^{(i)}=f\left(x_{i}+\frac{h}{2}, y_{i}+\frac{k_{1}^{(l)}}{2}\right) h, \tag{3}\\
& k_{3}^{(i)}=f\left(x_{i}+\frac{h}{2}, y_{i}+\frac{k_{2}^{(i)}}{2}\right) h, \\
& k_{4}^{(i)}=f\left(x_{i}+h, y_{i}+k_{\mathrm{a}}^{(i)}\right) h .
\end{align*}
$$

To check the correct choice of the interval h it is advisable to verify the quantity

$$
\theta=\left|\frac{k_{2}^{(i)}-k_{3}^{(1)}}{k_{1}^{(l)}-k_{2}^{(l)}}\right|
$$

The fraction θ should amount to a few hundredths, otherwise h has to be reduced.

The Runge-Kutta method is accurate to the order of h^{2}. A rough estimate of the error of the Runge-Kutta method on the given interval $\left[x_{0}, X\right]$ may be obtained by proceeding from the R unge principle:

$$
R=\frac{\left|y_{2 m}-\tilde{y}_{m}\right|}{15}
$$

where $n=2 m, y_{2 m}$ and \tilde{y}_{m} are the results of calculations using the scheme (3) with interval' h and interval $2 h$.

The Runge-Kutta method is also applicable for solving systems of differential equations

$$
\begin{equation*}
y^{\prime}=f(x, y, z), \quad z^{\prime}=\varphi(x, y, z) \tag{4}
\end{equation*}
$$

with given initial conditions $y=y_{0}, z=z_{0}$ when $x=x_{0}$.
3°. Milne's method. To solve (1) by the Milne method, subject to the initial conditions $y=y_{0}$ when $x=x_{0}$, we in some way find the successive values

$$
y_{1}=y\left(x_{1}\right), \quad y_{2}=y\left(x_{2}\right), \quad y_{3}=\underline{u}\left(x_{3}\right)
$$

of the desired function $y(x)$ [for instance, one can expand the solution $y(x)$ in a series (Ch. IX, Sec. 17) or find these values by the method of successive approximation, or by using the Runge-Kutta method, and so forth]. The approximations $\overline{y_{i}}$ and $\overrightarrow{y_{i}}$ for the following values of $y_{i}(i=4,5, \ldots, n)$ are successively found from the formulas

$$
\left.\begin{array}{l}
\bar{y}_{i}=y_{i-4}+\frac{4 h}{3}\left(2 f_{i-3}-f_{i-2}+2 f_{i-1}\right), \tag{5}\\
\left.\bar{y}_{i}=y_{i-2}+\frac{h}{3} \overline{\left(f_{i}\right.}+4 f_{i-1}+f_{i-2}\right),
\end{array}\right\}
$$

where $f_{i}=f\left(x_{i}, y_{i}\right)$ and $\bar{f}_{i}=f\left(x_{i}, \bar{y}_{i}\right)$. To check we calculate the quantity

$$
\begin{equation*}
\varepsilon_{i}=\frac{1}{29}\left|\bar{y}_{i}-\bar{y}_{i}\right| \tag{6}
\end{equation*}
$$

If ε_{i} does not exceed the unit of the last decimal 10^{-m} retained in the answer for $y(x)$, then for y_{i} we take \bar{y}_{i} and calculate the next value y_{i+1}, repeating the process. But if $\varepsilon_{i}>10^{-m}$, then one has to start from the beginning and reduce the interval of calculations. The magnitude of the initial interval is determined approximately from the inequality $h^{4}<10^{-m}$.

For the case of a solution of the system (4), the Milne formulas are written separately for the functions $y(x)$ and $z(x)$. The order of calculations remains the same.

Example 1. Given a differential equation $y^{\prime}=y-x$ with the initial condition $y(0)=1.5$. Calculate to two decimal places the value of the solution of this equation when the argument is $x=1.5$. Carry out the calculations by a combined Runge-Kutta and Milne method.

Solution. We choose the initial interval h from the condition $h^{4}<0.01$. To avoid involved writing, let us take $h=0.25$. Then the entire interval of integration from $x=0$ to $x=1.5$ is divided into six equal parts of length 0.25 by means of points $x_{i}(i=0,1,2,3,4,5,6)$; we denote by y_{i} and y_{i}^{\prime} the corresponding values of the solution y and the derivative y^{\prime}.

We calculate the first three values of y (not counting the initial one) by the Runge-Kutta method [from formulas (3)]; the remaining three values - y_{4}, y_{5}, y_{6}-we calculate by the Milne method [from formulas (5)]

The value of y_{0} will obviously be the answer to the problem.
We carry out the calculations with two reserve decimals according to a definite scheme consisting of two sequential Tables 1 and 2. At the end of Table 2 we obtain the answer

Calculating the value y_{1}. Here, $f(x, y)=-x+y, x_{0}=0, y_{0}=1.5$

$$
\begin{aligned}
& \begin{array}{l}
h=0.25 . \Delta y_{0}=\frac{1}{6}\left(k_{1}^{(0)}+2 k_{2}^{(0)}+2 k_{3}^{(0)}+k_{4}^{(0)}\right)= \\
\\
=\frac{1}{6}(0.3750+2 \cdot 0.3906+2 \cdot 0.3926+0.4106)=0.3920 ; \\
k_{1}^{(0)}=f\left(x_{0}, y_{0}\right) h=(-0+1.5000) 0.25=0.3750 ;
\end{array} \\
& k_{2}^{(0)}=f\left(x_{0}+\frac{h}{2}, \quad y_{0}+\frac{k_{1}^{(0)}}{2}\right) h=(-0.125+1.5000+0.1875) 0.25=0.3906 ; \\
& k_{3}^{(0)}=f\left(x_{0}+\frac{h}{2}, \quad y_{0}+\frac{k_{2}^{(0)}}{2}\right) h=(-0125+1.5000+0.1953) 0.25=0.3926 ; \\
& k_{4}^{(0)}=f\left(x_{0}+h, \quad y_{0}+k_{3}^{(0)}\right) h=(-0.25+1.5000+0.3926) 0.25=0.4106 ; \\
& y_{1}=y_{0}+\Delta y_{0}=1.5000+0.3920=1.8920 \text { (the first three decimals in this }
\end{aligned}
$$

Let us check:

$$
\theta=\left|\frac{k_{2}^{(0)}-k_{s}^{(0)}}{k_{1}^{(0)}-k_{2}^{(0)}}\right|=\frac{|0.3906-0.3926|}{|0.3750-0.3906|}=\frac{20}{156}=0.13 .
$$

By this criterion, the interval h that we chose was rather rough.
Similarly we calculate the values y_{2} and y_{2}. The results are tabulated in Table 1.

13*

Table 1. Calculating $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \boldsymbol{y}_{\mathbf{z}}$ by the Runge-Kutta Method.
$f(x, y)=-x+y ; \quad h=0.25$

Value of i	x_{1}	y_{i}	$y_{i}^{\prime}=$ \equiv	$k_{1}^{(l)}$	$\begin{aligned} & f\left(x_{i}+\frac{h}{2}\right. \\ & \left.y_{i}+\frac{k_{1}^{(l)}}{2}\right) \end{aligned}$	$k_{z}^{(l)}$
0	0	1.5000	1.5000	0.3750	1.5625	0.3906
1	0.25	1.8920	1.6420	0.4105	1.7223	0.4306
2	0.50	2.3243	1.8243	0.4561	1.9273	0.4818
3	075	2.8084	2.0584	0.5146	2.1907	0.5477
Value of i	$f\left(x_{i}+\frac{h}{2}\right.$, $\left.y_{i}+\frac{k_{2}^{(l)}}{2}\right)$	$k_{3}^{(i)}$	$\begin{aligned} & f\left(x_{i}+h\right. \\ & \left.y_{i}+k_{3}^{(i)}\right) \end{aligned}$	$k_{4}^{(i)}$	Δy_{i}	y_{i+1}
0	1.5703	0.3926	1.6426	0.4106	0.3920	1.8920
1	1.7323	0.4331	1.8251	0.4562	0.4323	2.3243
	1.9402	0.4850	2.0593	0.5148	0.4841	2.8084
3	2.2073	0.5518	2.3602	0.5900	0.5506	3.3590

Calculating the value of y_{4}. We have: $f(x, y)=-x+y, h=0.25, x_{4}=1$;

$$
\begin{gathered}
y_{0}=1.5000, \quad y_{1}=1.8920, \quad y_{2}=2.3243, \quad y_{3}=2.8084 \\
y_{0}^{\prime}=1.5000, \quad y_{1}^{\prime}=1.6420, \quad y_{2}^{\prime}=1.8243, \quad y_{3}^{\prime}=2.0584 .
\end{gathered}
$$

Applying formulas (5), we find

$$
\begin{aligned}
& \bar{y}_{4}=y_{0}+\frac{4 h}{3}\left(2 y_{1}-y_{2}^{\prime}+2 y_{3}^{\prime}\right)= \\
& \quad=1.5000+\frac{4 \cdot 0.25}{3}(2 \cdot 1.6420-1.8243+2 \cdot 2.0584)=3.3588 ; \\
& \bar{y}_{4}^{\prime}=f\left(x_{4}, \bar{y}_{4}\right)=-1+3.3588=2.3588 ; \\
& \overline{\bar{y}}_{4}=y_{2}+\frac{h}{3}\left(\bar{y}_{4}^{\prime}+4 y_{3}^{\prime}+y_{2}^{\prime}\right)=2.3243+\frac{0.25}{3}(2.3588+4 \cdot 2.0584+1.8243)=3.3590 ; \\
& \quad \varepsilon_{6}=\frac{\left|\bar{y}_{4}-\bar{y}_{4}\right|}{29}=\frac{|3.3588-3.3590|}{29}=\frac{0.0002}{29} \approx 7 \cdot 10^{-6}<\frac{1}{2} \cdot 0.001 ;
\end{aligned}
$$

hence, there is no need to reconsider the interval of calculations.

We obtain $y_{4}=\overline{\overline{y_{4}}}=3.3590$ (in this approximate number the first three decimals are guaranteed).

Similarly we calculate the values of y_{5} and y_{0}. The results are given in Table 2.

Thus, we finally have

$$
y(1.5)=4.74
$$

4°. Adams' method. To solve (1) by the Adams method on the basis of the initial data $y\left(x_{0}\right)=y_{0}$ we in some way find the following three values of the desired function $y(x)$:

$$
y_{1}=y\left(x_{1}\right)=y\left(x_{0}+h\right), y_{2}=y\left(x_{2}\right)=y\left(x_{0}+2 h\right), y_{2}=y\left(x_{3}\right)=y\left(x_{0}+3 h\right)
$$

[these three values may be obtained, for instance, by expanding $y(x)$ in a power series (Ch IX, Sec. 16), or they may be found by the method of successive approximation (1°), or by applying the Runge-Kutta method (2°) and so forth].

With the help of the numbers $x_{0}, x_{1}, x_{2}, x_{3}$ and $y_{0}, y_{1}, y_{2}, y_{3}$ we calculate $q_{0}, q_{1}, q_{2}, q_{3}$, where

$$
\begin{array}{ll}
q_{0}=h y_{0}^{\prime}=h f\left(x_{0}, y_{0}\right), & q_{1}=h y_{1}^{\prime}=h f\left(x_{1}, y_{1}\right) \\
q_{2}=h y_{2}^{\prime}=h f\left(x_{2}, y_{2}\right), & q_{3}=h y_{3}^{\prime}=h f\left(x_{3}, y_{3}\right)
\end{array}
$$

We then form a diagonal table of the finite differences of q :

		$\underset{=y_{n+1}-1 / n}{\Delta y=}$	$y^{\prime}=f(x . y)$	$q=y^{\prime \prime} h$	$\Delta q=q_{n+}-q_{n}$	$\begin{gathered} \Delta^{2} q= \\ =\Delta q_{n+1}-\Delta q_{n} \end{gathered}$	
		$\Delta \mu_{0}$	$f\left(x_{0}, y_{0}\right)$	q_{0}	Δq_{0}	$\Delta^{2} q_{0}$	$\Delta^{3} q_{10}$
x_{1}	y_{1}	Δy_{1}	$f\left(x_{1}, y_{1}\right)$	4_{1}	Δq_{1}	$\Delta^{2} q ;$	$\lambda^{3} 9$,
x_{2}	y_{2}	Δy_{2}	$f\left(x_{2}, y_{2}\right)$	q_{2}	Δq_{2}	$\Delta^{2} q_{2}$	$\Delta^{3} q_{2}$
		Δy_{3}	$f\left(x_{3}, y_{8}\right)$	9.	Δq_{2}	$\Delta^{2} q_{3}$	
	y_{4}	Δy_{4}	$f\left(x_{4}, y_{4}\right)$	q_{4}	Δq_{4}		
x_{s}	y_{s}	Δy_{6}	$f\left(x_{s}, y_{5}\right)$	95			
x_{6}	y_{6}						

The Adams method consists in continuing the diagonal table of differences with the aid of the Adams formula

$$
\begin{equation*}
\Delta y_{n}=q_{n}+\frac{1}{2} \Delta q_{n-1}+\frac{5}{12} \Delta^{2} q_{n-2}+\frac{3}{8} \Delta^{s} q_{n-8} . \tag{7}
\end{equation*}
$$

Thus, utilizing the numbers $q_{3}, \Delta q_{2}, \Delta^{2} q_{1}, \Delta^{3} q_{0}$ situated diagonally in the difference table, we calculate, by means of formula (7) and putting $n=3$ in it, $\Delta y_{8}=q_{3}+\frac{1}{2} \Delta q_{2}+\frac{5}{12} \Delta^{2} q_{1}+\frac{3}{8} \Delta^{3} q_{0}$. After finding Δy_{8}, we calculate $y_{4}=y_{3}+\Delta y_{2}$. And when we know x_{4} and y_{4}, we calculate $q_{4}=h f\left(x_{4}, y_{4}\right)$, introduce $y_{4}, \Delta y_{3}$ and q_{4} into the difference table and then fill into it the finite differences $\Delta q_{4}, \Delta^{2} q_{2}, \Delta^{3} q_{1}$, which are situated (together with q_{4}) along a new diagonal parallei to the first one.

Then, utilizing the numbers of the new diagonal, we use formula (8) (putting $n=4$ in it) to calculate $\Delta y_{4}, y_{6}$ and q_{5} and obtain the next diagonal: $q_{5}, \Delta q_{4}, \Delta^{2} q_{3}, \Delta^{2} q_{2}$. Using this diagonal we calculate the value of y_{8} of the desired solution $y(x)$, and so forth.

The Adams formula (7) for calculating Δy proceeds from the assumption that the third finite differences $\Delta^{s} q$ are constant. Accordingly, the quantitv h of the initial interval of calculations is determined from the inequality $h^{4}<10^{-m}$ [if we wish to obtain the value of $y(x)$ to an accuracy of $\left.10^{-m}\right]$.

In this sense the Adams formula (7) is equivalent to the formulas of Milne (5) and Runge-Kutta (3).

Evaluation of the error for the Adams method is complicated and for practical purposes is useless, since in the general case it yields results with considerable excess. In actual practice, we follow the course of the third finite differences, choosing the interval h so small that the adjacent differences $\Delta^{s} q_{i}$ and $\Delta^{s} q_{i+1}$ differ by not more than one or two units of the given decimal place (not counting reserve desimals).

To increase the accuracy of the result, Adams' formula may be extended by terms containing fourth and higher differences of q, in which case there is an increase in the number of first values of the function y that are needed when we first fill in the table. We shall not here give the Adams formula for higher aceuracy.

Example 2. Using the combined Runge-Kutta and Adams method, calculate to two decimal places (when $x=1.5$) the value of the solution of the differential equation $y^{\prime}=y-x$ with the initial condition $y(0)=1.5$ (see Example 1).

Solution. We use the values y_{1}, y_{2}, y_{3} that we obtaned in the solution of Example 1. Their calculation is given in Table 1.

We calculate the subsequent values y_{4}, y_{5}, y_{6} by the Adams method (see Tables 3 and 4).

The answer to the problem is $y_{\mathrm{a}}=4.74$.
For solving system (4), the Adams formula (7) and the calculation scheme shown in Table 3 are applied separately for both functions $y(x)$ and $z(x)$.

Find three successive approximations to the solutions of the differential equations and systems indicated below.
3176. $y^{\prime}=x^{2}+y^{2} ; y(0)=0$.
3177. $y^{\prime}=x+y+z, z^{\prime}=y-z ; y(0)=1, z(0)=-2$.
3178. $y^{\prime \prime}=-y ; y(0)=0, y^{\prime}(0)=1$.

Table 3. Basic Table for Calculating $\boldsymbol{y}_{4}, \boldsymbol{y}_{5}, \boldsymbol{y}_{\mathbf{8}}$ by the Adams Method. $f(x, y)=-x+y ; h=0.25$ (Italicised figures are input data)

Answer: 4.74

Table 4 Auxiliary Table for Calculating by the Adams Method

$$
\Delta y_{l}=q_{i}+\frac{1}{2} \Delta q_{i-1}+\frac{5}{12} \Delta^{2} q_{i-2}+\frac{3}{8} \Delta^{3} q_{i-3}
$$

Value of,	q_{1}	$\frac{1}{2} \Delta q_{1-1}$	$\frac{5}{12} \Delta^{2} q_{1-2}$	$\frac{8}{8} \Delta^{s} q_{i-1}$	Δy_{1}
3	0.5146	0.0293	0.0054	0.0011	0.5504
4	05897	0.0376	0.0069	0.0014	0.6356
5	0.6861	0.0482	0.0089	0.0018	0.7450

Putting the interval $h=0.2$, use the Runge-Kutta method to calculate approximately the solutions of the given differential equations and systems for the indicated intervals:
3179. $y^{\prime}=y-x ; y(0)=1.5(0 \leqslant x \leqslant 1)$.
3180. $y^{\prime}=\frac{y}{x}-y^{2} ; y(1)=1 \quad(1 \leqslant x \leqslant 2)$.
3181. $y^{\prime}=z+1, z^{\prime}=y-x, y(0)=1, z(0)=1(0 \leqslant x \leqslant 1)$.

Applying a combined Runge-Kutta and Milne method or Runge-Kutta and Adams method, calculate to two decimal places the solutions to the differential equations and systems indicated below for the indicated values of the argument;
3182. $y^{\prime}=x+y ; y=1$ when $x=0$. Compute y when $x=0.5$.
3183. $y^{\prime}=x^{2}+y ; y=1$ when $x=0$. Compute y when $x=1$.
3184. $y^{\prime}=2 y-3 ; y=1$ when $x=0$. Compute y when $x=0.5$.
3185. $\left\{y^{\prime}=-x+2 y+z\right.$,

$$
\left\{\begin{array}{l}
z^{\prime}=x+2 y+3 z ; y=2, z=-2 \text { when } x=0 .
\end{array}\right.
$$

Compute y and z when $x=0.5$.
3186. $\left\{\begin{array}{l}y^{\prime}=-3 y-z, \\ z^{\prime}=y-z ; y=\end{array}\right.$

$$
\left\{\begin{array}{l}
y=y-z ; y=2, z=-1 \text { when } x=0 . \\
z^{\prime}=y
\end{array}\right.
$$

Compute y and z when $x=0.5$.
3187. $y^{\prime \prime}=2-y ; y=2, y^{\prime}=-1$ when $x=0$.

Compute y when $x=1$.
3188. $y^{3} y^{\prime \prime}+1=0 ; y=1, y^{\prime}=0$ when $x=1$.

Compute y when $x=1.5$.
3189. $\frac{d^{2} x}{d t^{2}}+\frac{x}{2} \cos 2 t=0 ; x=0, x^{\prime}=1$ when $t=0$.

Find $x(\pi)$ and $x^{\prime}(\pi)$.

Sec. 6. Approximating Fourier Coefficients

Twelve-ordinate scheme. Let $y_{n}=f\left(x_{n}\right) \quad(n=0,1, \ldots, 12)$ be the values of the function $y=f(x)$ at equidistant points $x_{n}=\frac{\pi n}{6}$ of the interval $[0,2 \pi]$, and $y_{0}-y_{12}$ We set up the tables:

The Fourier coefficients $a_{n}, b_{n}(n=0,1,2,3)$ of the function $y=f(x)$ may be determined approximately from the formulas:

$$
\begin{array}{ll}
6 a_{0}=s_{0}+s_{1}+s_{2}+s_{3}, & 6 b_{1}=0.5 \sigma_{1}+0.866 \sigma_{2}+\sigma_{3}, \\
6 a_{1}=t_{0}+0.866 t_{1}+0.5 t_{2}, & 6 b_{2}=0.866\left(\tau_{1}+\tau_{2}\right), \\
6 a_{2}=s_{0}-s_{3}+0.5\left(s_{1}-s_{2}\right), & 6 b_{3}=\sigma_{1}-\sigma_{3}, \\
6 a_{2}=t_{0}-t_{2}, & \tag{1}
\end{array}
$$

where $0.866=\frac{\sqrt{3}}{2} \approx 1-\frac{1}{10}-\frac{1}{30}$.
We have

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{3}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Other schemes are also used. Calculations are simplified by the use of patterns.

Example. Find the Fourier polynomial for the function $y=f(x)(0 \leqslant x \leqslant 2 \pi)$ represented by the table

y_{0}	y_{1}	y_{2}	y_{8}	y_{4}	y_{8}	y_{6}	y_{7}	y_{8}	y_{9}	y_{10}	y_{11}
38	38	12	4	14	4	-18	-23	-27	-24	8	32

Solution. We set up the tables:

$$
\left.\begin{array}{l}
y \\
y \\
\hline
\end{array} \begin{array}{rrrrrr}
38 & 38 & 12 & 4 & 14 & 4-18 \\
\hline u & 32 & 8 & -24 & -27 & -23
\end{array}\right]
$$

From formulas (1) we have

$$
\begin{aligned}
& a_{0}=9.7 ; a_{1}=24.9 ; a_{2}=10.3 ; a_{3}=3.8 \\
& b_{1}=13.9 ; b_{2}=-8.4 ; b_{8}=0.8
\end{aligned}
$$

Consequently,
$f(x)=4.8+(24.9 \cos x+13.9 \sin x)+(10.3 \cos 2 x-8.4 \sin 2 x)+$

$$
+(3.8 \cos 3 x+0.8 \sin 3 x)
$$

Using the 12 -ordinate scheme, find the Fourier polynomials for the following functions defined in the interval $(0,2 \pi)$ by the
tables of their values that correspond to the equidistant values of the argument.

- 3190. $y_{0}=-7200$
$y_{\mathrm{z}}=4300$
$y_{\mathrm{B}}=7400 \quad y_{\mathrm{g}}=7600$
$y_{1}=300$
$y_{4}=0$
$y_{7}=-2250 y_{19}=4500$
$y_{2}=700 \quad y_{s}=-5200$
$y_{\mathrm{B}}=3850 \quad y_{11}=250$

3191. $y_{0}=0$
$y_{3}=9.72$
$y_{6}=7.42 \quad y_{0}=5.60$
$y_{1}=6.68 \quad y_{4}=8.97 \quad y_{1}=6.81 \quad y_{10}=4.88$
$y_{2}=9.68 \quad y_{5}=8.18 \quad y_{8}=6.22 \quad y_{11}=3.67$
3192. $\begin{array}{llll}y_{0}=2.714 & y_{0}=1.273 & y_{\mathrm{B}}=0.370 & y_{0}=-0.357 \\ y_{1}=3.042 & y_{4}=0.788 & y_{2}=0.540 & y_{10}=-0.437\end{array}$
$\begin{array}{llll}y_{1}=3.042 & y_{4}=0.788 & y_{7}=0.540 & y_{10}=-0.437 \\ y_{2}=2.134 & y_{5}=0.495 & y_{8}=0.191 & y_{11}=0.767\end{array}$
3193. Using the 12 -ordinate scheme, evaluate the first several Fourier coefficients for the following functions:
a) $f(x)=\frac{1}{2 \pi^{2}}\left(x^{3}-3 \pi x^{2}+2 \pi^{2} x\right) \quad(0 \leqslant x \leqslant 2 \pi)$,
b) $f(x)=\frac{1}{\pi^{2}}(x-\pi)^{2} \quad(0 \leqslant x \leqslant 2 \pi)$.

ANSWERS

Chapter I

1. Solution. Since $a=(a-b)+b$, then $|a| \leqslant|a-b|+|b|$. Whence $|a-b| \geqslant$ $\geqslant|a|-|b|$ and $|a-b|=|b-a| \geqslant|b|-|a|$. Hence, $|a-b| \geqslant|a|-|b|$. Besides, $|a-b|=|a+(-b)| \leqslant|a|+|-b|=|a|+|b| . \quad 3 . \quad$ a) $-2<x<4$; b) $x<-3, x>1$; c) $-1<x<0$; d) $x>0$. 4. -24; -6 ; 0; 0; 0; 6. 5. 1; $1 \frac{1}{4} ; \sqrt{1+x^{2} ;}|x|^{-1} \sqrt{1+x^{2}} ; 1 / \sqrt{1+x^{2}}$. 6. л; $\frac{\pi}{2} ; 0$. 7. $f(x)=-\frac{5}{3} x+\frac{1}{3}$.
2. $f(x)=\frac{7}{6} x^{2}-\frac{13}{6} x+1$. 9. 0.4 . 10. $\frac{1}{2}(x+|x|)$. 11. a) $-1<x<+\infty$; b) $-\infty<x<+\infty$.12. $(-\infty,-2),(-2,2),(2,+\infty)$.13. a) $-\infty<x \leqslant-\sqrt{2}$, $\sqrt{2} \leqslant x<+\infty ;$ b) $x=0,|x| \geqslant \sqrt{2}$. 14. $-1 \leqslant x \leqslant 2$. Solution. It should be $2+x-x^{2} \geqslant 0$, or $x^{2}-x-2 \leqslant 0$; that is, $(x+1)(x-2) \leqslant 0$. Whence either $x+1 \geqslant 0, x-2 \leqslant 0$, i. e., $-1 \leqslant x \leqslant 2$ or $x+1 \leqslant 0, x-2 \geqslant 0$, i. e., $x \leqslant-1$, $x \geqslant 2$, but this is impossible. Thus, $-1 \leqslant x \leqslant 2$. 15. $-2<x \leqslant 0$. 16. $-\infty<x \leqslant-1,0 \leqslant x \leqslant 1$. 17. $-2<x<2$. 18. $-1<x<1,2<x<+\infty$.
3. $-\frac{1}{3} \leqslant x \leqslant 1$. 20. $1 \leqslant x \leqslant 100$. 21. $k \pi \leqslant x \leqslant k \pi+\frac{\pi}{2}(k=0, \pm 1, \pm 2, \ldots)$.
4. $\varphi(x)=2 x^{4}-5 x^{2}-10, \psi(x)=-3 x^{3}+6 x$. 23. a) Even, b) odd, c) even, d) odd, e) odd.24. Hint. Utilize the identity $f(x)=\frac{1}{2}[f(x)+f(-x)]+\frac{1}{2}[f(x)-f(-x)]$. 26. a) Periodic, $T=\frac{2}{3} \pi$, b) periodic, $T=\frac{2 \pi}{\lambda}$, c) periodic, $T=\pi$, d) periodic $T=\pi$, e) nonperiodic. 27. $y=\frac{b}{c} x$, if $0 \leqslant x \leqslant c ; y=b$ if $c<x \leqslant a ; S=\frac{b}{2 c} x^{2}$ if $0 \leqslant x \leqslant c ; S=b x-\frac{b c}{2}$ if $c<x \leqslant a$. 28. $m=q_{1} x$ when $0 \leqslant x \leqslant l_{1} ; m=$ $=q_{1} l_{1}+q_{2}\left(x-l_{1}\right)$ when $l_{1}<x \leqslant l_{1}+l_{2} ; m=q_{1} l_{1}+q_{1} l_{2}+q_{3}\left(x-l_{1}-l_{2}\right)$ when $l_{1}+l_{2}<x \leqslant l_{1}+l_{2}+l_{3}=l$. 29. $\varphi[\psi(x)]=2^{2 x} ; \psi[\varphi(x)]=2^{x 2} \quad 30 . x .31 .(x+2)^{2}$. 37. $-\frac{\pi}{2} ; 0 ; \frac{\pi}{4}$. 38. a) $y=0$ when $x=-1, y>0$ when $x>-1, y<0$ when $x<-1$; b) $y=0$ when $x=-1$ and $x=2, y>0$ when $-1<x<2$, $y<0$ when $-\infty<x<-1$ and $2<x<+\infty$; c) $y>0$ when $-\infty<x<+\infty$; d) $y=0$ when $x=0, x=-\sqrt{3}$ and $x=\sqrt{3}, y>0$ when $-\sqrt{3}<x<0$ and $\sqrt{3}<x<+\infty, y<0$ when $-\infty<x<-\sqrt{\overline{3}}$ and $0<x<\sqrt{\overline{3}}$; e) $y=0$ when $x=1$, $y>0$ when $-\infty<x<-1$ and $1<x<+\infty, y<0$ when $0<x<1$ 39. a) $x=\frac{1}{2}(y-3)$ $(-\infty<y<+\infty) ;$ b) $x=\sqrt{y+1}$ and $x=-\sqrt{y+1}(-1 \leq y<+\infty) ;$
c) $x=\sqrt[3]{1-y^{2}}(-\infty<y<+\infty) ;$ d) $x=2 \cdot 10^{y} \quad(-\infty<y<+\infty)$; e) $x=$ $=\frac{1}{3} \tan y\left(-\frac{\pi}{2}<y<\frac{\pi}{2}\right) . \quad$ 40. $x=y$ when $-\infty<y \leqslant 0 ; x=\sqrt{y}$ when $0<y<+\infty$. 41. a) $y=u^{10}, u=2 x-5$; b) $y=2^{a}, u=\cos x$; c) $y=\log u$, $u=\tan v, v=\frac{x}{2}$; d) $y=\arcsin u, u=3^{v}, v=-x^{2}$. 42. a) $y=\sin ^{2} x$; b) $y=$ $=\arctan \sqrt{\log x} ; \quad$ c) $y=2\left(x^{2}-1\right) \quad$ if $\quad|x| \leqslant 1, \quad$ and $y=0 \quad$ if $\quad|x|>1$. 43. a) $y=-\cos x^{2}, \quad \sqrt{\pi} \leqslant|x| \leqslant \sqrt{2 \pi} ;$ b) $y=\log \left(10-10^{x}\right),-\infty<x<1$; c) $y=\frac{x}{3}$ when $-\infty<x<0$ and $y=x$ when $0 \leqslant x<+\infty$. 46. Hint. See Appendix VI, Fig. 1. 51. Hint. Completing the square in the quadratic trinomial we will have $y=y_{0}+a\left(x-x_{0}\right)^{2}$ where $x_{0}=-b_{i} 2 a$ and $y_{0}=\left(4 a c-b^{2}\right) / 4 a$. Whence the desired graph is a parabola $y=a x^{2}$ displaced along the x-axis by

The graph is a hyperbola $y=\frac{m}{x}$, shifted along the x-axis by x_{0} and along the y-axis by y_{0}. 62. Hint. Taking the integral part, we have $y=\frac{2}{3}-\frac{13}{9} /$ $\left(x+\frac{2}{3}\right)$ (Cf. 61*). 65. Hint. See Appendix VI, Fig. 4. 67.Hint. See Appendix VI,
Fig. 5. 71. Hint. See Appendix VI, Fig. 6. 72. Hint. See Appendix VI, Fig. 7. 73. Hint. See Appendix VI, Fig. 8. 75. Hint. See Appendix VI, Fig. 19 78. Hint. See Appendix VI, Fig. 23. 80. Hint. See Appendix VI, Fig. 9. 81. Hint. See Appendix VI, Fig. 9. 82. Hint. See Appendix VI, Fig. 10 83. Hint. See Appendix VI, Fig. 10. 84. Hint. See Appendix VI, Fig 11. 85. Hint. See Appendix VI, Fig. 11. 87. Hint. The period of the function is $T=2 \pi / n$. 89. Hint. The desired graph is the sine curve $y=5 \sin 2 x$ with amplitude 5 and period π displaced rightwards along the x-axis by the quantity $1 \frac{1}{2}$. 90. Hint. Putting $a=A \cos \varphi$ and $b=-A \sin \varphi$, we will have $y=A \sin (x-\varphi)$ where $A=\sqrt{a^{2}+b^{2}}$ and $\varphi=\arctan \left(-\frac{b}{a}\right) \cdot$ In our case, $A=10, \varphi=0.927$. 92 . Hint. $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$. 93. Hint. The desired graph is the sum of the graphs $y_{1}=x$ and $y_{2}=\sin x$. 94. Hint. The desired graph is the product of the graphs $y_{1}=x$ and $y_{2}=\sin x$. 99. Hint. The function is even For $x>0$ we determine the points at which 1) $y=0$; 2) $y=1$; and 3) $y=-1$. When $x \longrightarrow+\infty$, $y \rightarrow 1$. 101. Hint. See Appendix VI, Fig. 14. 102. Hint. See Appendix VI, Fig. 15. 103. Hint. See Appendix VI, Fig. 17. 104. Hint. See Appendix VI, Fig. 17. 105. Hint. See Appendix VI, Fig. 18. 107. Hint. See Appendix VI, Fig. 18. 118. Hint. See Appendix VI, Fig. 12. 119. Hint. See Appendix VI', Fig. 12. 120. Hint. See Appendix VI, Fig. 13. 121. Hint. See Appendix VI, Fig. 13. 132. Hint. See Appendix VI, Fig. 30. 133.Hint. See Appendix VI, Fig. 32. 134. Hint. See Appendix VI, Fig. 31. 138. Hint. See Appendix VI, Fig. 33. 139. Hint. See Appendix VI, Fig. 28. 140. Hint. See Appendix VI, Fig. 25. 141. Hint.

Form a table of values:

t	0	1	2	3	\ldots	-1	-2	-3
x	0	1	8	27	\ldots	-1	-8	-27
y	0	1	4	9	\cdots	1	4	9

Constructing the points (x, y) obtained, we get the desired curve (see Appendix VI, Fig. 7). (Here, the parameter t cannot be laid off geometrically!) 142. See Appendix VI, Fig. 19. 143. See Appendix VI, Fig. 27. 144. See Appendix VI, Fig. 29. 145. See Appendix VI, Fig. 22 150. See Appendix VI, Fig. 28. 151. Hint. Solving the equation for y, we get $y= \pm \sqrt{25-x^{2}}$. It is now easy to construct the desired curve from the points. 153. See Appendix V1, Fig. 21. 156. See Appendix V1, Fig. 27. It is sufficient to construct the points (x, y) corresponding to the abscissas $x=0, \pm \frac{a}{2}, \pm a$. 157. Hint. Solving the equation for x, we have $x=10 \log y-y^{(*)}$. Whence we get the points (x, y) of the sought-for curve, assigning to the ordinate u arbitrary values $(y>0)$ and calculating the abscissa x from the formula ${ }^{(*)}$ Bear in mind that $\log y \rightarrow-\infty$ as $y \rightarrow 0$. 159. Hint. Passing to polar coordinates $r=\sqrt{x^{2}+y^{2}}$ and $\tan \varphi=\frac{y}{x}$, we will have $r=e^{\varphi}$ (see Appendix VI, Fig 32) 160. Hint. Passing to polar coordinates $x=r \cos \varphi$, and $y=r \sin \varphi$, we will have $r=\frac{3 \sin \varphi \cos \varphi}{\cos ^{3} \varphi+\sin ^{5} \varphi}$ (see Appendix V1, Fig. 32) 161. $F=32+1,8 C$ 162. $y=0.6 x(10-x) ; \quad y_{\text {max }}=15$ when $x=5$. 163. $y=\frac{a b}{2} \sin x ; y_{\text {max }}=\frac{a b}{2}$ when $x=\frac{\pi}{2} . \quad 164$. a) $x_{1}=\frac{1}{2}, \quad x_{2}=2 ; \quad$ b) $\left.\quad x=0.68 ; ~ c\right) ~ x_{1}=1.37, \quad x_{2}=10$; d) $x=0.40$; e) $x=1.50$; f) $x=0.86$. 165. a) $x_{1}=2, y_{1}=5 ; x_{2}=5, y_{2}=2$; b) $x_{1}=-3, y_{1}=-2 ; x_{2}=-2, y_{2}=-3 ; x_{3}=2, y_{3}=3 ; x_{4}=3, y_{4}=2$; c) $x_{1}=2$, $y_{1}=2 ; x_{2} \approx 3.1, y_{2} \approx-2.5 ;$ d) $x_{1} \approx-3.6, y_{1} \approx-3.1 ; x_{2} \approx-2.7, y_{2} \approx 29$; $x_{3} \approx 2.9, y_{s} \approx 1.8 ; \quad x_{4} \approx 3.4, y_{4} \approx-1.6 ;$ e) $x_{1}=\frac{\pi}{4}, y_{1}=\frac{\sqrt{2}}{2} ; \quad x_{2}=\frac{5 \pi}{4}$, $y_{2}=-\frac{\sqrt[V]{2}}{2}$. 166. $n>\frac{1}{\sqrt{\mathbf{e}}}$. a) $n \geq 4$; b) $n>10$; c) $n \geqslant 32$. 167. $n>\frac{1}{\mathbf{e}}-$ $-1=N$. а) $N=9$; b) $N=99$; c) $N=999$. 168. $\delta=\frac{\varepsilon}{5} \quad(\varepsilon<1)$. a) 002 ; b) 0002 ; c) 0.0002 . 169. a) $\log x<-N$ when $0<x<\delta(N)$; b) $2^{x}>N$ when $x>X(N)$; c) $|f(x)|>N$ when $|x|>X(N) .170$. a) 0 ; b) 1 ; c) 2 ; d) $\frac{7}{30}$. 171. $\frac{1}{2}$. 172. 1. 173. $-\frac{3}{2}$. 174. 1. 175. 3. 176. 1. 177. $\frac{3}{4}$. 178. $\frac{1}{3}$. Hint. Use the formula $1^{2}+2^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$. 179. 0. 180.0.181. 1. 182. 0. 183. ∞. 184. 0. 185. 72. 186. 2. 187. 2. 188. ∞. 189. 0. 190.1. 191. 0. 192. ∞. 193. -2 . 194. ∞. 195. $\frac{1}{2}$ 196. $\frac{a-1}{3 a^{2}}$. 197. $3 x^{2}$. 198. -1 . 199. $\frac{1}{2}$.
200. 3. 201. $\frac{4}{3}$. 202. $\frac{1}{9}$. 203. $-\frac{1}{56}$. 204. 12. 205. $\frac{3}{2}$. 206. $-\frac{1}{3}$. 207. 1 . 208. $\frac{1}{2 \sqrt{x}} \cdot 209 . \frac{1}{3 \sqrt[3]{x^{2}}}$. 210. $-\frac{1}{3}$. 211. 0. 212. $\frac{a}{2}$. 213. $-\frac{5}{2}$. 214. $\frac{1}{2}$. 215. 0.216. a) $\frac{1}{2} \sin 2$; b) 0. 217. 3. 218. $\frac{5}{2}$. 219. $\frac{1}{3}$. 220. л. 221. $\frac{1}{2}$. 222. $\cos \alpha .223 .-\sin \alpha$ 224. π. 225. $\cos x .226 .-\frac{1}{\sqrt{2}} .227$. a) $0 ;$ b) 1 . 228. $\frac{2}{\pi}$. 229. $\frac{1}{2}$. 230. 0. 231. $-\frac{1}{\sqrt{3}}$. 232. $\frac{1}{2}\left(n^{2}-m^{2}\right) .233 . \frac{1}{2}$. $234 . \quad 1$. 235. $\frac{2}{3}$. 236. $\frac{2}{\pi}$. 237. $-\frac{1}{4}$. 238. л. 239. $\frac{1}{4}$. 240. 1. 241. 1. 242. $\frac{1}{4}$. 243. $0 \quad 244$. $\frac{3}{2}$. 245. 0 . 246. e^{-1}. 247. e^{2}. 248. e^{-1}. 249. e^{-1}. 250. e^{x}. 251. e. 252. a) 1. Solution. $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x}}=\lim _{x \rightarrow 0}[1-(1-\cos x)]^{\frac{1}{x}}=$ $=\lim _{x \rightarrow 0}\left(1-2 \sin ^{2} \frac{x}{2}\right)^{\frac{1}{x}}=\lim _{x \rightarrow 0}\left[\left(1-2 \sin ^{2} \frac{x}{2}\right)^{\left.-\frac{1}{2 \sin ^{2} \frac{x}{2}}\right]^{-\frac{2 \sin ^{2} \frac{x}{2}}{x}}=}=\right.$

$$
=e^{\lim _{x \rightarrow 0}\left(-\frac{2 \sin ^{2} \frac{x}{2}}{x}\right)}
$$

Since $\lim _{x \rightarrow 0}\left(-\frac{2 \sin ^{2} \frac{x}{2}}{x}\right)=-2 \lim _{x \rightarrow 0}\left[\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2} \frac{x^{2}}{4 x}\right]=-2 \cdot 1 \cdot \lim _{x \rightarrow 0} \frac{x}{4}=0$, it follows that $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x}}=e^{0}=1$. b) $\frac{1}{\sqrt{e}}$. Solution. As in the preceding case $\quad\left(\right.$ see \quad a), $\quad \lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}=e^{\lim _{x \rightarrow 0}\left(\frac{-2 \sin ^{2} \frac{x}{2}}{x^{2}}\right)}$. Since $\lim _{x \rightarrow 0}\left(\frac{-2 \sin ^{2} \frac{x}{2}}{x^{2}}\right)=$ $=-2 \lim _{x \rightarrow 0}\left[\left(\frac{\sin \frac{x}{2}}{\frac{x}{2}}\right)^{2} \frac{x^{2}}{4 x^{2}}\right]=-\frac{1}{2}$, it follows that $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}=e^{-\frac{1}{2}}=$ $=\frac{1}{\sqrt{e}} \cdot 253 . \ln 2.254 .10 \log e .255 .1 .256 .1 .257 .-\frac{1}{2} .258 .1$. Hint. Put $e^{x}-1=\alpha$, where $\alpha \rightarrow 0$. 259. In a. Hint. Utilize the identity $a=e^{\ln a}$. 260. $\ln a$ Hint. Put $\frac{1}{n}=\alpha$, where $\alpha \rightarrow 0$ (see Example 259) 261. $a-b$. 262. 1. 263. a) 1 ; b) $\frac{1}{2}$. 264. a) -1 ; b) 1 . 265. a) -1 ; b) 1 . 266. a) 1 ; b) 0 . 267. a) 0 ; b) 1. 268. a) -1 ; b) 1. 269. a) -1 ; b) 1. 270. a) $-\infty$; b) $+\infty$
271. Solution. If $x \neq k \pi(k=0, \pm 1, \pm 2, \ldots)$, then $\cos ^{2} x<1$ and $y=0$; but if $x=k \pi$, then $\cos ^{2} x=1$ and $y=1$. 272. $y=x$ when $0<x<1 ; y=\frac{1}{2}$ when $x=1 ; y=0$ when $x>1$ 273. $y=|x|$. 274. $y=-\frac{\pi}{2}$ when $x<0 ; y=0$ when $x=0 ; y=\frac{\pi}{2}$ when $x>0$. 275. $y=1$ when $0 \leqslant x<1 ; y=x$ when $1<x<+\infty$. 276. $\frac{61}{450} .277 . x_{1} \rightarrow-\frac{c}{b} ; \quad x_{2} \rightarrow \infty$. 278. \quad ת. 279. $2 \pi R$. $280 \frac{e}{e-1} \cdot 281.1 \frac{1}{3} \cdot 282 . \frac{\sqrt{e^{\pi}+1}}{e^{\frac{\pi}{2}}-1}$. 284. $\lim _{n \rightarrow \infty} A C_{n}=\frac{l}{3}$. 285. $\frac{a b}{2}$. 286. $k=1$, $b=0$; the straight line $y=x$ is the asymptote of the curve $y=\frac{x^{2}+1}{x^{2}+1}$. 287. $Q_{t}^{(n)}=Q_{0}\left(1+\frac{k t}{n}\right)^{n}$, where k is the proportionality factor (law of compound interest); $Q_{i}=Q_{0} e^{k l}$. 288. $|x|>\frac{1}{\varepsilon}$, a) $|x|>10 ;$ b) $|x|>100$; c) $|x|>1000$. 289. $|x-1|<\frac{\varepsilon}{2} \quad$ when $\quad 0<\varepsilon<1 ; \quad$ a) $\quad|x-1|<0.05$; b) $|x-1|<0.005 ;$ c) $|x-1|<0.0005$ 290. $|x-2|<\frac{1}{N}=\delta ; \quad$ a) $\quad \delta=0.1$; b) $\delta=0.01$; c) $\delta=0.001$. 291. a) Second, b) third. $\frac{1}{2}, \frac{3}{2}$. 292. a) 1 ; b) 2 ; c) 3 . $\varepsilon 93$ a) 1 ; b) $\frac{1}{4}$; c) $\frac{2}{3}$; d) 2 ; e) 3. 295. No 296. 15. 297. -1 . 298. -1 . 299. 3. 300. a) $1.03(10296)$; b) $0.985(0.9849)$; c) $3.167(3.1623)$ Hint. $\sqrt{10}=\sqrt{9+1}=3 \sqrt{1+\frac{1}{9}} ; \quad$ d) $\quad 10.954$ (10.954). 301. 1) 0.98 (09804); 2) $1.03(1.0309)$; 3) $0.0095(0.00952)$; 4) $3.875(3.8730)$; 5) $1.12(1.125)$; 6) 072 (0.7480); 7) 0.043 (0.04139). 303 , a) 2 ; b) 4 ; c) $\frac{1}{2}$; d) $\frac{2}{3}$. 307. Hint. If $x>0$, then when $|\Delta x| \leq x$ we have $|\sqrt{x+\Delta x}-\sqrt{x}|=$ $=|\Delta x||(\sqrt{x+\Delta x}+\sqrt{x}) \leqslant|\Delta x| / \sqrt{x}$. 309. Hint. Take advantage of the inf quality $|\cos (x+\Delta x)-\cos x| \leqslant|\Delta x|$ 310. a) $x \neq \frac{\pi}{2}+k \pi$, where k is an integer; b) $x \neq k \pi$, where k is an integer 311. Hint. Take advantage of the inequality $||x+\Delta x|-|x|| \leqslant|\Delta x|$ 313. $A=4$. 314. $f(0)=1$. 315. No 316. a) $f(0)=n$; b) $f(0)=\frac{1}{2}$; c) $f(0)=2$; d) $f(0)=2$; e) $f(0)=0$; f) $f(0)=1$. 317. $x=2$ is a discontinuity of the second kind. 318, $x=-1$ is a removable discontinuity. 319. $x=-2$ is a discontinuity of the second kind; $x=2$ is a removable discontinuity 320. $x=0$ is a discontinuity of the first kind. 321. a) $x=0$ is a discontinuity of the second kind; b) $x=0$ is a removable discontinuity. 322. $x=0$ is a removable discontinuity, $x=k \pi(k= \pm 1, \pm 2, \ldots)$ are infinite discontinuities 323. $x=2 \pi k \pm \frac{\pi}{2} \quad(k=0, \quad \pm 1, \pm 2, \ldots) \quad$ are infinite discontinuities. 324. $x=k \pi(k=0, \pm 1, \pm 2, \ldots)$ are infinite discontinuities. 325. $x=0$ is a discontinuity of the first kind. 326. $x=-1$ is a removable discontinuity; $x=1$ is a point of discontiauity of the first kind. 327. $x=-1$ is a discon-
tinuity of the second kind. 328. $x=0$ is a removable discontinuity. 329. $x=1$ is a discontinuity of the first kind. 330. $x=3$ is a discontinuity of the first kind. 332. $x=1$ is a discontinuity of the first kind. 333. The function is continuous. 334. a) $x=0$ is a discontinuity of the first kind; b) the function is continuous; c) $x=k \pi$ (k is integral) are discontinuities of the first kind. 335. a) $x=k$ (k is integral) are discontinuities of the first kind; b) $x=k$ ($k \neq 0$ is integral) are points of discontinuity of the first kind. 337. No, since the function $y=E(x)$ is discontinuous at $x=1$. 338. 1.53. 339. Hint. Show that when x_{0} is sufficiently large, we have $P\left(-x_{0}\right) P\left(x_{0}\right)<0$.

Chapter II

341. а) 3 ; b) 0.21 ; c) $2 h+h^{2}$. 342. a) 0.1 ; b) -3 ; c) $\sqrt[3]{a+h}-\sqrt[3]{a}$. 344. a) 624 ; 1560 ; b) 0.01 ; 100; c) -1 ; 0.000011 . 345. а) $a \Delta x$; b) $3 x^{2} \Delta x+$ $+3 x(\Delta x)^{2}+(\Delta x)^{3} ; \quad 3 x^{2}+3 x \Delta x+(\Delta x)^{2} ; \quad$ c) $\quad-\frac{2 x \Delta x+(\Delta x)^{2}}{x^{2}(x+\Delta x)^{2}} ;-\frac{2 x+\Delta x}{x^{2}(x+\Delta x)^{2}} ;$
d) $\sqrt{x+\Delta x}-\sqrt{x} ; \frac{1}{\sqrt{x+\Delta x}+\sqrt{x}} ;$ e) $2^{x}\left(2^{\Delta x}-1\right) ; \quad \frac{2^{x}\left(2^{\Delta x}-1\right)}{\Delta x}$;
f) $\ln \frac{x+\Delta x}{x} ; \frac{1}{\Delta x} \ln \left(1+\frac{\Delta x}{x}\right) .346$. a) $-1 ;$ b) $0.1 ;$ c) $-h ; 0.347 .21$.
342. $15 \mathrm{~cm} / \mathrm{sec}$. 349. 7.5. 350. $f \frac{(x+\Delta x)-f(x)}{\Delta x}$. 351. $f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}$.
343. a) $\frac{\Delta \varphi}{\Delta t}$; b) $\frac{d \varphi}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \varphi}{\Delta t}$, where φ is the angle of turn at time t.
344. a) $\frac{\Delta T}{\Delta t}$; b) $\frac{d T}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta T}{\Delta t}$, where T is the temperature at time t.
345. $\frac{d Q}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta Q}{\Delta t}$, where Q is the quantity of substance at time t.
346. a) $\frac{\Delta m}{\Delta x}$; b) $\lim _{\Delta x \rightarrow 0} \frac{\Delta m}{\Delta x} \quad$ 356. a) $-\frac{1}{6} \approx-0.16$; b) $-\frac{5}{2!} \approx-0238$;
c) $-\frac{50}{201} \approx-0.249 ; \quad y_{x=2}^{\prime}=-0.25 . \quad 357$. $\sec ^{2} x$. Solution.
$y^{\prime}=\lim _{\Delta x \rightarrow 0} \frac{\tan (x+\Delta x)-\tan x}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x}{\Delta x \cos x \cos (x+\Delta x)}=\lim _{\Delta x \rightarrow 0} \frac{\sin \Delta x}{\Delta x} \times$
$\times \lim _{\Delta x \rightarrow 0} \frac{1}{\cos x \cos (x+\Delta x)}=\frac{1}{\cos ^{2} x}=\sec ^{2} x$. 358. a) $3 x^{2}$; b) $-\frac{2}{x^{3}}$; c) $\frac{1}{2 \sqrt{x}}$;
d) $\frac{-1}{\sin ^{2} x} .359 . \quad \frac{1}{12} \quad$ Solution. $\quad f^{\prime}(8)=\lim _{\Delta x \rightarrow 0} \frac{f(8+\Delta x)-f(8)}{\Delta x}=$ $=\lim _{\Delta x \rightarrow 0} \frac{\sqrt[3]{8+\Delta x}-\sqrt[3]{8}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{8+\Delta x-8}{\Delta x\left[\sqrt[3]{(8+\Delta x)^{2}}+\sqrt[3]{(8+\Delta x) 8}+\sqrt[3]{8^{2}}\right]}=$
$=\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt[3]{(8+\Delta x)^{2}+2 \sqrt[3]{8+\Delta x}+4}}=\frac{1}{12} . \quad 360 . \quad f^{\prime}(0)=-8, \quad f^{\prime}(1)=0$,
$f^{\prime}(2)=0$. 361. $x_{1}=0, x_{2}=3$. Hint. For the given function the equation $f^{\prime}(x)=f(x)$ has the form $3 x^{2}=x^{3}$. 362. $30 \mathrm{~m} / \mathrm{sec} .363 .1,2.364 .-1$. 365. $f^{\prime}\left(x_{0}\right)=\frac{-1}{x_{0}^{2}} .366 .-1,2, \tan \varphi=3$. Hint. Use the results of Example 3 and Problem 365. 367. Solution. a) $f^{\prime}(0)=\lim _{\Delta x \rightarrow 0} \frac{\sqrt[3]{\left(\overline{\Delta x)^{2}}\right.}}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt[3]{\Delta x}}= \pm \infty$;
b) $f^{\prime}(1)=\lim _{\Delta x \rightarrow 0} \frac{\sqrt[5]{1+\Delta x}-1}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{1}{\sqrt[5]{(\Delta x)^{4}}}=\infty ; \quad$ c) $\quad f^{\prime}-\left(\frac{2 k+1}{2} \pi\right)=$ $=\lim _{\Delta x \rightarrow-0} \frac{\left|\cos \left(\frac{2 k+1}{2} \pi+\Delta x\right)\right|}{\Delta x}=\lim _{\Delta x \rightarrow-0} \frac{|\sin \Delta x|}{\Delta x}=-1 ; \quad f^{\prime}+\left(\frac{2 k+1}{2} \pi\right)=$ $=\lim _{\Delta x \rightarrow+0} \frac{|\sin \Delta x|}{\Delta x}=1.368 .5 x^{4}-12 x^{2}+2.369 .-\frac{1}{3}+2 x-2 x^{3} .370 .2 a x+b$.
347. $-\frac{15 x^{2}}{a}$. 372. mat $t^{m-1}+b(m+n) t^{m+n-1}$. 373. $\frac{6 a x^{5}}{\sqrt{a^{2}+b^{2}}} \cdot$ 374. $-\frac{\pi}{x^{2}}$.
348. $2 x^{-\frac{1}{8}}-5 x^{\frac{8}{2}}-3 x^{-4}$. 376. $\frac{8}{3} x^{\frac{5}{3}}$. Hint. $y=x^{2} x^{\frac{2}{8}}=x^{\frac{8}{3}}$. 377. $\frac{4 b}{3 x^{2} \sqrt[3]{x}}-$ $-\frac{2 a}{3 x \sqrt[3]{x^{2}}} . \quad$ 378. $\frac{b c-a d}{(c+d x)^{2}} . \quad$ 379. $\frac{-2 x^{2}-6 x+25}{\left(x^{2}-5 x+5\right)^{2}} . \quad$ 380. $\frac{1-4 x}{x^{2}(2 x-1)^{2}}$.
349. $\frac{1}{\sqrt{z}(1-\sqrt{z})^{2}}$. 382. $5 \cos x-3 \sin x$. 383. $\frac{4}{\sin ^{2} 2 x}$. 384. $\frac{-2}{(\sin x-\cos x)^{2}}$.
350. $\quad t^{2} \sin t . \quad 386 . \quad y^{\prime}=0 . \quad$ 387. $\quad \cot x-\frac{x}{\sin ^{2} x} . \quad$ 388. $\quad \arcsin x+\frac{x}{\sqrt{1-x^{2}}}$.
351. $x \arctan x . \quad$ 390. $\quad x^{6} e^{x}(x+7)$. 391. $x e^{x}$. 392. $e^{x} \frac{x-2}{x^{3}}$. 393. $\frac{5 x^{4}-x^{5}}{e^{x}}$.
352. $e^{x}(\cos x-\sin x) .395 . x^{2} e^{x}$. 396. $e^{x}\left(\arcsin x+\frac{1}{\sqrt{1-x^{2}}}\right) \cdot 397 . \frac{x(2 \ln x-1)}{\ln ^{2} x}$.
353. $3 x^{2} \ln x$. 399. $\frac{2}{x}+\frac{\ln x}{x^{2}}-\frac{2}{x^{2}}$. 400. $\frac{2 \ln x}{x \ln 10}-\frac{1}{x}$. 401. $\sinh x+x \cosh x$.
354. $\frac{2 x \cosh x-x^{2} \sinh x}{\cosh ^{2} x}$. 403. $-\tanh ^{2} x$. 404. $\frac{-3(x \ln x+\sinh x \cosh x)}{x \ln ^{2} x \cdot \sinh ^{2} x}$.
355. $\frac{-2 x^{2}}{4-x^{4}}$.
356. $\frac{1}{\sqrt{1-x^{2}}} \operatorname{arcsinh} x+\frac{1}{\sqrt{1+x^{2}}} \arcsin x$.
357. $\frac{x-\sqrt{x^{2}-1} \operatorname{arccosh} x}{x^{2} \sqrt{x^{2}-1}}$. 408. $\frac{1+2 x \operatorname{arctanh} x}{\left(1-x^{2}\right)^{2}}$. 410. $\frac{3 a}{c}\left(\frac{a x+b}{c}\right)^{2}$.
358. $12 a b+18 b^{2} y . \quad$ 412. $16 x\left(3+2 x^{2}\right)^{3}$. 413. $\frac{x^{2}-1}{(2 x-1)^{3}} . \quad$ 414. $\frac{-x}{\sqrt{1-x^{2}}}$.
359. $\frac{b x^{2}}{\sqrt[3]{\left(a+b x^{2}\right)^{2}}} . \quad 416 .-\sqrt{\sqrt[3]{x^{2}}}-1 . \quad 418 . \quad \frac{1-\tan ^{2} x+\tan ^{4} x}{\cos ^{2} x}$.
360. $\frac{-1}{2 \sin ^{2} x \sqrt{\cot x}} .420 .2-15 \cos ^{2} x \sin x .421 . \frac{-16 \cos 2 t}{\sin ^{3} 2 t}$. Hint. $x=\sin ^{-2} t+$ $+\cos ^{-2} t$.

$$
\text { 422. } \frac{\sin x}{(1-3 \cos x)^{3}} \text {. }
$$

423. $\frac{\sin ^{3} x}{\cos ^{4} x}$.
424. $\frac{3 \cos x+2 \sin x}{2 \sqrt{15 \sin x-10 \cos x}}$.
425.
426. $\frac{1}{2 \sqrt{1-x^{2}} \sqrt{1+\arcsin x}}$.
427. $\frac{1}{2\left(1+x^{2}\right) \sqrt{\arctan x}}-\frac{3(\arcsin x)^{2}}{\sqrt{1-x^{2}}}$.
428. $\frac{-1}{\left(1+x^{2}\right)(\arctan x)^{2}}$.
429. $\frac{e^{x}+x e^{x}+1}{2 \sqrt{x e^{x}+x}} . \quad$ 430. $\frac{2 e^{x}-2^{x} \ln 2}{3 \sqrt[3]{\left(2 e^{x}-2^{x}+1\right)^{2}}}+\frac{5 \ln ^{4} x}{x} . \quad$ 432. $\quad(2 x-5) \times$ $\times \cos \left(x^{5}-5 x+1\right)-\frac{a}{x^{2} \cos ^{2} \frac{a}{x}} . \quad 433 . \quad-\alpha \sin (\alpha x+\beta) . \quad$ 434. $\quad \sin (2 t+\varphi)$.
430. $-2 \frac{\cos x}{\sin ^{3} x} . \quad$ 436. $\frac{-1}{\sin ^{2} \frac{x}{a}} . \quad$ 437. $x \cos 2 x^{2} \sin 3 x^{2} . \quad$ 438. \quad Solution.
$\frac{1}{\sqrt{1-(2 x)^{2}}}(2 x)^{\prime}=\frac{2}{\sqrt{1-4 x^{2}}}$.
431. $\frac{-2}{x \sqrt{x^{4}-1}}$. 440. $\frac{-1}{2 \sqrt{x-x^{2}}}$.
432. $\frac{-1}{1+x^{2}}$.
433. $\frac{-1}{1+x^{2}} .443 .-10 x e^{-x^{2}} .444 . ~-2 \times 5^{-x 2} \ln 5.445 . \quad 2 \times 10^{2 x}(1+x \ln 10)$.
434. $\sin 2^{t}+2^{t} t \cos 2^{t} \ln$ 2. 447. $\frac{-e^{x}}{\sqrt{1-e^{2 x}}}$. 448. $\frac{2}{2 x+7}$. 449. $\cot x \log e$.
435. $\frac{-2 x}{1-x^{2}} .451 . \quad \frac{2 \ln x}{x}-\frac{1}{x \ln x} .452 . \frac{\left(e^{x}+5 \cos x\right) \sqrt{1-x^{2}}-4}{\left(e^{x}+5 \sin x-4 \arcsin x\right) \sqrt{1-x^{2}}}$.
436. $\frac{1}{\left(1+\ln ^{2} x\right) x}+\frac{1}{\left(1+x^{2}\right) \arctan x} . \quad 454 . \quad \frac{1}{2 x \sqrt{\ln x+1}}+\frac{1}{2(\sqrt{x}+x)}$.
437. Solution. $y^{\prime}=\left(\sin ^{3} 5 x\right)^{\prime} \cos ^{2} \frac{x}{3}+\sin ^{3} 5 x\left(\cos ^{2} \frac{x}{3}\right)^{\prime}=3 \sin ^{2} 5 x \cos 5 x 5 \cos ^{2} \frac{x}{3}+$ $+-\sin ^{8} 5 x 2 \cos \frac{x}{3}\left(-\sin \frac{x}{3}\right) \frac{1}{3}=15 \sin ^{2} 5 x \cos 5 x \cos ^{2} \frac{x}{3}-\frac{2}{3} \sin ^{2} 5 x \cos \frac{x}{3} \sin \frac{x}{3}$. 456. $\frac{4 x+3}{(x-2)^{3}}$ 457. $\frac{x^{2}+4 x-6}{(x-3)^{5}}$. 458. $\frac{x^{7}}{\left(1-x^{2}\right)^{5}}$. 459. $\frac{x-1}{x^{2} \sqrt{2 x^{2}-2 x+1}}$.
438. $\frac{1}{\sqrt{\left(a^{2}-1 \cdot x^{2}\right)^{3}}} \cdot 461 . \frac{x^{2}}{\sqrt{\left(1+x^{2}\right)^{3}}} \cdot 462 . \frac{(1+\sqrt{x})^{8}}{\sqrt[3]{x}} \cdot 463 . x^{5} \sqrt[3]{\left(1+x^{8}\right)^{2}}$.
439. $\quad \frac{1}{\sqrt[4]{(x-1)^{3}(x+2)^{3}}} . \quad 465 . \quad 4 x^{3}\left(a-2 x^{3}\right)\left(a-5 x^{3}\right)$.
440. $\quad \frac{2 a b m n x^{n-1}\left(a+b x^{n}\right)^{m-1}}{\left(a-b x^{n}\right)^{m+1}} \cdot 467 . \quad \frac{x^{0}-1}{(x+2)^{6}} . \quad 468$. $\frac{a-3 x}{2 \sqrt{a-x}}$.
441. $\quad \frac{3 x^{2}+2(a+b+c) x+a b+b c+a c}{2 \sqrt{(x+a)(x+b)(x+c)}} . \quad 470 . \quad \frac{1+2 \sqrt{y}}{6 \sqrt{y} \sqrt[3]{(y+\sqrt{y})^{2}}}$.
442. $2(7 t+4) \sqrt[3]{3 t+2} .472 . \frac{y-a}{\sqrt{\left(2 a y-y^{2}\right)^{2}}}$
443. $\frac{1}{\sqrt{e^{x}+1}} \cdot 474 . \sin ^{3} x \cos ^{2} x$.
444. $\frac{1}{\sin ^{4} x \cos ^{4} x}$.
445. $10 \tan 5 x \sec ^{2} 5 x$.
446. $x \cos x^{2} . \quad 478 . \quad 3 t^{2} \sin 2 t^{3}$.
447. $3 \cos x \cos 2 x$.
448. $\tan ^{4} x$.
449. $\frac{\cos 2 x}{\sin ^{4} x}$
450. $\frac{(\alpha-\beta) \sin 2 x}{2 \sqrt{\alpha \sin ^{2} x+\beta \cos ^{2} x}}$. 483.0.
451. $\frac{1}{2} \frac{\arcsin x(2 \arccos x-\arcsin x)}{\sqrt{1-x^{2}}}$
452. $\frac{2}{x \sqrt{2 x^{2}-1}}$.
453. $\frac{1}{1+x^{2}}$.
454. $\frac{x \arccos x-\sqrt{1-x^{2}}}{\left(1-x^{2}\right)^{3 / 2}}$
455. $\frac{1}{\sqrt{a-b x^{2}}}$
456. $\sqrt{\frac{a-x}{a+x}}$
457. $2 \sqrt{a^{2}-x^{2}}$.
458. $\frac{-x}{\sqrt{2 x-x^{2}}}$.
459. $\operatorname{arc} \sin \sqrt{-}$.
460.

$\frac{5}{\sqrt{1-25 x^{2}} \arcsin 5 x}$.
484.
495. $\frac{\sin \alpha}{1-2 x \cos a+x^{2}}$.
496. $\frac{1}{5+4 \sin x}$.
497. $4 x \sqrt{\frac{x}{b-x}} .498 . \frac{\sin ^{2} x}{1+\cos ^{2} x} . ~ 499 . \quad \frac{a}{2} \sqrt{e^{a x}} . \quad$ 500. $\quad \sin 2 x e^{\sin ^{2} x}$.
501. $2 m^{2} p\left(2 m a^{m x}+b\right)^{p-1} a^{m x} \ln a$. 502. $e^{\alpha t}(\alpha \cos \beta t-\beta \sin \beta t)$. 503. $e^{\alpha x} \sin \beta x$.
504. $e^{-x} \cos 3 x .505 . x^{n-1} a-x 2\left(n-2 x^{2} \ln a\right) .506$. $-\frac{1}{2} y \tan x(1+\sqrt{\cos x} \ln a)$.
507. $\frac{3 \cot \frac{1}{x} \ln 3}{\left(x \sin \frac{1}{x}\right)^{2}} . \quad$ 508. $\frac{2 a x+b}{a x^{2}+b x+c} .509 . \frac{1}{\sqrt{a^{2}+x^{2}}} .510 . \frac{\sqrt{x}}{1+\sqrt{x}}$.
511. $\frac{1}{\sqrt{2 a x+x^{2}}}$. 512. $\frac{-2}{x \ln ^{2} x}$. 513. $-\frac{1}{x^{2}} \tan \frac{x-1}{x}$. 514. $\frac{2 x+11}{x^{2}-x-2}$. Hint.
$y=5 \ln (x-2)-3 \ln (x+1)$. 515. $\frac{3 x^{2}-16 x+19}{(x-1)(x-2)(x-3)}$. 516. $\frac{1}{\sin ^{2} x \cos x}$.
517. $\sqrt{x^{2}-a^{2}} . \quad 518 . \quad \frac{-6 x^{2}}{\left(3-2 x^{2}\right) \ln \left(3-2 x^{2}\right)} . \quad 519 . \quad \frac{15 a \ln ^{2}(a x+b)}{a x+b}$.
520. $\frac{2}{\sqrt{x^{2}+a^{2}}} . \quad 521 . \quad \frac{m x+n}{x^{2}-a^{2}} . \quad$ 522. $\quad \sqrt{2} \sin \ln x . \quad 523 . \quad \frac{1}{\sin ^{3} x}$.

527. $\left(3^{\frac{\sin a x}{\cos b x}} \ln 3+\frac{\sin ^{2} a x}{\cos ^{2} b x}\right) \frac{a \cos a x \cos b x+b \sin a x \sin b x}{\cos ^{2} b x}$. 528. $\frac{1}{1+2 \sin x}$.
529. $\frac{1}{x\left(1+\ln ^{2} x\right)}$ 530. $\frac{1}{\sqrt{1-x^{2} \operatorname{arc} \sin x}}+\frac{\ln x}{x}+\frac{1}{x \sqrt{1-\ln ^{2} x}}$.
531. $-\frac{1}{x\left(1+\ln ^{2} x\right)} \cdot$ 532. $\frac{x^{2}}{x^{4}+x^{2}-2}$. 533. $\frac{2}{\cos x \sqrt{\sin x}}$. 534. $\frac{x^{2}-3 x}{x^{4}-1}$.
535. $\frac{1}{1+x^{8}}$. 536. $\frac{\operatorname{arc} \sin x}{\left(1-x^{2}\right)^{3 / 2}}$. 537. $6 \sinh ^{2} 2 x \cdot \cosh 2 x$. 538. $e^{\alpha x}(\alpha \cosh \beta x+$ $+\beta \sinh \beta x): 539$. $6 \tanh ^{2} 2 x\left(1-\tanh ^{2} 2 x\right.$ 540. $2 \operatorname{coth} 2 x$. 541. $\frac{2 x}{\sqrt{a^{4}+x^{2}}}$.
542. $\frac{1}{x \sqrt{\ln ^{2} x-1}}$
543. $\frac{1}{\cos 2 x}$
544. $\frac{-1}{\sin x}$
545. $\frac{2}{1-x^{2}}$.
546. $x \operatorname{arctanh} x$
547. $x \operatorname{atc} \sinh x$. 548. a) $y^{\prime}=1$ when $x>0 ; y^{\prime}=-1$ when $x<0 ; y^{\prime}(0)$ does not exist; b) $y^{\prime}=|2 x|$. 549. $y^{\prime}=\frac{1}{x} .550 . f^{\prime}(x)=\left\{\begin{array}{l}-1 \text { when } x \leqslant 0, \\ -e^{-x} \text { when } x>0 .\end{array}\right.$ 552. $\frac{1}{2}+\frac{\sqrt{3}}{3}$. 553. 6r. 554. a) $f_{-}^{\prime}(0)=-1, \quad f_{+}^{\prime}(0)=1$; b) $f_{-}^{\prime}(0)=\frac{2}{a}$, $f_{+}^{\prime}(0)=\frac{-2}{a}$; c) $f_{-}^{\prime}(0)=1, f_{+}^{\prime}(0)=0$; d) $f_{-}^{\prime}(0)=f_{+}^{\prime}(0)=0$, e) $f_{-}^{\prime}(0) \quad$ and $f_{+}^{\cdot}(0)$ do not exist. 555. $1-x .556 .2+\frac{x-3}{4}$. 557. -1 . 558. 0 561. Solution. We have $y^{\prime}=e^{-x}(1-x)$. Since $e^{-x}=\frac{y}{x}$, it follows that $y^{\prime}=\frac{y}{x}(1-x)$ or $x y^{\prime}=y(1-x)$ 566. $(1+2 x)(1+3 x)+2(1+x)(1+3 x)+3(x+1)(1+2 x)$.
567. $\quad-\frac{(x+2)\left(5 x^{2}+19 x+20\right)}{(x+1)^{4}(x+3)^{5}}$.
568. $\frac{x^{2}-4 x+2}{2 \sqrt{x(x-1)(x-2)^{3}}}$
569. $\frac{3 x^{2}+5}{3\left(x^{2}+1\right)} \sqrt[3]{\frac{x^{2}}{x^{2}+1}}$. 570. $\frac{(x-2)^{9}\left(x^{2}-7 x+1\right)}{(x-1)(x-2)(x-3) \sqrt{(x-1)^{3}(x-3)^{4}}}$.
571. $-\frac{5 x^{2}+x-24}{3(x-1)^{1 / 2}(x+2)^{8 / 2}(x+3)^{8 / 2}} \cdot$ 572. $x^{x}(1+\ln x) .573 . x^{x^{2}+1}(1+2 \ln x)$.
574. $\sqrt[x]{x} \frac{1-\ln x}{x^{2}} .575 . x^{\sqrt{x}-\frac{1}{2}}\left(1+\frac{1}{2} \ln x\right)$. 576. $x^{x^{x}} x^{x}\left(\frac{1}{x}+\ln x+\ln ^{2} x\right)$.
577. $x^{\sin x}\left(\frac{\sin x}{x}+\cos x \ln x\right)$. 578. $\quad(\cos x)^{\sin x}(\cos x \ln \cos x-\sin x \tan x)$.
579. $\left(1+\frac{1}{x}\right)^{x}\left[\ln \left(1+\frac{1}{x}\right)+\frac{1}{1+x}\right]$.
$\times\left[\ln \arctan x+\frac{x}{\left(1+x^{2}\right) \arctan x}\right]$
581.
580. $\quad(\arctan x)^{x} \times$
b) $x_{y}^{\prime}=\frac{2}{2-\cos x}$; c) $x_{y}^{\prime}=\frac{10}{1+5 e^{\frac{x}{2}}} .582 . \frac{3}{2} t^{2}$.
a) $\quad x_{y}^{\prime}=\frac{1}{3\left(1+x^{2}\right)}$;

590. $-\frac{b}{a} \tan t$. 591. $-\tan 3$ t. 592. $y_{x}^{\prime}=\left\{\begin{array}{r}-1 \text { when } t<0, \\ 1 \text { when } t>0 .\end{array}\right.$ 593. $-2 e^{3 t}$.
594. $\tan t$. 596. 1. 597. ∞. 599. No. 600. Yes, since the equality is an identity. 601. $\frac{2}{5} \cdot 602 .-\frac{b^{2} x}{a^{2} y} .603 .-\frac{x^{2}}{y^{2}} .604 .-\frac{x(3 x+2 y)}{x^{2}+2 y} \cdot 605 .-\sqrt{\frac{y}{x}}$. 606. $-\sqrt[3]{\frac{y}{x}} \cdot$ 607. $\frac{2 y^{2}}{3\left(x^{2}-y^{2}\right)+2 x y}=\frac{1-y^{3}}{1+3 x y^{2}+4 y^{3}} \cdot$ 608. $\frac{10}{10-3 \cos y}$. 609. -1.610. $\frac{y \cos ^{2} y}{1-x \cos ^{2} y}$. 611. $\frac{y}{x} \frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}} .612 .(x+y)^{2}$. 613. $y^{\prime}=$ $=\frac{1}{e^{y}-1}=\frac{1}{x+\frac{y-1}{2}}$. 614. $\frac{y}{x}+e^{\frac{y}{x}} . \quad$ 615. $\frac{y}{x-y} . \quad$ 616. $\frac{x+y}{x-y}$. 617. $\frac{c y+x \sqrt{x^{2}+y^{2}}}{c x-y \sqrt{x^{2}+y^{2}}}$. 618. $\frac{x \ln y-y}{y \ln x-x} \frac{y}{x}$. 620. а) 0 ; b) $\frac{1}{2}$; c) 0 . 622. 45°; $\arctan 2 \approx 63^{\circ} 26^{\prime}$. 623. 45°. 624. $\arctan \frac{2}{e} \approx 36^{\circ} 21^{\prime}$. 625. $(0,20)$; (1, 15); $(-2,-12)$. 626. $(1,-3) .627 . y=x^{2}-x+1.628 . k=\frac{-1}{11} .629 .\left(\frac{1}{8},-\frac{1}{16}\right)$. 631. $y-5=0 ; x+2=0$. 632. $x-1=0 ; y=0$. 633. а) $y=2 x ; y=-\frac{1}{2} x$; b) $\quad x-2 y-1=0 ; \quad 2 x+y-2=0 ; \quad$ c) $\quad 6 x+2 y-\pi=0 ; \quad 2 x-6 y+3 \pi=0 ;$ d) $y=x-1 ; y=1-x ;$ e) $2 x+y-3=0 ; x-2 y+1=0$ for the point $(1,1)$; $2 x-y+3=0 ; x+2 y-1=0$ for the point $(-1,1)$. 634. $7 x-10 y+6=0$, $10 x+7 y-34=0$. 635. $y=0 ;(\pi+4) x+(\pi-4) y-\frac{\pi^{2} \sqrt{2}}{4}=0.636 .5 x+6 y-$ $-13=0,6 x-5 y+21=0$. 637. $x+y-2=0$. 638. At the point $(1,0)$: $y=2 x-2 ; y=\frac{1-x}{2} ;$ at the point $(2,0): y=-x+2 ; y=x-2$; at the point $(3,0): \quad y=2 x-6 ; \quad y=\frac{3-x}{2}$.
639. $\quad 14 x-13 y+12=0 ; \quad 13 x+14 y-41=0$.
640. Hint. The equation of the tangent is $\frac{x}{2 x_{0}}+\frac{y}{2 y_{0}}=1$. Hence, the tangent crosses the x-axis at the point $A\left(2 x_{0}, 0\right)$ and the y-axis at $B\left(0,2 y_{0}\right)$. Finding the midpoint of $A B$, we get the point $\left(x_{0}, y_{0}\right)$. 643. $40^{\circ} 36^{\prime} .644$. The parabolas are tangent at the point $(0,0)$ and intersect at an angle $\arctan \frac{1}{7} \approx 8^{\circ} 8^{\prime}$ at the point (1, 1). 647. $S_{t}=S_{n}=2 ; \quad t=n=2 \sqrt{2}$. 648. $\frac{1}{\ln 2} . \quad 652 . \quad T=2 a \sin \frac{t}{2} \tan \frac{t}{2} ; \quad N=2 a \sin \frac{t}{2} ; \quad S_{t}=2 a \sin ^{2} \frac{t}{2} \tan \frac{t}{2}$; $S_{n}=a \sin t . \quad 653 . \quad \arctan \frac{1}{k} . \quad 654 . \quad \frac{\pi}{2}+2 \varphi . \quad 655 . \quad S_{t}=4 \pi^{2} a ; \quad S_{n}=a ;$ $t=2 \pi a \sqrt{1+4 \pi^{2}} ; \quad n=a \sqrt{1+4 \pi^{2}} ; \quad \tan \mu=2 \pi . \quad 656 . \quad S_{t}=a ; \quad S_{n}=\frac{a}{\varphi_{0}{ }^{2}} ;$ $t=\sqrt{a^{2}+\varrho_{0}^{2}} ; \quad n=\frac{\varrho_{0}}{a} \sqrt{a^{2}+\varrho_{0}^{2}} ; \quad \tan \mu=-\varphi_{0} .657 .3 \mathrm{~cm} / \mathrm{sec} ; \quad 0 ;-9 \mathrm{~cm} / \mathrm{sec}$ 658. $15 \mathrm{~cm} / \mathrm{sec}$. 659. $-\frac{3}{2} \mathrm{~m} / \mathrm{sec}$. 660. The equation of the trajectory is $y=x \tan \alpha-$ $-\frac{g}{2 v_{0}^{2} \cos ^{2} \alpha} x^{2}$. The range is $\frac{v_{0}^{2} \sin 2 \alpha}{g}$. The velocity, $\sqrt{v_{2}^{0}-2 v_{0} g t \sin \alpha+g^{2} t^{2}}$; the slope of the velocity vector is $\frac{v_{0} \sin \alpha-g t}{v_{0} \cos \alpha}$. Hint. To determine the trajectory, eliminate the parameter t from the given system. The range is the abscissa of the point A (Fig. 17). The projections of velocity on the axes are $\frac{d x}{d t}$ and $\frac{d y}{d t}$ The magnitude of the velocity is $\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$; the velocity vector is directed along the tangent to the trajectory 661. Diminishes with the velocity 0.4 62. $\quad\left(\frac{9}{8}, \frac{9}{2}\right)$. 663. The diagonal increases at a rate of $\sim 3.8 \mathrm{~cm} / \mathrm{sec}$, the area, at a rate of $40 \mathrm{~cm}^{2}$ 'sec 664. The surface area increases at a rate of $02 \pi \mathrm{~m}^{2} / \mathrm{sec}$, the volume, at a rate of $0.05 \pi \mathrm{~m}^{2} / \mathrm{sec} .665 . \frac{\pi}{3} \mathrm{~cm} / \mathrm{sec} 666$. The mass of the rod is 360 g , the density at M is $5 x \mathrm{~g} / \mathrm{cm}$, the density at A is 0 , the density at B is $60 \mathrm{~g} / \mathrm{cm}$. 667. $56 x^{6}+210 x^{4}$. 668. $e^{x^{2}}\left(4 x^{2}+2\right)$. 669. $2 \cos 2 x$
670. $\frac{2\left(1-x^{2}\right)}{3\left(1+x^{2}\right)^{2}}$.
671. $\frac{-x}{\sqrt{\left(a^{2}+x^{2}\right)^{3}}}$
672. $2 \arctan x+\frac{2 x}{1+x^{2}}$.
673. $\frac{2}{1-x^{2}}+\frac{2 x \arcsin x}{\left(1-x^{2}\right)^{3 / 2}} \cdot 674 \cdot \frac{1}{a} \cosh \frac{x}{a}$. 679. $y^{\prime \prime \prime}=6$. 680. $\quad f^{\prime \prime \prime}(3)=4320$ 681. $y^{\mathrm{V}}=\frac{24}{(x+1)^{\mathrm{s}}} .682 . y^{\mathrm{VI}}=-64 \sin 2 x \quad 684.0 ; 1 ; 2 ; 2.685$. The velocity is $v=5 ; 4$ 997; 4.7. The acceleration, $a=0 ;-0.006 ;-0.6$. 686. The law of motion of the point M_{1} is $x=a \cos \omega t$; the velocity at time t is $-a \omega \sin \omega t$; the acceleration at time t is $-a \omega^{2} \cos \omega t$. Initial velocity, 0 ; initial acceleration: - $a \omega^{2}$; velocity when $x=0$ is $-a \omega$; acceleration when $x=0$ is 0 . The maximum absolute value of velocity is $a \omega$; the maximum absolute value of acceleration is $a \omega^{2}$. 687. $y^{(n)}=n!a^{n}$. 688. a) $n!(1-x)^{-(n+1)}$, b) $(-1)^{n+1} \frac{1 \cdot 3 \ldots(2 n-3)}{2^{n} x^{n-\frac{1}{2}}}$. 689. a) $\sin \left(x+n \frac{\pi}{2}\right.$; b) $2^{n} \cos \left(2 x+n \frac{\pi}{2}\right)$;
c) $(-3)^{n} e^{-3 x} ; \quad$ d) $\quad(-1)^{n-1} \frac{(n-1)!}{(1+x)^{n}} ; \quad$ e) $\frac{(-1)^{n+!} n!}{(1+x)^{n+1}} ;$ f) $\frac{2 n!}{(1-x)^{n+1}}$;
g) $2^{n-1} \sin \left[2 x+(n-1) \frac{\pi}{2}\right]$; h) $\frac{(-1)^{n-1}(n-1)!a^{n}}{(a x+b)^{n}} .690$. a) $x \cdot e^{x}+n e^{x}$:
b) $2^{n-1} e^{-2 x}\left[2(-1)^{n} x^{2}+2 n(-1)^{n-1} x+\frac{n(n-1)}{2}(-1)^{n-2}\right]$; c) $\left(1-x^{2}\right) \times$ $\times \cos \left(x+\frac{n \pi}{2}\right)-2 n x \cos \left(x+\frac{(n-1) \pi}{2}\right)-n(n-1) \cos \left(x+\frac{(n-2) \pi}{2}\right) ;$
d) $\frac{(-1)^{n-1} \cdot 1 \cdot 3 \ldots(2 n-3)}{2^{n} x^{\frac{2 n+1}{2}}}[x-(2 n-1)]$; e) $\frac{(-1)^{n} 6(n-4)!}{x^{n-3}}$ for $n \geqslant 4$.
$691 y^{(h)}(0)=\left(\begin{array}{lll}n-1)! & 692 . & \text { a) } 9 t^{2}\end{array}\right.$; b) $2 t^{2}+2$; c) $-\sqrt{1-t^{2}}$. 693. a) $\frac{-1}{a \sin ^{2} t}$;
b) $\frac{1}{3 a \cos ^{4} t \sin t}$; c) $\frac{-1}{4 a \sin ^{4} \frac{t}{2}}$; d) $\frac{-1}{a t \sin ^{8} t}$. 694. a) 0 ; b) $2 e^{3 a t}$. 695. a) $\left(1+t^{2}\right) \times$ $\times\left(1+3 t^{2}\right) ; \quad$ b) $\quad t \frac{1+t}{(1-t)^{3}} \quad$ 696. $\frac{-2 e^{-t}}{(\cos t+\sin t)^{3}} . \quad$ 697. $\quad\left(\frac{d^{2} y}{d x^{2}}\right)_{t=0}=1$.
699. $\frac{2 \cot ^{4} t}{\sin t} .700 . \frac{4 e^{2 t}(2 \sin t-\cos t)}{(\sin t+\cos t)^{5}} . \quad 701 . \quad-6 e^{8 t}\left(1+3 t+t^{2}\right) . \quad 702 . m^{n} t^{m}$.
703. $\frac{d^{2} x}{d y^{2}}=\frac{-f^{\prime \prime}(x)}{\left[f^{\prime}(x)\right]^{3}} ; \frac{d^{3} x}{d y^{3}}=\frac{3\left[f^{\prime \prime}(x)\right]^{2}-f^{\prime}(x) f^{\prime \prime \prime}(x)}{\left[f^{\prime}(x)\right]^{3}}$. 705. $-\frac{p^{2}}{y^{3}}$. 706. $-\frac{b^{4}}{a^{2} y^{3}}$. 707. $-\frac{2 y^{2}+2}{y^{5}} .708 . \frac{d^{2} y}{d x^{2}}=\frac{y}{(1-y)^{3}} ; \quad \frac{d^{2} x}{d y^{2}}=\frac{1}{y^{2}} .709 . \quad \frac{111}{256} .710 .-\frac{1}{16}$.
711. a) $\frac{1}{3}$; b) $-\frac{3 a^{2} x}{y^{5}}$. 712. $\Delta y=0.009001$; $d y=0.009$. 713. $d\left(1-x^{2}\right)=1$ when $x=1$ and $\Delta x=-\frac{1}{3} . \quad$ 714. $d S=2 x \Delta x, \Delta S=2 x \Delta x+(\Delta x)^{2} . \quad$ 717. For $x=0$.
718. No. 719. $d y=-\frac{\pi}{72} \approx-0.0436$. . 720. $d y=\frac{1}{2700} \approx 0.00037$.
721. $\quad d y=\frac{\pi}{45} \approx 0.0698$.
722. $\frac{-m d x}{x^{m+1}}$.
723. $\frac{d x}{(1-x)^{2}}$.
724. $\frac{d x}{\sqrt{a^{2}-x^{2}}}$.
725. $\frac{a d x}{x^{2}+a^{2}}$. 726. $-2 x e^{-x^{2}} d x$. 727. $\ln x d x$. 728. $\frac{-2 d x}{1-x^{2}}$. 729. $-\frac{1+\cos \varphi}{\sin ^{2} \varphi} d \varphi$.
730. $-\frac{\rho^{t} d t}{1+e^{2 t}} .732 .-\frac{10 x+8 y}{7 x+5 y} d x$. 733. $\frac{-y e^{-\frac{x}{y}} d x}{y^{2}-x e^{-\frac{x}{y}}}=\frac{y}{x-y} d x . \quad 734 \frac{x+y}{x-y} d x$.
735. $\frac{12}{11} d x$. 737. а) 0.485 ; b) 0.965 ; c) 1.2 ; d) -0.045 ; e) $\frac{\pi}{4}+0.025 \approx 081$.
738. $565 \mathrm{~cm}^{3} .739 . \sqrt{5} \approx 2.25 ; \sqrt{\overline{17}} \approx 4.13 ; \sqrt{\overline{70}} \approx 8.38 ; \sqrt{640} \approx 253$. 740. $\sqrt[3]{10} \approx 2.16 ; \sqrt[3]{70} \approx 4.13 ; \sqrt[3]{200} \approx 5.85$. 741. a) 5 ; b) 1.1 ; c) 0.93 ; d) 0.9 . 742. 1.0019. 743. 0.57 . 744. 2.03. 748. $\frac{-(d x)^{2}}{\left(1-x^{2}\right)^{3 / 2}} \cdot 749 . \frac{-x(d x)^{2}}{\left(1-x^{2}\right)^{1 / 2}}$. 750. $\left(-\sin x \ln x+\frac{2 \cos x}{x}-\frac{\sin x}{x^{2}}\right)(d x)^{2}$. 751. $\frac{2 \ln x-3}{x^{3}}(d x)^{2} .752 .-e^{-x} \times$ $\times\left(x^{2}-6 \ddot{x}+6\right)(d x)^{3} . \quad$ 753. $\quad \frac{384(d x)^{4}}{(2-x)^{5}} .754 . \quad 3 \cdot 2^{n} \sin \left(2 x+5+\frac{n \pi}{2}\right)(d x)^{4}$.
755. $e^{x \cos \alpha} \sin (x \sin \alpha+n \alpha) \cdot(d x)^{n}$. 757. No, since f^{\prime} (2) does not exist. 758. No. The point $x=\frac{\pi}{2}$ is a discontinuity of the function. 762. $\xi=0$.
763. (2, 4). 765. a) $\xi=\frac{14}{9}$; b) $\xi=\frac{\pi}{4}$. 768. $\ln x=(x-1)-\frac{1}{2}(x-1)^{2}+$ $+\frac{2(x-1)^{3}}{3!\xi^{3}}$, where $\xi=1+\theta(x-1), 0<\theta<1$. 769. $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{4}}{4!} \sin \xi_{11}$, where $\xi_{1}=\theta_{1} x, \quad 0<\theta_{1}<1 ; \sin x=x-\frac{x^{8}}{3!}+\frac{x^{5}}{5!}-\frac{x^{6}}{6!} \sin \xi_{2}$, where $\quad \xi_{2}=\theta_{2} x$, $0<\theta_{<}<1$. 770. $\quad e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{5}}{3!}+\ldots+\frac{x^{n-1}}{(n-1)!}+\frac{x^{n}}{n!} e^{\xi}$, where $\xi=\theta x$, $0<\theta<1$. 772. Error: a) $\frac{1}{16} \frac{x^{3}}{(1+\xi)^{5 / 2}}$; b) $\frac{5}{81} \frac{x^{8}}{(1+\xi)^{5 / 9}}$; in both cases $\xi=\theta x$; $0<\theta<1$. 773. The error is less than $\frac{3}{5!}=\frac{1}{40}$. 775. Solution. We have $\sqrt{\frac{a+x}{a-x}}=\left(1+\frac{x}{a}\right)^{\frac{1}{2}}\left(1-\frac{x}{a}\right)^{\frac{1}{2}}$. Expanding both factors in powers of x, we get: $\left(1+\frac{x}{a}\right)^{\frac{1}{2}} \approx 1+\frac{1}{2} \frac{x}{a}-\frac{1}{8} \frac{x^{2}}{a^{2}} ;\left(1-\frac{x}{a}\right)^{-\frac{1}{2}} \approx 1+\frac{1}{2} \frac{x}{a}+\frac{3}{8} \frac{x^{2}}{a^{2}}$. Multipl, m, ${ }^{\prime}$, we will have: $\sqrt{\frac{a+x}{a-x}} \approx 1+\frac{x}{a}+\frac{x^{2}}{2 a^{2}}$. Then, expanding $e^{\frac{x}{a}}$ in rowers of $\frac{x}{a}$, we get the same polynomial $e^{\frac{x}{a}} \approx 1+\frac{x}{a}+\frac{x^{2}}{2 a^{2}}$. 777. $-\frac{1}{3}$. $778 \infty \quad$ 779. $1 \quad$ 780.3. $781 . \frac{1}{2} \quad$ 782. 5. \quad 783. $\infty . \quad$ 784. 0. 785. $\frac{\pi^{2}}{2}$.
786. 1. 788. $\frac{2}{\pi}$. 789. 1. 790. 0. 791. a. 792. ∞ for $n>1$; a for $n=1$; 0 for $n<1 . \quad$ 793. 0.7 795. $\frac{1}{5}$. 796. $\frac{1}{12} \quad$ 797. $-1 . \quad$ 799. 1. 800. $e^{3} .801 .1$. 8021803.1 804. $\frac{1}{e} .805 . \frac{1}{e} .806 . \frac{1}{e} .807 .1$ 808. 1. 810. Hint. Find $\lim _{u \rightarrow 0} \frac{S}{\frac{2}{3} b h}$, where $S=\frac{R^{2}}{2}(\alpha-\sin \alpha)$ is the exact expression for the area of the segment (R is the radius of the corresponding circle).

Chapter III

811. $(-\infty,-2)$, increases; $(-2, \infty)$. decreases. 812. ($-\infty, 2$), decreases; (2, ∞), increases. 813. $(-\infty, \infty)$, increases. 814. $(-\infty, 0)$ and $(2, \infty)$, increases; $(0,2)$, decreases 815. $(-\infty, 2)$ and $(2, \infty)$, decreases. 816. $(-\infty, 1)$, increases; $(1, \infty)$, decreases. 817. $(-\infty,-2),(-2,8)$ and $(8, \infty)$, decreases. 818. (0,1), decreases; ($1, \infty$), increases. 819. $(-\infty,-1$) and ($1, \infty$), increases; $(-1,1)$, decreases 820. $(-\infty, \infty)$, increases 821. $\left(0, \frac{1}{e}\right)$, decreases; $\left(\frac{1}{e}, \infty\right)$, increases. 822. ($-2,0$), increases. 823. $(-\infty, 2)$, decreases;
$(2, \infty)$, increases. 824. $(-\infty, a)$ and (a, ∞), decreases. 825. $(-\infty, 0)$ and $(0,1)$, decreases; $(1, \infty)$, increases 827. $y_{\max }=\frac{8}{4}$ when $x=\frac{1}{2}$.
812. No extremum. 830. $y_{\min }=0$ when $x=0 ; y_{\min }=0$ when $x=12 ; y_{\max }=1296$ when $x=6$. 831. $y_{\min } \approx-0.76$ when $x \approx 0.23 ; y_{\max }=0$ when $x=1 ; y_{\min } \approx-0.05$ when $x \approx 1.43$. No extremum when $x=2$. ${ }^{\max } 832$. No extremum. ${ }^{\min } 833$. $y_{\text {max }}=-2$ when $x=0 ; y_{\min }=2$ when $x=2 \quad$ 834. $y_{\max }=\frac{9}{16}$ when $x=3.2$. 835. $y_{\max }=$ $=-3 \sqrt{3}$ when $x=-\frac{2}{\sqrt{3}} ; y_{\min }=3 \sqrt{3} \quad$ when $x=\frac{2}{\sqrt{3}} \quad$ 836. $y_{\max }=\sqrt{2}$ when $x=0 \quad$ 837. $y_{\max }=-\sqrt{3}$ when $x=-2 \sqrt{3} ; y_{\min }=\sqrt{3}$ when $x=2 \sqrt{3}$. 838. $y_{\min }=0$ when $x= \pm 1 ; y_{\max }=1$ when $x=0 \quad 839$. $y_{\min }=-\frac{3}{2} \sqrt{3}$ when $x=\left(k-\frac{1}{6}\right) \pi ; \quad y_{\max }=\frac{3}{2} \sqrt{3} \quad$ when $\quad x=\left(k+\frac{1}{6} \pi\right)(k=0, \pm 1, \pm 2, .$.$) .$ 840. $y_{\text {max }}=5$ when $x=12 k \pi ; y_{\max }=5 \cos \frac{2 \pi}{5}$ when $x=12\left(k \pm \frac{2}{5}\right) \pi ; y_{\text {min }}=$ $=-5 \cos \frac{\pi}{5}$ when $x=12\left(k \pm \frac{1}{5}\right) \pi ; \quad y_{\min }=1 \quad$ when $\quad x=6(2 k+1) \pi \quad(k=0$, $\pm 1, \pm 2, \ldots$. 841. $y_{\min }=0$ when $\quad x=0$. 842. $y_{\min }=-\frac{1}{e} \quad$ when $\quad x=\frac{1}{e}$. 843. $y_{\max }=\frac{4}{e^{2}} \quad$ when $x=\frac{1}{e^{2}} ; y_{\min }=0 \quad$ when $\quad x=1 \quad$ 844. $y_{\min }=1$ whan $x=0 \quad$ 845. $y_{\min }=-\frac{1}{e}$ when $x=-1 . \quad$ 846. $y_{\min }=0$ when $x=0 ; \quad y_{\max }-\frac{4}{e^{2}}$ when $x=2$ 847. $y_{\min }=e$ when $x=1$. 848. No extremum. 849. Smallest value is $m=-\frac{1}{2}$ for $x=-1$; greatest value, $M=\frac{1}{2}$ when $x=1$. 850. $m=0$ when $x=0$ and $x=10 ; M=5$ for $x=5$. 851. $m=\frac{1}{2}$ when $x=(2 k+1) \frac{\pi}{4}$; $M=1$ for $x=\frac{k \pi}{2}(k=0, \pm 1, \pm 2, \ldots)$. 852. $m=0$ when $x=1 ; M=\pi$ when $x=-1$. 853. $m=-1$ when $x=-1 ; M=27$ when $x=3$. 854. a) $m \ldots-6$ when $x=1 ; M=256$ when $x=5$; b) $m=-1579$ when $x=-10 ; M=3745$ when $x=12$. 856. $p=-2, q=4$. 861. Each of the terms must be equal to $\frac{a}{2}$ 862. The rectangle must be a square with side $\frac{l}{4}, 863$. Isosceles. 864. The side adjoining the wall must be twice the other side 865. The side of the cut-out square must be equal to $\frac{a}{6}$. 866. The altitude must be half the base. 867. That whose altitude is equal to the diameter of the base 868. Altitude of the cylinder, $\frac{2 R}{\sqrt{3}}$; radius of its base $R \sqrt{\frac{2}{3}}$, where R is the radius of the given sphere. 869. Altitude of the cylinder, $R \sqrt{2}$ where R is the radius of the given sphere. 870. Altitude of the cone, $\frac{4}{3}$
where R is the radius of the given sphere. 871. Altitude of the cone, $\frac{4}{3} R$, where R is the radius of the given sphere. 872. Radius of the base of the cone $\frac{3}{2} r$, where r is the radius of the base of the given cylinder. 873. That whose altitude is twice the diameter of the sphere. 874. $\varphi=\pi$, that is, the crosssection of the channel is a semicircle. 875. The central angle of the sector is $2 \pi \sqrt{\frac{2}{3}}$. 876. The altitude of the cylindrical part must be zero; that is, the vessel should be in the shape of a hemisphere. 877. $h=\left(l^{\frac{2}{3}}-d^{\frac{2}{3}}\right)^{\frac{3}{2}}$. 878. $\frac{x}{2 x_{0}}+\frac{y}{2 y_{0}}=1.879$. The sides of the rectangle are $a \sqrt{2}$ and $b \sqrt{2}$, where a and b are the respective semiaxes of the ellipse. 880. The coordinates of the vertices of the rectangle which lie on the parabola $\left(\frac{2}{3} a ; \pm 2 \sqrt{\frac{p a}{3}}\right)$. 881. $\left(\pm \frac{1}{\sqrt{3}}, \frac{3}{4}\right)$. 882. The angle is equal to the greatest of the numbers $\arccos \frac{1}{k} \quad$ and $\quad \arctan \frac{h}{d} . \quad$ 883. $\quad A M=a \frac{\sqrt[3]{p}}{\sqrt[3]{\bar{p}+\sqrt[3]{q}}}$.
813. $\frac{r}{\sqrt{2}}$.
814. a) $x=y=\frac{d}{\sqrt{2}} ; \quad$ b) $x=\frac{d}{\sqrt{3}} ; \quad y=d \sqrt{\frac{2}{3}} . \quad$ 886. $x=\sqrt{\frac{2 a Q}{q}}$;
$P_{\min }=\sqrt{2 a \emptyset Q} .887 . \sqrt{M m}$. Hint. For a completely elastic impact of two spheres, the velocity imparted to the stationary sphere of mass m_{1} after impact with a sphere of mass m_{2} moving with velocity u is equal to $\frac{2 m_{2} v}{m_{1}+m_{2}} .888 . n=\sqrt{\frac{\overline{N R}}{r}}$ (If this number is not an integer or is not a divisor of N, we take the closest integer which is a divisor of N). Since the internal resistance of the battery is $\frac{n^{2} r}{N}$, the physical meaning of the solution obtained is as follows: the internal resistance of the battery must be as close as possible to the external resistance. 889. $y=\frac{2}{3} h$. 891. $(-\infty, 2)$, concave down; $(2, \infty)$, concave up; $M(2,12)$, point of inflection. 892. $(-\infty, \infty)$, concave up. 893. ($-\infty,-3$), concave down, $(-3, \infty)$, concave up; no points of inflection. 894. $(-\infty,-6)$ and $(0,6)$, concave up; $(-6,0)$ and $(6, \infty)$, concave down; points of inflection $M_{1}\left(-6,-\frac{9}{2}\right), O(0,0), M_{2}\left(6, \frac{9}{2}\right)$. 895. $(-\infty$, $-\sqrt{3}$) and ($0, \sqrt{3}$), concave up; $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$, concave dowir; points of inflection $M_{1,2}(\pm \sqrt{\overline{3}}, 0)$ and $O(0,0)$. 896. $\left((4 k+1) \frac{\pi}{2}\right.$, $\left.(4 k+3) \frac{\pi}{2}\right)$, concave up; $\left((4 k+3) \frac{\pi}{2},(4 k+5) \frac{\pi}{2}\right)$, concave down $(k=0$, $\pm 1, \pm 2, \ldots)$; points of inflection, $\left((2 k+1) \frac{\pi}{2}, 0\right) .897 .(2 k \pi,(2 k+1) \pi)$, concave up; ($(2 k-1) \pi, 2 k \pi$), concave down ($k=0, \pm 1, \pm 2, \ldots$); the abscissas of the points of inflection are equal to $x=k \pi$. 898. $\left(0, \frac{1}{\sqrt{e^{3}}}\right)$, concave
down; $\left(\frac{1}{\sqrt{e^{8}}}, \infty\right)$, concave up; $M\left(\frac{1}{\sqrt{e^{3}}},-\frac{3}{2 e^{s}}\right)$ is a point of inflection. 899. $(-\infty, 0)$, concave up; $(0, \infty)$, concave down; $O(0,0)$ is a point of inflection. $900 .(-\infty,-3)$ and $(-1, \infty)$, concave up; $(-3,-1)$, concave down; points of inflection are $M_{1}\left(-3, \frac{10}{e^{3}}\right)$ and $M_{2}\left(-1, \frac{2}{e}\right)$. 901. $x=2$, $y=0 . \quad$ 902. $x=1, x=3, y=0 \quad$ 903. $x= \pm 2, y=1 . \quad$ 904. $y=x . \quad$ 905. $y=-x$, left, $y=x$, right. 906. $y=-1$ left, $y=1$, right 907. $x= \pm 1, y=-x$, left, $y=x$, right 908. $y=-2$, left, $y=2 x-2$, right. 909. $y=2 \quad$ 910. $x=0$. $y=1$, left, $y=0$, right. \quad 911. $x=0, y=1 . \quad$ 912. $y=0 . \quad$ 913. $x=-1$. 914. $y=x-\pi$, left; $y=x+\pi$, right. 915. $y=a$. 916. $y_{\max }=0$ when $x=0$; $y_{\text {min }}=-4$ when $x=2$; point of inflection, $M_{1}(1,-2)$. 917. $y_{\text {max }}=1$ when $x= \pm \sqrt{3} ; \quad y_{\text {min }}=0$ when $x=0 ;$ points of inflection $M_{1,2}\left(\pm 1, \frac{5}{9}\right)$
815. $y_{\text {max }}=4$ when $x=-1 ; y_{\text {man }}=0$ when $x=1$, point of inflection, $M_{1}(0,2)$. 919. $y_{\text {max }}=8$ when $x=-2, y_{\min }=0$ when $x=2$; point of inflection, $M(0,4)$. 920. $y_{\text {min }}=-1$ when $x=0$; points of inflection $M_{1,2}(\pm \sqrt{5}, 0)$ and $M_{\mathbf{s}, 4}\left(\pm 1,-\frac{64}{125}\right) .921 . y_{\max }=-2$ when $x=0 ; y_{\min }=2$ when $x=2$; asymptotes, $x=1, y=x-1$. 922. Points of inflection $M_{1,2}(\pm 1, \mp 2)$; asymptote $x=0$. 923. $y_{\text {max }}=-4$ when $x=-1 ; y_{\text {min }}=4$ when $x=1$; asymptote, $x=0$. 924. $y_{\text {min }}=3$ when $x=1$; pont of inflection, $M(-\sqrt[3]{2}, 0)$; asymptote, $x=0$. 925. $y_{\text {max }}=\frac{1}{3}$ when $\lambda=0$, points of inflection, $M_{1,2}\left(\pm 1, \frac{1}{4}\right)$; asymptote, $y=0$ 926. $y_{\text {max }}-2$ when $x=0$; asymptotes, $x= \pm 2$ and $y=0$. 927. $y_{\text {min }}=-1$ when $x=-1 ; y_{\text {max }}=1$ when $x=1$; points of inflection, $O(0,0)$ and $M_{1,2}\left(\pm 2 \sqrt{3}, \pm \frac{\sqrt{3}}{2}\right)$; asymptote, $y=0 \quad 928 . y_{\text {max }}=1$ when $x \rightarrow 4$; point of inflection, $M\left(5, \frac{8}{9}\right)$; asymptotes, $x=2$ and $y=0$. 929. Point of inflection, $O(0,0)$; asymptotes, $x= \pm 2$ and $y=0 . \quad 930 . y_{\text {max }}=-\frac{27}{16}$ when $x=\frac{8}{3}$; asymptotes, $x=0, x=4$ and $y=0$ 931. $y_{\text {max }}=-4$ when $x=-1 ; y_{\text {min }}=4$ when $x=1$; asymptotes, $x=0$ and $y=3 x$ 932. $A(0,2)$ and $B(4,2)$ are end-points; $y_{\text {max }}=2 \sqrt{2}$ when $x=2 \quad$ 933. $A(-8,-4)$ and $B(8,4)$ are end-points. Point of inflection, $O(0,0)$. 934. End-point, $A(-3,0) ; y_{\text {min }}=-2$ when $x=-2$. 935. End-points, $A(-\sqrt{3}, 0), O(0,0)$ and $B(\sqrt{3}, 0) ; y_{\text {max }}=\sqrt{2}$ when $x=-1$; point of inflection, $M(\sqrt{3+2 \sqrt{3}}$, $\sqrt{\left.6 \sqrt{1+\frac{2}{\sqrt{3}}}\right)}$. 936, $y_{\text {max }}=1$ when $x=0$, points of inflection, $M_{1,2}(\pm 1,0) .933$. Points of inflection, $M_{1}(0,1)$ and $M_{2}(1,0)$; asymptote, $y=-x$. 938. $y_{\text {max }}=0$ when $x=-1 ; y_{\text {min }}=-1$ (when $x=0$) 939. $y_{\text {max }}=2$ when $x=0$; points of inflection, $M_{1,2}(\pm 1, \sqrt[3]{2})$; asymptote, $y=0$. 940. $y_{\min }=-4$ when $x=-4 ; y_{\max }=4$ when $x=4$; point of inflection, $O(0,0)$; asymptote, $y=0$. 941. $y_{\text {min }}=\sqrt[3]{4}$ when $x=2, y_{\text {min }}=\sqrt[3]{4}$ when $x=4$; $y_{\text {max }}=2$ when $x=3$. 942. $y_{\text {min }}=2$ when $x=0$; asymptote, $x= \pm 2$. 943. Asymptotes, $x= \pm 2$ and $y=0$. 944. $y_{\text {min }}=\frac{\sqrt{3}}{\sqrt[3]{2}}$ when $x=\sqrt{3}$;
$y_{\text {max }}=-\frac{\sqrt{3}}{\sqrt[3]{2}}$ when $x=-3$; points of inflection, $M_{1}\left(-3,-\frac{3}{2}\right), O(0,0)$ and $M_{2}\left(3, \frac{3}{2}\right)$; asymptotes, $x= \pm 1 \quad$ 945. $y_{\text {min }}=\frac{3}{\sqrt[3]{2}}$ when $x=6$; point of inflection, $M\left(12, \frac{12}{\sqrt[3]{100}}\right)$; asymptote, $x=2$ 946. $y_{\max }=\frac{1}{e}$ when $x=1$; point of mflection, $M\left(2, \frac{2}{e^{2}}\right)$; asymptote, $y=0$. 947. Points of inflection, $M_{1}\left(-3 a, \frac{10 a}{e^{s}}\right)$ and $M_{2}\left(-a, \frac{2 a}{e}\right)$; asymptote, $y=0$. 948. $y_{\text {max }}=e^{2}$ when $x=4 ;$ points of inflection, $\quad M_{1,2}\left(\frac{8 \pm 2 \sqrt{2}}{2}, e^{\frac{3}{2}}\right)$; asymptote, $y=0$. 949. $y_{\text {max }}=2$ when $x=0$; points of inflection, $M_{1,2}\left(\pm 1, \frac{3}{e}\right) \cdot 950 . y_{\max }=1$ when $x= \pm 1 ; \quad u_{\text {min }}=0$ when $x=0$. 951. $y_{\text {max }}=0.74$ when $x=e^{2} \approx 739$; point of inflection, $M\left(e^{x / s} \approx 14.39,0.70\right)$; asymptotes, $x=0$ and $y=0$. 952. $y_{\min }=-\frac{a^{2}}{4 e}$ when $x=\frac{a}{\sqrt{e}}$, point of inflection, $M\left(\frac{a}{\sqrt{e^{5}}},-\frac{3 a^{2}}{4 e^{2}}\right)$. 953. $y_{\min }=e$ when $x=e$; point of inflection, $M\left(e^{2}, \frac{e^{2}}{2}\right)$; asymptote, $x=1$; $y \rightarrow 0$ when $x \rightarrow 0 . \quad$ 954. $\quad y_{\text {max }}=\frac{4}{e^{2}} \approx 0.54 \quad$ when $\quad x=\frac{1}{e^{2}}-1 \approx-0.86$; $y_{\text {min }}=0$ when $x=0$; point of inflection, $M\left(\frac{1}{e}-1 \approx-0.63 ; \frac{1}{e} \approx 0.37\right)$; $y \rightarrow 0$ as $x \rightarrow-1+0$ (limiting end-point). 955. $y_{\min }=1$ when $x= \pm \sqrt{2}$; points of inflection, $M_{1,2}(\pm 1.89,1.33)$; asymptotes, $x= \pm 1$. 956. Asymptote, $y=0$. 957. Asymptotes, $y=0$ (when $x \rightarrow+\infty$) and $y=-x$ (as $x \rightarrow-\infty$). 958. Asymptotes, $x=-\frac{1}{e}, x=0, y=1$; the function is not defined on the interval $\left[-\frac{1}{e}, 0\right]$. 959. Periodic function with period $2 \pi . y_{\min }=-\sqrt{2}$ when $x=\frac{5}{4} \pi+2 k \pi ; y_{\text {max }}=\sqrt{2}$ when $x=\frac{\pi}{4}+2 k \pi \quad(k=0, \quad \pm 1, \quad \pm 2, \ldots)$; points of inflection, $M_{k}\left(\frac{3}{4} \pi+k \pi, 0\right)$ 960. Periodic function with period $2 \pi . \quad y_{\text {min }}=-\frac{3}{4} \sqrt{3} \quad$ when $\quad x=\frac{5}{3} \pi+2 k \pi ; \quad y_{\text {max }}=\frac{3}{4} \sqrt{3}$ when $x=\frac{\pi}{3}+2 k \pi(k=0, \pm 1, \pm 2, \ldots)$; points of inflection, $M_{k}(k \pi, 0)$ and $N_{k}\left(\arccos \left(-\frac{1}{4}\right)+2 k \pi, \frac{3}{16} \sqrt{15}\right)$. 961. Periodic function with period 2π. On the interval $[-\pi, \pi], y_{\text {max }}=\frac{1}{4}$ when $x= \pm \frac{\pi}{3} ; \quad y_{\text {min }}=-2 \quad$ when $x= \pm \pi ; y_{\min }=0$ when $x=0$; points of inflection, $M_{1,2}(\pm 0.57,0.13)$ and $M_{\mathrm{a}, 4}(\pm 220,-0.95)$. 962 . Odd periodic function with period 2π. On interval $[0,2 \pi], y_{\text {max }}=1$ when $x=0 ; y_{\text {min }}=0.71$, when $x=\frac{\pi}{4} ; y_{\text {max }}=1$ when
$x=\frac{\pi}{2} ; y_{\min }=-1$ when $x=\pi ; y_{\text {max }}=-0.71$ when $x=\frac{5}{4} \pi ; y_{\text {min }}=-1$ when $x=\frac{3}{2} \pi ; \quad y_{\text {max }}=1 \quad$ when $x=2 \pi ;$ points of inflection, $M_{1}(0.36,0.86)$; $M_{2}(1.21,0.86) ; \quad M_{3}(2.36,0) ; \quad M_{4}(3.51,-0.86) ; \quad M_{5}(4.35,-0.86) ;$ $M_{0}(5.50,0)$. 963. Periodic function with period 2π. $y_{\operatorname{mln}}=\frac{\sqrt{2}}{2}$ when $x=\frac{\pi}{4}+2 k \pi ; \quad y_{\text {max }}=-\frac{\sqrt{2}}{2}$ when $x=-\frac{3}{4} \pi+2 k \pi \quad(k=0, \pm 1, \pm 2, \ldots) ;$ asymptotes, $x=\frac{3}{4} \pi+k \pi$ 964. Periodic function with period π; points of inflection, $M_{k}\left(\frac{\pi}{4}+k \pi, \frac{\sqrt{2}}{2}\right)(k=0, \pm 1, \pm 2, \ldots)$; asymptotes, $x=\frac{3}{4} \pi+k \pi$. 965. Even periodic function with period 2π On the interval $[0, \pi$ $y_{\text {max }}=\frac{4}{3 \sqrt{3}}$ when $x=\arccos \frac{1}{\sqrt{3}} ; y_{\text {max }}=0$ when $x=\pi ; y_{\text {min }}=-\frac{4}{3 \sqrt{3}}$ when $x=\arccos \left(-\frac{1}{\sqrt{3}}\right) ; y_{\min }=0$ when $x=0$; points of inflection, $M_{1}\left(\frac{\pi}{2}, 0\right)$; $M_{2}\left(\arcsin \frac{\sqrt{2}}{3}, \frac{4 \sqrt{7}}{27}\right) ; M_{3}\left(\pi-\arcsin \frac{\sqrt{2}}{3},-\frac{4 \sqrt{7}}{27}\right) . \quad$ 966. Even periodic function with period 2π. On the interval $[0, \pi] y_{\text {max }}=1$ when $x=0 ; \quad y_{\text {max }}=\frac{2}{3 \sqrt{6}} \quad$ when $\quad x=\arccos \left(-\frac{1}{\sqrt{6}}\right) ; y_{\text {min }}=-\frac{2}{3 \sqrt{6}}$ when $x=\arccos \frac{1}{\sqrt{6}} ; y_{\min }=-1$ when $x=\pi$; points of inflection, $M_{1}\left(\frac{\pi}{2}, 0\right)$; $M_{2}\left(\arccos \sqrt{\frac{13}{18}}, \frac{4}{9} \sqrt{\frac{13}{18}}\right) ; \quad M_{3}\left(\arccos \left(-\sqrt{\frac{13}{18}}\right),-\frac{4}{9} \sqrt{\frac{13}{18}}\right)$. 967. Odd function. Points of inflection, $M_{k}(k \pi, k \pi)(k=0, \pm 1, \pm 2, \ldots)$. 968. Even function. End-points, $A_{1,2}(\pm 283,-157) \quad y_{\text {max }}=157$ when $x=0$ (cusp); points of inflection, $M_{1,2}(\pm 1.54,-0.34)$. 969 . Odd function. Limiting points of graph $(-1,-\infty)$ and $(1,+\infty)$. Point of inflection, $O(0,0)$; asymptotes, $x= \pm 1 . \quad 970$. Odd function. $y_{\text {max }}=\frac{\pi}{2}-1+2 k \pi$ when $x=\frac{\pi}{4}+k \pi ; \quad y_{\min }=\frac{3}{2} \pi+1+2 k \pi$ when $x=\frac{3}{4} \pi+k \pi ;$ points of inflection, $M_{k}(k \pi, 2 k \pi)$; asymptotes, $x=\frac{2 k+1}{2} \pi(k=0, \pm 1, \pm 2, \ldots)$ 971. Even function. $y_{\min }=0$ when $x=0$; asymptotes, $y=-\frac{\pi}{2} x-1$ (as $x \rightarrow-\infty$) and $y=\frac{\pi}{2} x-1$ (as $x \rightarrow+\infty$). 972. $y_{\text {min }}=0$ when $x=0$ (node); asymptote, $y=1$. 973. $y_{\text {min }}=1+\frac{\pi}{2} \quad$ when $x=1 ; y_{\max }=\frac{3 \pi}{2}-1$ when $x=-1$; point of inflection (centre of symmetry) ($0, \pi$); asymptotes, $y=x+2 \pi$ (left) and $y=x$ (right). 974. Odd function. $y_{\min }=1.285$ when $x=1 ; y_{\max }=1.856$ when $x=-1$; point of inflection, $M\left(0, \frac{\pi}{2}\right)$; asymptotes, $y=\frac{x}{2}+\pi$ (when $x \rightarrow-\infty$) and $y=\frac{x}{2}$ (as $x \rightarrow+\infty$). 975. Asymptotes, $x=0$ and $y=x-\ln 2$.
816. $y_{\mathrm{min}}=1.32$ when $x= \pm 1$; asymptote, $x=0$. 977. Periodic function with period 2π. $y_{\min }=\frac{1}{6}$ when $x=\frac{3}{2} \pi+2 k \pi ; \quad y_{\max }=e$ when $x=\frac{\pi}{2}+2 k \pi$ $(k=0, \pm 1, \pm 2, \ldots)$; points of inflection, $M_{k}\left(\arcsin \frac{\sqrt{5}-1}{2}+2 k \pi, e^{\frac{V_{5}^{5}-1}{2}}\right)$ and $N_{k}\left(-\arcsin \frac{\sqrt{5}-1}{2}+(2 k+1) \pi, e^{\frac{\sqrt{5}+1}{2}}\right)$. 978. End-points, $A(0,1)$ and $B(1,4.81)$. Point of inflection, $M(0.28,1.74)$. 979. Points of inflection, $M(0.5,1.59)$; asymptotes, $y=0.21$ (as $x \rightarrow-\infty$) and $y=4.81$ (as $x \rightarrow+\infty$). 980. The domain of definition of the function is the set of intervals ($2 k \pi$, $2 k \pi+\pi)$, where $k=0, \pm 1, \pm 2, \ldots$ Periodic function with period 2π. $y_{\text {max }}=0$ when $x=\frac{\pi}{2}+2 k \pi \quad(k=0, \quad \pm 1, \quad \pm 2, \quad \ldots) ;$ asymptotes, $x=k \pi$. 981. The domain of definition is the set of intervals $\left[\left(2 k-\frac{1}{2}\right) \pi\right.$, $\left.\left(2 k+\frac{1}{2}\right) \pi\right]$, where k is an integer. Periodic function with period 2π. Points of inflection, $M_{k}(2 k \pi, 0)(k=0, \pm 1, \pm 2, \ldots)$ asymptotes, $x= \pm \frac{\pi}{2}+2 k \pi$. 982. Domain of definition, $x>0$; monotonic increasing function; asymptote, $x=0$. 983. Domain of definition, $|x-2 k \pi|<\frac{\pi}{2}$ $(k=0, \pm 1, \pm 2, \ldots)$. Periodic function with period $2 \pi y_{\min }=1$ when $x=2 k \pi \quad(k=0, \pm 1, \pm 2, \ldots)$; asymptotes, $x=\frac{\pi}{2}+k \pi$. 984. Asymptote, $y=1.57 ; y \rightarrow-1.57$ as $x \rightarrow 0$ (limiting end-point). 985. End-points, $A_{1,2}(\pm 1.31,157) ; y_{\min }=0$ when $x=0$. 986. $y_{\min }=\left(\frac{1}{e}\right)^{\frac{1}{e}} \approx 0.69$ when $x=\frac{1}{e} \approx 0.37 ; y \rightarrow 1$ as $x \rightarrow+0 \quad$ 987. Limuting end-point, $A(+0,0)$; $\frac{1}{e} \approx 1.44$ when $x=e \approx 2.72$; asymptote, $y=1$; point of inflection, $y_{\text {max }}=e^{\bar{e}} \approx 1.44$ when $x=e \approx 2.72$; asymptote, $y=1$; point of inflection, 10 , $M_{1}(0.58,0.12)$ and $M_{2}(435,140)$. 988. $x_{\text {min }}=-1$ when $t=1(y=3) ; y_{\text {min }}=-1$ when $t=-1(x=3) \quad 989$. To obtain the graph it is sufficient to vary t from 0 to 2π. $x_{\min }=-a$ when $t=\pi(y=0) ; x_{\max }=a$ when $t=0(y=0) ; y_{\min }=-a$ (cusp) when $t=+\frac{3 \pi}{2} \quad(x=0) ; y_{\max }=+a$ (cusp) when $t=\frac{\pi}{2} \quad(x=0)$; points of inflection when $t=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} \quad\left(x= \pm \frac{a}{2 \sqrt{2}}, y= \pm \frac{a}{\sqrt{2}}\right)$.
817. $x_{\min }=-\frac{1}{e}$ when $t=-1(y=-e)$; $y_{\max }=\frac{1}{e}$ when $t=1(x=e)$; points of inflection when $t=-\sqrt{2}$, i.e., $\left(-\frac{\sqrt{2}}{e^{\sqrt{2}}},-\sqrt{2 e} V^{-\overline{2}}\right)$ and when $t=\sqrt{\overline{2}}$, i.e., $\left(\sqrt{2} e^{\sqrt{2}}, \frac{\sqrt{2}}{e^{\sqrt{2}}}\right)$; asymptotes, $x=0$ and $y=0.991 . x_{\min }=1$ and $y_{\min }=1$ when $t=0$ (cusp); asymptote, $y=2 x$ when $t \rightarrow+\infty$. 982. $y_{\min }=0$ when $t=0$.
818. $d s=\frac{a}{y} d x, \quad \cos \alpha=\frac{y}{a} ; \quad \sin \alpha=-\frac{x}{a} . \quad$ 994. $\quad d s=\frac{1}{a} \quad \sqrt{\frac{a^{4}-c^{2} x^{2}}{a^{2}-x^{2}}} d x ;$ $\cos \alpha=\frac{a \sqrt{a^{2}-x^{2}}}{\sqrt{a^{4}-c^{2} x^{2}}} ; \sin \alpha=-\frac{b x}{\sqrt{a^{2}-c^{2} x^{2}}}, \quad$ where $c=\sqrt{a^{2}-b^{2}} . \quad$ 995. $\quad d s=$ $=\frac{1}{y} \sqrt{p^{2}+y^{2}} d x ; \quad \cos \alpha=\frac{y}{\sqrt{p^{2}+y^{2}}} ; \quad \sin \alpha=\frac{p}{\sqrt{p^{2}+y^{2}}} . \quad 996 . \quad d s=\sqrt[3]{\frac{a}{x}} d x ;$ $\cos \alpha=\sqrt[3]{\frac{x}{a}} ; \quad \sin \alpha=-\sqrt[3]{\frac{y}{a}} . \quad$ 997. $\quad d s=\cosh \frac{x}{a} d x ; \quad \cos \alpha=\frac{1}{\cosh \frac{x}{a}} ;$ $\sin \alpha=\tanh \frac{x}{a}$. 998. $d s=2 a \sin \frac{t}{2} d t ; \cos \alpha=\sin \frac{t}{2} ; \quad \sin \alpha=\cos \frac{t}{2} .999 . d s=$ $=3 a \sin t \cos t d t ; \cos \alpha=-\cos t ; \sin \alpha=\sin t .1000 . d s=a \sqrt{1+\varphi^{2}} d \varphi ; \cos \beta=$ $=\frac{1}{\sqrt{1+\varphi^{2}}} \cdot 1001 . d s=\frac{a}{\varphi^{2}} \sqrt{1+\varphi^{2}} d \varphi ; \cos \beta=-\frac{1}{\sqrt{1+\varphi^{2}}}, 1002 \cdot d s=\frac{a}{\cos ^{2} \frac{\varphi}{2}} d \varphi ;$ $\sin \beta=\cos \frac{\varphi}{2} . \quad$ 1003. $\quad d s=a \cos \frac{\varphi}{2} d \varphi ; \quad \sin \beta=\cos \frac{\varphi}{2} . \quad$ 1004. $\quad d s=$ $=r \sqrt{1+(\ln a)^{2}} d \varphi ; \quad \sin \beta=\frac{1}{\sqrt{1+(\ln a)^{2}}} . \quad 1005 . \quad d s=\frac{a^{2}}{r} d \varphi ; \quad \sin \beta=\cos 2 \varphi$. 1006. $K=36$. 1007. $K=\frac{1}{3 \sqrt{2}} \cdot$ 1008. $K_{A}=\frac{a}{b^{2}} ; K_{B}=\frac{b}{a^{2}} .1009 . K=\frac{6}{13 \sqrt{13}}$. 1010. $K=\frac{3}{a \sqrt{2}}$ at both vertices. 1011. $\left(\frac{9}{8}, 3\right)$ and $\left(\frac{9}{8},-3\right)$. 1012. $\left(-\frac{\ln 2}{2}, \frac{\sqrt{2}}{2}\right)$. 1013. $R=\left|\frac{\left(1+9 x^{4}\right)^{3 / 2}}{6 x}\right|$. 1014. $R=\frac{\left(b^{4} x^{2}+a^{4} y^{2}\right)^{3 / 2}}{a^{4} b^{4}}$. 1015. $R=\left|\frac{\left(y^{2}+1\right)^{2}}{4 y}\right|$. 1016. $R=\left|\frac{3}{2} a \sin 2 t\right|$. 1017. $R=|a t|$. 1018. $R=$ $=\left|r \sqrt{1+k^{2}}\right| \cdot 1019 . R=\left|\frac{4}{3} a \cos \frac{\varphi}{2}\right|$. 1020. $\quad R_{\text {le.ast }}=|p|$. 1022. (2,2). 1023. $\left(-\frac{11}{2} a, \frac{16}{3} a\right) . \quad$ 1024. $\quad(x-3)^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{1}{4} . \quad$ 1025. $\quad(x+2)^{2}+$ $+(y-3)^{2}=8$. 1026. $p Y^{2}=\frac{8}{27}(X-p)^{3}($ semicubical parabola $)$ 1027. $(a X)^{\frac{2}{3}}+$ $\left.+(b)^{\prime}\right)^{\frac{2}{3}}=c^{\frac{4}{3}}$, where $c^{2}=a^{2}-b^{2}$.

Chapter IV

In the answers of this section the arbitrary additive constant C is omitted for the sake of brevity. 1031. $\frac{5}{7} a^{2} x^{7}$. 1032. $2 x^{3}+4 x^{2}+3 x . \quad$ 1033. $\frac{x^{4}}{4}+$ $+\frac{(a+b) x^{3}}{3}+\frac{a b x^{2}}{2}$. 1034. $a^{2} x+\frac{a b x^{4}}{2}+\frac{b^{2} x^{7}}{7}$. 1035. $\frac{2 x}{3} \sqrt{2 p x}$. 1036. $\frac{n x^{\frac{n-1}{n}}}{n-1}$.
1037. $\sqrt[n]{n x}$. 1038. $a^{2} x-\frac{9}{5} a^{\frac{4}{8}} x^{\frac{3}{8}}+\frac{9}{7} a^{\frac{2}{3}} x^{\frac{1}{3}}-\frac{x^{8}}{3}$. 1039. $\quad \frac{2 x^{2} \sqrt{x}}{5}+x$. 1040. $\frac{3 x^{4} \sqrt[3]{x}}{13}-\frac{3 x^{2} \sqrt[3]{x}}{7}-6 \sqrt[3]{x} .1041 . \frac{2 x^{2 m} \sqrt{x}}{4 m+1}-\frac{4 x^{m+n} \sqrt{x}}{2 m+2 n+1}+\frac{2 x^{2 n} \sqrt{x}}{4 n+1}$. 1042. $2 a \sqrt{\overline{a x}}-4 a x+4 x \sqrt{a x}-2 x^{2}+\frac{2 x^{2}}{5 \sqrt{a x}}$ 1043. $\frac{1}{\sqrt{7}}$ arc $\tan \frac{x}{\sqrt{7}}$. 1044. $\frac{1}{2 \sqrt{10}} \ln \left|\frac{x-\sqrt{10}}{x+\sqrt{10}}\right| .1045 . \ln \left(x+\sqrt{4+x^{2}}\right)$. 1046. arc $\sin \frac{x}{2 \sqrt{2}}$. 1047. $\arcsin \frac{x}{\sqrt{2}}-\ln \left(x+\sqrt{x^{2}+2}\right)$. 1048*. a) $\tan x-x$. Hint. Put $\tan ^{2} x=$ $=\sec ^{2} x-1$; b) $x-\tanh x$. Hint. Put $\tanh ^{2} x=1-\frac{1}{\cosh ^{2} x}$. 1049. a) $-\cot x-$ $-x$; b) $x-\operatorname{coth} x$. 1050. $\frac{(3 e)^{x}}{\ln 3+1}$. 1051. $a \ln \left|\frac{c}{a-x}\right|$. Solution. $\int \frac{a}{a-x} d x=$ $=-a \int \frac{d(a-x)}{a-x}=-a \ln |a-x|+a \ln c=a \ln \left|\frac{c}{a-x}\right| . \quad 1052 . x+\ln |2 x+1|$. Solution. Dividing the numerator by the denominator, we get $\frac{2 x+3}{2 x+1}=$ $=1+\frac{2}{2 x+1}$. Whence $\quad \int \frac{2 x+3}{2 x+1} d x=\int d x+\int \frac{2 d x}{2 x+1}=x+\int \frac{d(2 x+1)}{2 x+1}=$ $=x+\ln |2 x+1|$. 1053. $-\frac{3}{2} x+\frac{11}{4} \ln |3+2 x|$. 1054. $\frac{x}{b}-\frac{a}{b^{2}} \ln |a+b x|$. 1055. $\frac{a}{a} x+\frac{b a-a \beta}{a^{2}} \ln |\alpha x+\beta|$. 1056. $\frac{x^{2}}{2}+x+2 \ln |x-1|$. 1057. $\frac{x^{2}}{2}+2 x+$ $+\ln |x+3| .1058 . \frac{x^{4}}{4}+\frac{x^{3}}{3}+x^{2}+2 x+3 \ln |x-1|$ 1059. $a^{2} x+2 a b \ln |x-a|-$ $-\frac{b^{2}}{x-a}$. 1060. $\ln |x+1|+\frac{1}{x+1}$. Hint. $\int \frac{x d x}{(x+1)^{2}}=\int \frac{(x+1)-1}{(x+1)^{2}} d x=$ $=\int \frac{d x}{x+1}-\int \frac{d x}{(x+1)^{2}} . \quad$ 1061. $\quad-2 b \sqrt{1-y} . \quad$ 1062. $\quad-\frac{2}{3 b} \cdot \sqrt{(a-b x)^{8}}$. 1063. $\sqrt{x^{2}+1}$. Solution. $\int \frac{x d x}{\sqrt{x^{2}+1}}=\frac{1}{2} \int \frac{d\left(x^{2}+1\right)}{\sqrt{x^{2}+1}}=\sqrt{x^{2}+1}$. 1064.2 $\sqrt{x}+$ $+\frac{\ln ^{2} x}{2}$. 1065. $\frac{1}{\sqrt{15}} \arctan x \sqrt{\frac{3}{5}} . \quad$ 1066. $\frac{1}{4 \sqrt{14}} \ln \left|\frac{x \sqrt{7}-2 \sqrt{2}}{x \sqrt{7}+2 \sqrt{2}}\right|$. 1067. $\frac{1}{2 \sqrt{a^{2}-b^{2}}} \ln \left|\frac{\sqrt{a+b}+x \sqrt{a-b}}{\sqrt{a+b}-x \sqrt{a-b}}\right|$. 1068. $x-\sqrt{2}$ arc tan $\frac{x}{\sqrt{2}}$. 1069. $-\left(\frac{x^{2}}{2}+\frac{a^{2}}{2} \ln \left|a^{2}-x^{2}\right|\right) \quad$ 1070. $\quad x-\frac{5}{2} \ln \left(x^{2}+4\right)+\arctan \frac{x}{2}$. 1071. $\frac{1}{2 \sqrt{2}} \ln \left(2 \sqrt{2} x+\sqrt{7+8 x^{2}}\right)$. 1072. $\quad \frac{1}{\sqrt{5}} \arcsin x \sqrt{\frac{5}{7}}$. 1073. $\frac{1}{3} \ln \left|3 x^{2}-2\right|-\frac{5}{2 \sqrt{6}} \ln \left|\frac{x \sqrt{3}-\sqrt{2}}{x \sqrt{3}+\sqrt{2}}\right| \cdot$ 1074. $\frac{3}{\sqrt{35}} \arctan \sqrt{\frac{5}{7}} x-$
$-\frac{1}{5} \ln \left(5 x^{2}+7\right) .1075 \cdot \frac{3}{5} \sqrt{5 x^{2}+1}+\frac{1}{\sqrt{5}} \ln \left(x \sqrt{5}+\sqrt{5 x^{2}+1}\right) \cdot 1076: \sqrt{x^{2}-4}+$ $+3 \ln \left|x+\sqrt{x^{2}-4}\right|$. 1077. $\quad \frac{1}{2} \ln \left|x^{2}-5\right|$. 1078. $\quad \frac{1}{4} \ln \left(2 x^{2}+3\right)$. 1079. $\frac{1}{2 a} \ln \left(a^{2} x^{2}+b^{2}\right)+\frac{1}{a} \arctan \frac{a x}{b}$. 1080. $\frac{1}{2} \arcsin \frac{x^{2}}{a^{2}}$. 1081. $\frac{1}{3} \arctan x^{3}$. 1082. $\frac{1}{3} \ln \left|x^{3}+\sqrt{x^{6}-1}\right|$. 1083. $\frac{2}{3} \sqrt{(\arcsin x)^{3}} . \quad$ 1084. $\frac{\left(\arctan \frac{x}{2}\right)^{2}}{4}$. 1085. $\quad \frac{1}{8} \ln \left(1+4 x^{2}\right)-\frac{\sqrt{(\arctan 2 r)^{3}}}{3} \quad$ 1086. $\quad 2 V \sqrt{\ln \left(x+\sqrt{\left.1+x^{2}\right)}\right.}$. 1087. $-\frac{a}{m} e^{-m x}$. 1088. $-\frac{1}{3 \ln 4} 4^{2-s x}$. 1089. $e^{l}+e^{-l}$. 1090. $\frac{a}{2} e^{\frac{2 x}{a}}+2 x-$ $-\frac{a}{2} e^{-\frac{2 x}{a}} .1091 . \frac{1}{\ln a-\ln b}\left(\frac{a^{x}}{b^{x}}-\frac{b^{x}}{a^{x}}\right)-2 x$. 1092. $\frac{2}{3 \ln a} \sqrt{a^{3 x}}+\frac{2}{\ln a \sqrt{a^{x}}}$. 1093. $-\frac{1}{2 e^{x^{2}+1}}$. 1094. $\frac{1}{2 \ln 7} 7^{x 2}$. 1095. $-e^{\frac{1}{x}}$. 1096. $\frac{2}{\ln 5} 5^{\sqrt{x}}$. 1097. $\ln \left|e^{x}-1\right|$. 1098. $-\frac{2}{3 b} \sqrt{\left(a-b e^{x}\right)^{3}} \quad$ 1099. $\frac{3 a}{4}\left(e^{\frac{x}{a}}+1\right)^{\frac{4}{3}} .1100$. $\frac{x}{3}-$ $-\frac{1}{3 \ln 2} \ln \left(2^{x}+3\right) \quad$ Hint. $\frac{1}{2^{x}+3}=\frac{1}{3}\left(1-\frac{2^{x}}{2^{x}+3}\right)$. 1101. $\frac{1}{\ln a} \arctan \left(a^{x}\right)$. 1102. $-\frac{1}{2 b} \ln \left|\frac{1+e^{-b x}}{1-e^{-b \bar{x}}}\right|$. 1103. $\quad \arcsin e^{t} \quad$ 1104. $-\frac{1}{b} \cos (a+b x)$. 1105. $\sqrt{2} \sin \frac{x}{\sqrt{2}}$ 1106. $x-\frac{1}{2 a} \cos 2 a x$. 1107. $2 \sin \sqrt{-x} . \quad 1108 . \quad-\ln 10 x$ $\times \cos (\log x)$ 1109. $\frac{x}{2}-\frac{\sin 2 x}{4}$. Hint. Put $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$. 1110. $\frac{x}{2}+$ $+\frac{\sin 2 x}{4}$ Hint. See hint in 1109 1111. $\frac{1}{a} \tan (a x+b)$. 1112. $-\frac{\cot a x}{a}-x$. 1113. $a \ln \left|\tan \frac{x}{2 u}\right| .1114 . \frac{1}{15} \ln \left|\tan \left(\frac{5 x}{2}+\frac{\pi}{8}\right)\right| .1115 . \frac{1}{a} \ln \left|\tan \frac{a x+b}{2}\right|$. 1116. $\quad \frac{1}{2} \tan \left(x^{2}\right) . \quad 1117 . \quad \frac{1}{2} \cos \left(1-x^{2}\right) . \quad 1118 . \quad x-\frac{1}{\sqrt{2}} \cot x \sqrt{2}-$ $-\sqrt{2} \ln \left|\tan \frac{x \sqrt{2}}{2}\right| \cdot 1119 .-\ln |\cos x| .1120 . \ln |\sin x| .1121 . \quad(a-b) x$ $\times \ln \left|\sin \frac{x}{a-b}\right| .1122 .5 \ln \left|\sin \frac{x}{5}\right| .1123 . \quad-2 \ln |\cos \sqrt{-x}| .1124 . \frac{1}{2} \ln x$ $\times\left|\sin \left(x^{2}+1\right)\right|$. 1125. $\quad \ln |\tan x| . \quad 1126$. $\quad \frac{a}{2} \sin ^{2} \frac{x}{a} .1127 . \frac{\sin ^{4} 6 x}{24}$. 1128. $-\frac{1}{4 a \sin ^{4} a x} .1129 . \quad-\frac{1}{3} \ln (3+\cos 3 x)$. 1130. $-\frac{1}{2} \sqrt{\cos 2 x}$. 1131. $\quad-\frac{2}{9} \sqrt{\left(1+3 \cos ^{2} x\right)^{3}}$. 1132. $\frac{3}{4} \tan ^{4} \frac{x}{3}$. 1133. $\frac{2}{3} \sqrt{\tan ^{3} x}$. 1134. $-\frac{3 \cot ^{\frac{5}{3}} x}{5} \cdot 1135 \cdot \frac{1}{3}\left(\tan 3 x+\frac{1}{\cos 3 x}\right) \cdot 1136 \cdot \frac{1}{a}\left(\ln \left|\tan \frac{a x}{2}\right|+2 \sin a x\right)$. 14-1900
1137. $\frac{1}{3 a} \ln |b-a \cot 3 x|$. 1138. $\frac{2}{5} \cosh 5 x-\frac{3}{5} \sinh 5 x .1139 .-\frac{x}{2}+\frac{1}{4} \sinh 2 x$. 1140. $\ln \left|\tanh \frac{x}{2}\right|$. 1141. $2 \arctan e^{x}$. 1142. $\ln |\tanh x|$. 1143. $\ln \cosh x$. 1144. $\ln |\sinh x| \cdot 1145 .-\frac{5}{12} \sqrt[5]{\left(5-x^{2}\right)^{6}} \cdot 1146 \cdot \frac{1}{4} \ln \left|x^{4}-4 x+1\right| .1147 \cdot \frac{1}{4 \sqrt{5}} \times$ $\times \arctan \frac{x^{4}}{\sqrt{5}}$. 1148. $-\frac{1}{2} e^{-x^{2}} . \quad$ 1149. $\quad \sqrt{\frac{3}{2}} \arctan \left(x \sqrt{\frac{3}{2}}\right)-$ $-\frac{1}{\sqrt{3}} \ln \left(x \sqrt{3}+\sqrt{2+3 x^{2}}\right) .1150 . \frac{x^{2}}{3}-\frac{x^{2}}{2}+x-2 \ln |x+1| .1151 .-\frac{2}{\sqrt{e^{x}}}$. 1152. $\ln |x+\cos x|$. 1153. $\frac{1}{3}\left(\ln |\sec 3 x+\tan 3 x|+\frac{1}{\sin 3 x}\right) . \quad$ 1154. $-\frac{1}{\ln x}$. 1155. $\ln \left|\tan x+\sqrt{\tan ^{2} x-2}\right|$ 1156. $\sqrt{2} \arctan (x \sqrt{2})-\frac{1}{4\left(2 x^{2}+1\right)}$. 1157. $\frac{a \sin x}{\ln a} \cdot 1158 . \sqrt[3]{\frac{\left(x^{3}+1\right)^{2}}{2}}$. 1159. $\frac{1}{2} \arcsin \left(x^{2}\right)$. 1160. $\frac{1}{a} \tan a x-x$. 1161. $\frac{x}{2}-\frac{\sin x}{2} .1162 . \arcsin \frac{\tan x}{2} .1163 . a \ln \left|\tan \left(\frac{x}{2 a}+\frac{\pi}{4}\right)\right| \cdot 1164 . \frac{3}{4} \sqrt[3]{(1+\ln x)^{4}}$. 1165. $-2 \ln |\cos \sqrt{x-1}|$ 1166. $\quad \frac{1}{2} \ln \left|\tan \frac{x^{2}}{2}\right| . \quad 1167 . \quad e^{\arctan x}+$ $+\frac{\ln ^{2}\left(1+x^{2}\right)}{4}+\arctan x .1168 .-\ln |\sin x+\cos x| .1169 . \sqrt{2} \ln \left|\tan \frac{x}{2 \sqrt{2}}\right|-$ $-2 x-\sqrt{2} \cos \frac{x}{\sqrt{2}} \cdot 1170 . x+\frac{1}{\sqrt{2}} \ln \left|\frac{x-\sqrt{2}}{x+\sqrt{2}}\right| \cdot 1171 . \ln |x|+2 \arctan x$. 1172. $e^{\sin 2 x} . \quad 1173$. $\frac{5}{\sqrt{3}} \arcsin \frac{x \sqrt{3}}{2}+\sqrt{4-3 x^{2}} . \quad$ 1174. $x-\ln \left(1+e^{x}\right)$. 1175. $\frac{1}{\sqrt{a^{2}-b^{2}}} \arctan x \sqrt{\frac{a-b}{a+b}} \cdot 1176 \cdot \ln \left(e^{x}+\sqrt{e^{2 x}-2}\right) .1177 \cdot \frac{1}{a} \ln |\tan a x|$. 1178. $-\frac{T}{2 \pi} \cos \left(\frac{2 \pi t}{T}+\varphi_{0}\right)$. 1179. $\frac{1}{4} \ln \left|\frac{2+\ln x}{2-\ln x}\right| .1180 . \quad-\frac{\left(\arccos \frac{x}{2}\right)^{2}}{2}$. 1181. $-e^{-\tan x}$. 1182. $\frac{1}{2} \arcsin \left(\frac{\sin ^{2} x}{\sqrt{2}}\right) \cdot 1183 .-2 \cot 2 x .1184 . \frac{(\arcsin x)^{2}}{2}-$ $-\sqrt{1-x^{2}} .1185 . \ln \left(\sec x+\sqrt{\sec ^{2} x+1}\right) .1186 . \frac{1}{4 \sqrt{5}} \ln \left|\frac{\sqrt{5}+\sin 2 x}{\sqrt{5}-\sin 2 x}\right|$. 1187. $\frac{1}{\sqrt{2}} \arctan \left(\frac{\tan x}{\sqrt{2}}\right)$. Hint. $\quad \int \frac{d x}{1+\cos ^{2} x}=\int \frac{d x}{\sin ^{2} x+2 \cos ^{2} x}=$ $=\int \frac{\overline{\cos ^{2} x}}{\tan ^{2} x+2} . \quad 1188 . \quad \frac{2}{3} \sqrt{\left[\ln \left(x+\sqrt{1+x^{2}}\right)\right]^{2}} . \quad 1189 . \quad \frac{1}{3} \sinh \left(x^{3}+3\right)$. 1190. $\frac{1}{\ln 3} 3^{\tanh x}$. 1191. a) $\frac{1}{\sqrt{2}} \arccos \frac{\sqrt{2}}{x}$ when $x>\sqrt{2} ;$ b) $-\ln \left(1+e^{-x}\right)$;
c) $\frac{1}{80}\left(5 x^{2}-3\right)^{8} ; \quad$ d) $\frac{2}{3} \sqrt{(x+1)^{3}}-2 \sqrt{x+1} ; \quad$ e) $\quad \ln \left(\sin x+\sqrt{1+\sin ^{2} x}\right)$. 1192. $\frac{1}{4}\left[\frac{(2 x+5)^{12}}{12}-\frac{5(2 x+5)^{11}}{11}\right]$. 1193. $2\left(\left.\frac{\sqrt{x^{2}}}{3}-\frac{x}{2}+2 \sqrt{x}-2 \ln \right\rvert\, 1+\sqrt{\bar{x} \mid}\right)$. 1194. $\ln \left|\frac{\sqrt{2 x+1}-1}{\sqrt{2 x+1}+1}\right|$. 1195. $2 \arctan \sqrt{e^{x}-1}$. 1196. $\ln x-\ln 2 \ln \mid \ln x+$ $+2 \ln 2 \mid$. 1197. $\frac{(\arcsin x)^{3}}{3}$. 1198. $\frac{2}{3}\left(e^{x}-2\right) \sqrt{e^{x}+1}$. 1199. $\frac{2}{5}\left(\cos ^{2} x-5\right) \times$ $\times \sqrt{\cos x} .1200 . \ln \left|\frac{1}{1+\sqrt{x^{2}+1}}\right|$. Hint. Put $x=\frac{1}{t}$. 1201. $-\frac{x}{2} \sqrt{1-x^{2}}+$ $+\frac{1}{2} \operatorname{arc} \sin x . \quad$ 1202. $\quad-\frac{x^{2}}{3} \sqrt{2-x^{2}}-\frac{4}{3} \sqrt{2-x^{2}} . \quad$ 1203. $\sqrt{x^{2}-a^{2}}-$ $-a \arccos \frac{a}{x}$. 1204. $\arccos \frac{1}{x}$, if $x>0$, and $\arccos \left(-\frac{1}{x}\right)$ if $x<0^{*}$) Hint. Put $x=\frac{1}{t}$. 1205. $\sqrt{x^{2}+1}-\ln \left|\frac{1+\sqrt{x^{2}+1}}{x}\right|$ 1206. $-\frac{\sqrt{4-x^{2}}}{4 x}$. Note. The substitution $x=\frac{1}{z}$ may be used in place of the trigonometric substitution. 1207. $\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \arcsin x$. 1208. $2 \arcsin \sqrt{x}$. 1210. $\frac{x}{2} \sqrt{x^{2}-a^{2}}+$ $+\frac{a^{2}}{2} \ln \left|x+\sqrt{x^{2}-a^{2}}\right|$. 1211. $x \ln x-x . \quad$ 1212. $\quad x \arctan x-\frac{1}{2} \ln \left(1+x^{2}\right)$.
1213. $x \arcsin x+\sqrt{1-x^{2}} . \quad$ 1214. $\quad \sin x-x \cos x . \quad$ 1215. $\quad \frac{x \sin 3 x}{3}+\frac{\cos 3 x}{9}$. 1216. $-\frac{x+1}{e^{x}}$. 1217. $-\frac{x \ln 2+1}{2^{x} 2+1218 .} \frac{e^{3 x}}{27}\left(9 x^{2}-6 x+2\right)$. Solution. In place of repeated integration by parts we can use the following method of undetermined coefficients:

$$
\int x^{2} e^{3 x} d x=\left(A x^{2}+B x+C\right) e^{3 x}
$$

or, after differentiation,

$$
x^{2} e^{3 x}=\left(A x^{2}+B x+C\right) 3 e^{3 x}+(2 A x+B) e^{3 x}
$$

Cancelling out $e^{3 x}$ and equating the coefficients of identical powers of x, we get:

$$
1=3 A ; 0=3 B+2 A ; 0=3 C+B
$$

whence $A=\frac{1}{3} ; B=-\frac{2}{2} ; C=\frac{2}{27}$. In the general form, $\int P_{n}(x) e^{a x} d x=$ $=Q_{\eta}(x) e^{a x}$, where $P_{n}(x)$ is the given polynomial of degree n and $Q_{n}(x)$ is a polynomial of degree n with undetermined coefficients 1219. $-e^{-x}\left(x^{2}+5\right)$. Hint. See Problem 1218*. 1220. $-3 e^{-\frac{x}{2}}\left(x^{3}+9 x^{2}+54 x+162\right)$. Hint. See

[^2]Problem 1218*. 1221. $-\frac{x \cos 2 x}{4}+\frac{\sin 2 x}{8}$. 1222. $\frac{2 x^{2}+10 x+11}{4} \sin 2 x+$ $+\frac{2 x+5}{4} \cos 2 x$ Hint. It is also advisable to apply the method of undetermined coefficients in the form

$$
\int P_{n}(x) \cos \beta x d x=Q_{n}(x) \cos \beta x+R_{n}(x) \sin \beta x
$$

where $P_{n}(x)$ is the given polynomial of degree n, and $Q_{n}(x)$ and $R_{n}(x)$ are polynomials of degree n with undetermined coefficients (see Problem 1218*). 1223. $\frac{x^{3}}{3} \ln x-\frac{x^{3}}{9} . \quad$ 1224. $\quad x \ln ^{2} x-2 x \ln x+2 x . \quad$ 1225. $\quad-\frac{\ln x}{2 x^{2}}-\frac{1}{4 x^{2}}$. 1226. $2 \sqrt{ }-\frac{x}{x} \ln x-4 \sqrt{x}$. 1227. $\frac{x^{2}+1}{2} \arctan x-\frac{x}{2}$. 1228. $\frac{x^{2}}{2} \arcsin x-\frac{1}{4} \times$ $X \arcsin x+\frac{x}{4} \sqrt{1-x^{2}}$. 1229. $x \ln \left(x+\sqrt{1+x^{2}}\right)-\sqrt{1+x^{2}} .1230 .-x \cot x+$ $+\ln |\sin x|$ 1231. $\quad-\frac{x}{\sin x}+\ln \left|\tan \frac{x}{2}\right| . \quad$ 1232. $\frac{e^{x}(\sin x-\cos x)}{2}$. 1233. $\frac{3^{x}(\sin x+\cos x \ln 3)}{1+(\ln 3)^{2}}$. 1234. $\frac{e^{a x}(a \sin b x-b \cos b x)}{a^{2}+b^{2}}$. 1235. $\frac{x}{2}[\sin (\ln x)-$ $-\cos (\ln x)]$. 1236. $-\frac{e^{-x 2}}{2}\left(x^{2}+1\right)$. 1237. $2 e^{V^{-x}}(\sqrt{-x}-1)$. 1238. $\quad\left(\frac{x^{3}}{3}-x^{2}+\right.$ $+3 x) \ln x-\frac{x^{3}}{9}+\frac{x^{2}}{2}-3 x$. 1239. $\frac{x^{2}-1}{2} \ln \frac{1-x}{1+x}-x .1240 .-\frac{\ln ^{2} x}{x}-\frac{2 \ln x}{x}-\frac{2}{x}$. 1241. $[\ln (\ln x)-1] \cdot \ln x$. 1242. $\frac{x^{2}}{3} \arctan 3 x-\frac{x^{2}}{18}+\frac{1}{162} \ln \left(9 x^{2}+1\right) \cdot 1243 \cdot \frac{1+x^{2}}{2} x$ $\times(\arctan x)^{2}-x \arctan x+\frac{1}{2} \ln \left(1+x^{2}\right) . \quad$ 1244. $\quad x(\arcsin x)^{2}+2 \sqrt{1-x^{2}} \times$ $\times \arcsin x-2 x$. 1245. $-\frac{\arcsin x}{x}+\ln \left|\frac{x}{1+\sqrt{1-x^{2}}}\right| . \quad$ 1246. $-2 \sqrt{1-x} \times$ $\times \arcsin \sqrt{\bar{x}}+2 \sqrt{\bar{x}} . \quad$ 1247. $\quad \frac{x \tan 2 x}{2}+\frac{\ln |\cos 2 x|}{4}-\frac{x^{2}}{2} . \quad$ 1248. $\quad \frac{e^{-x}}{2} \times$ $\times\left(\frac{\cos 2 x-2 \sin 2 x}{5}-1\right)$. 1249. $\frac{x}{2}+\frac{x \cos (2 \ln x)+2 x \sin (2 \ln x)}{10}$. 1250. $-\frac{x}{2\left(x^{2}+1\right)}+\frac{1}{2} \arctan x$. Solution. Putting $u=x$ and $d v=\frac{x d x}{\left(x^{2}+1\right)^{2}}$, we get $d u=d x$ and $v=-\frac{1}{2\left(x^{2}+1\right)}$. Whence $\int \frac{x^{2} d x}{\left(x^{2}+1\right)^{2}}=-\frac{x}{2\left(x^{2}+1\right)}+$ $+\int \frac{d x}{2\left(x^{2}+1\right)}=-\frac{x}{2\left(x^{2}+1\right)}+\frac{1}{2} \arctan x+C$. 1251. $\frac{1}{2 a^{2}}\left(\frac{1}{a} \arctan \frac{x}{a}+\right.$ $\left.+\frac{x}{x^{2}+a^{2}}\right)$. Hint. Utilize the identity $1=\frac{1}{a^{2}}\left[\left(x^{2}+a^{2}\right)-x^{2}\right]$. 1252. $\frac{x}{2} \times$ $\times \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \arcsin \frac{x}{a}$. Solution. Put $u=\sqrt{a^{2}-x^{2}}$ and $d v=d x$; whence $d u=-\frac{x d x}{\sqrt{a^{2}-x^{2}}}$ and $v=x$; we have $\int \sqrt{a^{2}-x^{2}} d x=x \sqrt{a^{2}-x^{2}}-\int \frac{-x^{2} d x}{\sqrt{a^{2}-x^{2}}}=$ $\pm x \sqrt{a^{8}-x^{2}}-\int \frac{\left(a^{2}-x^{2}\right)-a^{2}}{\sqrt{a^{2}-x^{2}}} d x=x \sqrt{a^{2}-x^{2}}-\int \sqrt{a^{2}-x^{2}} d x+a^{2} \int \frac{d x}{\sqrt{a^{2}-x^{2}}}$.

Consequently, $2 \int \sqrt{a^{2}-x^{2}} d x=x \sqrt{a^{2}-x^{2}}+a^{2} \arcsin \frac{x}{a}$. 1253. $\frac{x}{2} \sqrt{A+x^{2}}+$ $+\frac{A}{2} \ln \left|x+\sqrt{A+x^{2}}\right|$. Hint. See Problem 1252*. 1254. $-\frac{x}{2} \sqrt{9-x^{2}}+$ $+\frac{9}{2} \arcsin \frac{x}{3}$. Hint. See Problem 1252*. 1255. $\frac{1}{2} \arctan \frac{x+1}{2}$. 1256. $\frac{1}{2} \times$ $\times \ln \left|\frac{x}{x+2}\right| .1257 . \frac{2}{\sqrt{11}} \arctan \frac{6 x-1}{\sqrt{11}}$. 1258. $\quad \frac{1}{2} \ln \left(x^{2}-7 x+13\right)+\frac{7}{\sqrt{3}} \times$ $\times \arctan \frac{2 x-7}{\sqrt{3}} .1259 . \frac{3}{2} \ln \left(x^{2}-4 x+5\right)+4 \arctan (x-2) .1260 . x-\frac{5}{2} \ln \left(x^{2}+\right.$ $+3 x+4)+\frac{9}{\sqrt{7}} \arctan \frac{2 x+3}{\sqrt{7}}$. 1261. $x+3 \ln \left(x^{2}-6 x+10\right)+8 \arctan (x-3)$. 1262. $\frac{1}{\sqrt{2}} \arcsin \frac{4 x-3}{5} .1263 . \arcsin (2 x-1) .1264 . \ln \left|x+\frac{p}{2}+\sqrt{x^{2}+p x+q}\right|$. 1265. $\quad 3 \sqrt{x^{2}-4 x+5} . \quad$ 1266. $\quad-2 \sqrt{1-x-x^{2}}-9 \arcsin \frac{2 x+1}{\sqrt{5}}$.
1267. $\quad \frac{1}{5} \sqrt{5 x^{2}-2 x+1}+\frac{1}{5 \sqrt{5}} \ln \left(x \sqrt{5}-\frac{1}{\sqrt{5}}+\sqrt{5 x^{2}-2 x+1}\right)$. 1268. $\ln \left|\frac{x}{1+\sqrt{1-x^{2}}}\right|$. 1269. $-\arcsin \frac{2-x}{x \sqrt{5}} .1270 . \arcsin \frac{2-x}{(1-x) \sqrt{2}}(x>\sqrt{2})$. 1271. $-\arcsin \frac{1}{x+1} \cdot 1272 . \frac{x+1}{2} \sqrt{x^{2}+2 x+5}+2 \ln \left(x+1+\sqrt{x^{2}+2 x+5}\right)$. 1273. $\frac{2 x-1}{4} \sqrt{x-x^{2}}+\frac{1}{8} \arcsin (2 x-1)$. 1274. $\quad \frac{2 x+1}{4} \sqrt{2-x-x^{2}}+$ $+\frac{9}{8} \arcsin \frac{2 x+1}{3} . \quad$ 1275. $\quad \frac{1}{4} \ln \left|\frac{x^{2}-3}{x^{2}-1}\right| . \quad 1276 . \quad-\frac{1}{\sqrt{3}} \arctan \frac{3-\sin x}{\sqrt{3}}$. 1277. $\ln \left(e^{x}+\frac{1}{2}+\sqrt{1+e^{x}+e^{2 x}}\right)$ 1278. $-\ln \left|\cos x+2+\sqrt{\cos ^{2} x+4 \cos x+1}\right|$.
1279. $\quad-\sqrt{1-4 \ln x-\ln ^{2} x}-2 \operatorname{arc} \sin \frac{2+\ln x}{\sqrt{5}} . \quad$ 1280. $\frac{1}{a-b} \ln \left|\frac{x+b}{x+a}\right|$.
1281. $\quad x+3 \ln |x-3|-3 \ln |x-2| \quad$ 1282. $\quad \frac{1}{12} \ln \left|\frac{(x-1)(x+3)^{2}}{(x+2)^{4}}\right|$. 1283. $\ln \left|\frac{(x-1)^{4}(x-4)^{5}}{(x+3)^{7}}\right| \cdot 1284.5 x+\ln \left|\frac{x^{\frac{1}{2}}(x-4)^{\frac{161}{6}}}{(x-1)^{\frac{7}{3}}}\right| \cdot 1285 \cdot \frac{1}{1+x}+\ln \left|\frac{x}{x+1}\right|$. 1286. $\quad \frac{1}{4} x+\frac{1}{16} \ln \left|\frac{x^{10}}{(2 x-1)^{7}(2 x+1)^{8}}\right| \quad$ 1287. $\quad \frac{x^{2}}{2}-\frac{11}{(x-2)^{2}}-\frac{8}{x-2}$. 1288. $-\frac{9}{2(x-3)}-\frac{1}{2(x+1)}$. 1289. $\frac{8}{49(x-5)}-\frac{27}{49(x+2)}+\frac{30}{343} \ln \left|\frac{x-5}{x+2}\right|$. 1290. $-\frac{1}{2\left(x^{2}-3 x+2\right)^{2}}$. 1291. $x+\ln \left|\frac{x}{\sqrt{x^{2}+1}}\right| \quad$ 1292. $x+\frac{1}{4} \ln \left|\frac{x-1}{x+1}\right|-$ $-\frac{1}{2} \arctan x . \quad$ 1293. $\frac{1}{52} \ln |x-3|-\frac{1}{20} \ln |x-1|+\frac{1}{65} \ln \left(x^{2}+4 x+5\right)+\frac{7}{130} \times$
$\times \arctan (x+2)$. 1294. $\quad \frac{1}{6} \ln \frac{(x+1)^{2}}{x^{2}-x+1}+\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}} .1295 . \frac{1}{4 \sqrt{2}} \times$ $\times \ln \frac{x^{2}+x \sqrt{\overline{2}}+1}{x^{2}-x \sqrt{2}+1}+\frac{\sqrt{2}}{4} \arctan \frac{x \sqrt{2}}{1-x^{2}} . \quad$ 1296. $\quad \frac{1}{4} \ln \frac{x^{2}+x+1}{x^{2}-x+1}+\frac{1}{2 \sqrt{3}} \times$ $\times \arctan \frac{x^{2}-1}{x \sqrt{3}} . \quad$ 1297. $\quad \frac{x}{2\left(1+x^{2}\right)}+\frac{\arctan x}{2} . \quad$ 1298. $\frac{2 x-1}{2\left(x^{2}+2 x+2\right)}+$ $+\arctan (x+1)$. 1299. $\quad \ln |x+1|+\frac{x+2}{3\left(x^{2}+x+1\right)}+\frac{5}{3 \sqrt{3}} \arctan \frac{2 x+1}{\sqrt{3}}-$ $-\frac{1}{2} \ln \left(x^{2}+x+1\right) .1300 \cdot \frac{3 x-17}{2\left(x^{2}-4 x+5\right)}+\frac{1}{2} \ln \left(x^{2}-4 x+5\right)+\frac{15}{2} \arctan (x-2)$. 1301. $\frac{-x^{2}+x}{4(x+1)\left(x^{2}+1\right)}+\frac{1}{2} \ln |x+1|-\frac{1}{4} \ln \left(x^{2}+1\right)+\frac{1}{4} \arctan x$.
1302. $-\frac{3}{8} \arctan x-\frac{x}{4\left(x^{4}-1\right)}+\frac{3}{16} \ln \left|\frac{x-1}{x+1}\right|$. 1303. $\frac{15 x^{5}+40 x^{3}+33 x}{48\left(1+x^{2}\right)^{3}}+$ $+\frac{15}{48} \arctan x . \quad$ 1304. $\quad x-\frac{x-1}{x^{2}-2 x+2}+2 \ln \left(x^{2}-2 x+2\right)+3 \arctan (x-1)$. 1305. $\quad \frac{1}{21}\left(8 \ln \left|x^{8}+8\right|-\ln \left|x^{3}+1\right|\right)$ 1306. $\quad \frac{1}{2} \ln \left|x^{4}-1\right|-$ $-\frac{1}{4} \ln \left|x^{3}+x^{4}-1\right|-\frac{1}{2 V \overline{5}} \ln \left|\frac{2 x^{4}+1-\sqrt{5}}{2 x^{4}+1+\sqrt{5}}\right| \cdot$ 1307. $-\frac{13}{2(x-4)^{2}}+\frac{3}{x-4}+$ $+2 \ln \left|\frac{x-4}{x-2}\right|, \quad$ 1308. $\quad \frac{1}{3}\left(2 \ln \left|\frac{x^{3}+1}{x^{3}}\right|-\frac{1}{x^{3}}-\frac{1}{x^{3}+1}\right)$. 1309. $\quad \frac{1}{x-1}+$ $+\ln \left|\frac{x-2}{x-1}\right|$. 1310. $\ln |x|-\frac{1}{7} \ln \left|x^{7}+1\right|$. Hint. Put $\quad 1=\left(x^{7}+1\right)-x^{7}$. 1311. $\ln |x|-\frac{1}{5} \ln \left|x^{5}+1\right|+\frac{1}{5\left(x^{5}+1\right)}$. 1312. $\frac{1}{3} \arctan (x+1)-\frac{1}{6} \arctan x$ $\times \frac{x+1}{2}$. 1313. $-\frac{1}{9(x-1)^{9}}-\frac{1}{4(x-1)^{3}}-\frac{1}{7(x-1)^{7}}$. 1314. $-\frac{1}{5 x^{5}}+\frac{1}{3 x^{3}}-\frac{1}{x}-$ $-\arctan x$ 1315. $2 \sqrt{x-1}\left[\frac{(x-1)^{3}}{7}+\frac{3(x-1)^{2}}{5}+x\right]$. 1316. $\frac{3}{10 a^{2}} x$ $\times\left[2 \sqrt[3]{(a x+b)^{3}}-5 b \sqrt[3]{(a x+b)^{2}}\right] \quad$ 1317. $2 \arctan \sqrt{\bar{x}+1} . \quad$ 1318. $\quad 6 \sqrt[6]{x}-$ $-3 \sqrt[3]{\bar{x}}+2 \sqrt{\bar{x}}-6 \ln (1+\sqrt[6]{x}) . \quad$ 1319. $\quad \frac{6}{7} x \sqrt[h]{x}-\frac{6}{5} \sqrt[6]{x^{5}}-\frac{3}{2} \sqrt[3]{x^{2}}+$ $+2 \sqrt{-}-3 \sqrt[3]{x}-6 \sqrt[6]{x}-3 \ln |1+\sqrt[3]{x}|+6 \arctan \sqrt[6]{x}$.
1320. $\ln \left|\frac{(\sqrt{x+1}-1)^{2}}{x+2+\sqrt{x+1}}\right|-\frac{2}{\sqrt{3}} \arctan \frac{2 \sqrt{x+1}+1}{\sqrt{3}}$. 1321. $2 \sqrt{x}-2 \sqrt{2} \times$ $x \arctan \sqrt{\frac{x}{2}} \cdot 1322 .-2 \arctan \sqrt{1-x}$. 1323. $\left.\frac{\sqrt{x^{2}-1}}{2}(x-2)+\frac{1}{2} \ln \right\rvert\, x+$ $+\sqrt{x^{2}-1} \mid$. 1324. $\quad \frac{1}{3} \ln \frac{z^{2}+z+1}{(z-1)^{2}}+\frac{2}{\sqrt{3}} \arctan \frac{2 z+1}{\sqrt{3}}+\frac{2 z}{z^{2}-1}, \quad$ where $z=\sqrt[3]{\frac{x+1}{x-1}} \cdot 1325 .-\frac{\sqrt{2 x+3}}{x} \cdot 1326 . \frac{2 x+3}{8} \sqrt{x^{2}-x+1}+\frac{1}{16} \ln (2 x-1+$
$\left.+2 \sqrt{x^{2}-x+1}\right)$. 1327. $-\frac{8+4 x^{2}+3 x^{4}}{15} \sqrt{1-x^{2}} .1328 .\left(\frac{5}{16} x-\frac{5}{24} x^{3}+\frac{1}{6} x^{5}\right) \times$ $\times \sqrt{1+x^{2}}-\frac{5}{16} \ln \left(x+\sqrt{1+x^{2}}\right)$. 1329. $\left(\frac{1}{4 x^{4}}+\frac{3}{8 x^{2}}\right) \sqrt{x^{2}-1}-\frac{3}{8} \arcsin \frac{1}{x}$. 1330. $\frac{1}{2(x+1)^{2}} \sqrt{x^{2}+2 x}-\frac{1}{2} \arcsin \frac{1}{x+1}$. 1331. $\frac{2 x-1}{4} \sqrt{x^{2}-x+1}+\frac{19}{8} \ln x$ $\times\left(2 x-1+2 \sqrt{x^{2}-x+1}\right)$. 1332. $\frac{1}{2} \frac{1 \frac{x^{2}}{\sqrt{1+2 x^{2}}}}{\sqrt{2}}$ 1333. $\frac{1}{4} \ln \frac{\sqrt[4]{x^{-4}+1}+1}{\sqrt[4]{x^{-4}+1}-1}-$ $-\frac{1}{2} \arctan \sqrt[4]{x^{-4}+1}$. 1334. $\frac{\left(2 x^{3}-1\right)}{3 x^{3}} \frac{\sqrt{1+x^{2}}}{}$. 1335. $\frac{1}{10} \ln \frac{(z-1)^{2}}{z^{2}+z+1}+$ $+\frac{\sqrt{3}}{5} \arctan \frac{2 z+1}{\sqrt{3}}, \quad$ where $\quad z=\sqrt[3]{1+x^{5}} . \quad$ 1336. $\quad-\frac{1}{8} \frac{4+3 x^{3}}{x\left(2+x^{3}\right)^{2 / 3}} \cdot$ 1337. $-2 \sqrt[3]{\left(x^{-\frac{3}{4}}+1\right)^{2}}$. 1338. $\sin x-\frac{1}{3} \sin ^{2} x$. 1339. $-\cos x+\frac{2}{3} \cos ^{3} x-$ $-\frac{1}{5} \cos ^{8} x .1340 . \frac{\sin ^{8} x}{3}-\frac{\sin ^{5} x}{5} .1341 . \frac{1}{4} \cos ^{8} \frac{x}{2}-\frac{1}{3} \cos ^{8} \frac{x}{2} .1342 . \frac{\sin ^{2} x}{2}-$ $-\frac{1}{2 \sin ^{2} x}-2 \ln |\sin x| . \quad \quad 1343 . \quad \frac{3 x}{8}-\frac{\sin 2 x}{4}+\frac{\sin 4 x}{32}$. 1344. $\frac{x}{8}-\frac{\sin 4 x}{32}$. 1345. $\frac{x}{16}-\frac{\sin 4 x}{64}+\frac{\sin ^{3} 2 x}{48}$. 1346. $\frac{5}{16} x+\frac{1}{12} \sin 6 x+\frac{1}{64} \sin 12 x+$ $+\frac{1}{144} \sin ^{8} 6 x$. 1347. $-\cot x-\frac{\cot ^{2} x}{3}$. 1348. $\tan x+\frac{2}{3} \tan ^{3} x+\frac{1}{5} \tan ^{5} x$. 1349. $-\frac{\cot ^{3} x}{3}-\frac{\cot ^{5} x}{5}, \quad$ 1350. $\tan x+\frac{\tan ^{3} x}{3}-2 \cot 2 x$. 1351. $\frac{1}{2} \tan ^{2} x+$ $+3 \ln |\tan x|-\frac{3}{2 \tan ^{2} x}-\frac{1}{4 \tan ^{4} x}$. 1352. $\frac{1}{\cos ^{2} \frac{x}{2}}+2 \ln \left|\tan \frac{x}{2}\right| .1353 . \frac{\sqrt{2}}{2} x$ $\times\left[\ln \left|\tan \frac{x}{2}\right|+\ln \left|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|\right]$. 1354. $\frac{-\cos x}{4 \sin ^{4} x}-\frac{3 \cos x}{8 \sin ^{2} x}+\frac{3}{8} \ln \left|\tan \frac{x}{2}\right|$. 1355. $\frac{\sin 4 x}{16 \cos ^{4} 4 x}+\frac{3 \sin 4 x}{32 \cos ^{2} 4 x}+\frac{3}{32} \ln \left|\tan \left(2 x+\frac{\pi}{4}\right)\right|$. 1356. $\frac{1}{5} \tan 5 x-x$. 1357. $-\frac{\cot ^{2} x}{2}-\ln |\sin x|$. 1358. $\quad-\frac{1}{3} \cot ^{3} x+\cot x+x$. 1359. $\frac{3}{2} \tan ^{2} \frac{x}{3}+$ $+\tan ^{3} \frac{x}{3}-3 \tan \frac{x}{3}+3 \ln \left|\cos \frac{x}{3}\right|+x$. 1360. $\frac{x^{2}}{4}-\frac{\sin 2 x^{2}}{8} . \quad 1361 . \quad-\frac{\cot ^{3} x}{3}$. 1362. $-\frac{3}{4} \sqrt[3]{\cos ^{4} x}+\frac{3}{5} \sqrt[3]{\cos ^{10} x}-\frac{3}{16} \sqrt[3]{\cos ^{10} x}$. 1363. $2 \sqrt{\tan x}$. 1364. $\frac{1}{2 \sqrt{2}} \times$ $\times \ln \frac{z^{2}+z \sqrt{2}+1}{z^{2}-z \sqrt{2}+1}-\frac{1}{\sqrt{2}}$ arc tan $\frac{z \sqrt{2}}{z^{2}-1}$, where $z=\sqrt{\tan x} .1365 .-\frac{\cos 8 x}{16}+$ $+\frac{\cos 2 x}{4}$. 1366. $-\frac{\sin 25 x}{50}+\frac{\sin 5 x}{10}$. 1367. $\frac{3}{5} \sin \frac{5 x}{6}+3 \sin \frac{x}{6}$. 1368. $\frac{3}{2} \cos \frac{x}{3}-$ $-\frac{1}{2} \cos x$. 1369. $\frac{\sin 2 a x}{4 a}+\frac{x \cos 2 b}{2} .1370 . \frac{t \cos \varphi}{2}-\frac{\sin (2 \omega t+\varphi)}{4 \omega} .1371 . \frac{\sin x}{2}+$.
$+\frac{\sin 5 x}{20}+\frac{\sin 7 x}{28} \cdot 1372 . \frac{1}{24} \cos 6 x-\frac{1}{16} \cos 4 x-\frac{1}{8} \cos 2 x .1373 . \frac{1}{4} \ln \left|\frac{\tan \frac{x}{2}-2}{\tan \frac{x}{2}+2}\right|$
1374. $\frac{1}{\sqrt{2}} \ln \left|\tan \left(\frac{x}{2}+\frac{\pi}{8}\right)\right|$. 1375. $x-\tan \frac{x}{2}$. 1376. $-x+\tan x+\sec x$.
1377. $\ln \left|\frac{\tan \frac{x}{2}-5}{\tan \frac{x}{2}-3}\right| \cdot 1378 . \arctan \left(1+\tan \frac{x}{2}\right)$. 1379. $\left.\frac{12}{13} x-\frac{5}{13} \ln \right\rvert\, 2 \sin x+$
$+3 \cos x$ Solution. We put $3 \sin x+2 \cos x \equiv \alpha(2 \sin x+3 \cos x)+$ $+\beta(2 \sin x+3 \cos x)^{\prime}$ Whence $2 \alpha-3 \beta=3,3 \alpha+2 \beta=2$ and, consequently, $\alpha=\frac{12}{13}, \quad \beta=-\frac{5}{13} . \quad$ We have $\int \frac{3 \sin x+2 \cos x}{2 \sin x+3 \cos x} d x=\frac{12}{13} \int d x-\frac{5}{13} x$ $\times \int \frac{(2 \sin x+3 \cos r)^{\prime}}{2 \sin _{1} x+3 \cos } d x=\frac{12}{13} x-\frac{5}{13} \ln |2 \sin x+3 \cos x|$ 1380. $-\ln |\cos x-\sin x|$. 1381. $\frac{1}{2} \arctan \left(\frac{\tan x}{2}\right)$ Hint. Divide the numerator and denominator of the fraction by $\operatorname{ccs}^{2} x$ 1382. $\frac{1}{\sqrt{15}} \arctan \left(\frac{\sqrt{3}}{\sqrt{5}} \tan x\right)$. Hint. See Problem 1381. 1383. $\frac{1}{\sqrt{3}} \ln \left|\frac{2 \tan x+3-\sqrt{13}}{2 \tan x+3+\sqrt{13}}\right|$. Hint. See Problem 1381. 1384. $\frac{1}{5} \ln x$ $\times\left|\frac{\tan r-5}{\tan x}\right|$ Hint. See Problem 1381. 1385. $-\frac{1}{2(1-\cos x)^{2}} .1386 . \ln \left(1+\sin ^{2} x\right)$. 1387. $\frac{1}{2 \sqrt{2}} \ln \frac{\sqrt{2}+\sin 2 x}{\sqrt{2}-\sin 2 x}$. 1388. $\frac{1}{4} \ln \frac{5-\sin x}{1-\sin x}$. 1389. $\frac{2}{\sqrt{3}} \arctan x$ $\times \frac{2 \tan \frac{x}{2}-1}{\sqrt{3}}-\frac{1}{\sqrt{2}} \arctan \frac{3 \tan \frac{x}{2}-1}{2 \sqrt{2}}$. Hint. Use the identity $\frac{1}{(2-\sin x)(3-\sin x)}=\frac{1}{2-\sin x}-\frac{1}{3-\sin x} .1390 . \quad-x+2 \ln \left|\frac{\tan \frac{x}{2}}{\tan \frac{x}{2}+1}\right|$. Hint. Use the identity $\frac{1-\sin x+\cos x}{1+\sin x-\cos x}=-1+\frac{2}{1+\sin x-\cos x} \cdot 1391 . \frac{\cosh ^{3} x}{3}-\cosh x$. 1392. $\frac{3 x}{8}+\frac{\sinh 2 x}{4}+\frac{\sinh 4 x}{32}$. 1393. $\frac{\sinh ^{4} x}{4}$. 1394. $-\frac{x}{8}+\frac{\sinh 4 x}{32}$. 1395. $\operatorname{In}\left|\tanh \frac{x}{2}\right|+\frac{1}{\cosh x}$. 1396. $-2 \operatorname{coth} 2 x$. 1397. $\ln (\cosh x)-\frac{\tanh ^{2} x}{2}$. 1398. $x-\operatorname{coth} x-\frac{\operatorname{coth}^{3} x}{3}$. 1399. $\arctan (\tanh x)$. 1400. $\frac{2}{\sqrt{5}} \arctan \left(\frac{3 \tanh \frac{x}{2}+2}{\sqrt{5}}\right)$ (or $\left.\frac{2}{\sqrt{5}} \arctan \left(e^{x} \sqrt{5}\right)\right\}$. 1401. $-\frac{\sinh ^{2} x}{2}-\frac{\sinh 2 x}{4}-\frac{x}{2}$. Hint. Use the identity $\frac{-1}{\sinh x-\cosh x}=(\sinh x+\cosh x) . \quad$ 1402. $\frac{1}{\sqrt{2}} \ln (\sqrt{2} \cosh x+\sqrt{\cosh 2 x})$.
1403. $\frac{x+1}{2} \sqrt{3-2 x-x^{2}}+2 \arcsin \frac{x+1}{2}$. 1404. $\frac{x}{2} \sqrt{2+x^{2}}+\ln \left(x+\sqrt{2+x^{2}}\right)$.
1405. $\quad \frac{x}{2} \sqrt{9+x^{2}}-\frac{9}{2} \ln \left(x+\sqrt{9+x^{2}}\right) . \quad$ 1406. $\frac{x-1}{2} \sqrt{x^{2}-2 x+2}+$ $+\frac{1}{2} \ln \left(x-1+\sqrt{x^{2}-2 x+2}\right) \quad$ 1407. $\quad \frac{x}{2} \sqrt{x^{2}-4}-2 \ln \left|x+\sqrt{x^{2}-4}\right|$. 1408. $\frac{2 x+1}{4} \sqrt{x^{2}+x}-\frac{1}{8} \ln \left|2 x+1+2 \sqrt{x^{2}+x}\right|$. 1409. $\frac{x-3}{2} \sqrt{x^{2}-6 x-7}-$ $-8 \ln \left|x-3+\sqrt{x^{2}-6 x-7}\right|$. 1410. $\frac{1}{64}(2 x+1)\left(8 x^{2}+8 x+17\right) \sqrt{x^{2}+x+1}+$ $+\frac{27}{128} \ln \left(2 x+1+2 \sqrt{x^{2}+x+1}\right)$. 1411. $2 \sqrt{\frac{x-2}{x-1}}$ 1412. $\frac{x-1}{4 \sqrt{x^{2}-2 x+5}}$. 1413. $\frac{1}{\sqrt{2}} \arctan \frac{x \sqrt{2}}{\sqrt{1-x^{2}}}$ 1414. $\frac{1}{2 \sqrt{2}} \ln \left|\frac{\sqrt{1+x^{2}}+x \sqrt{2}}{\sqrt{1+x^{2}}-x \sqrt{2}}\right| \quad$ 1415. $\frac{e^{2 x}}{2} \times$ $\times\left(x^{4}-2 x^{3}+5 x^{2}-5 x+\frac{7}{2}\right) \quad$ 1416. $\frac{1}{6}\left(x^{3}+\frac{x^{2}}{2} \sin 6 x+\frac{x}{6} \cos 6 x-\frac{1}{36} \sin 6 x\right)$.
1417. $-\frac{x \cos 3 x}{6}+\frac{\sin 3 x}{18}+\frac{x \cos x}{2}-\frac{\sin x}{2} \quad$ 1418. $\frac{e^{2 x}}{8}(2-\sin 2 x-\cos 2 x)$. 1419. $\frac{e^{x}}{2}\left(\frac{2 \sin 2 x+\operatorname{crs} 2 x}{5}-\frac{4 \sin 4 x+\cos 4 x}{17}\right)$. 1420. $\frac{e^{x}}{2}[x(\sin x+\cos x)-\sin x]$. 1421. $-\frac{x}{2}+\frac{1}{3} \ln \left|e^{x}-1\right|+\frac{1}{6} \ln \left(e^{x}+2\right)$ 1422. $x-\ln \left(2+e^{x}+2 \sqrt{\left.e^{2 x}+x+1\right)}\right.$. 1423. $\frac{1}{3}\left[x^{3} \ln \frac{1+x}{1-x}+\ln \left(1-x^{2}\right)+x^{2}\right] \quad$ 1424. $x \ln ^{2}\left(x+\sqrt{1+x^{2}}\right)-2 \sqrt{1+x^{2}} \times$ $\times \ln \left(x+\sqrt{1+x^{2}}\right)+2 x . \quad$ 1425. $\quad\left(\frac{x^{2}}{2}-\frac{9}{100}\right) \arccos (5 x-2)-\frac{5 x+6}{100} \times$ $\times \sqrt{20 x-25 x^{2}-3} . \quad$ 1426. $\quad \frac{\sin x \cosh x-\operatorname{crs} x \sinh x}{2}$. 1427. $I_{n}=\frac{1}{2(n-1) a^{2}} \times$ $\times\left[\frac{x}{\left(x^{2}+a^{2}\right)^{n-1}}+(2 n-3) I_{n-1}\right] ; I_{2}=\frac{1}{2 a^{2}}\left(\frac{x}{x^{2}+a^{2}}+\frac{1}{a} \arctan \frac{x}{a}\right) ; I_{z}=\frac{1}{4 a^{2}} \times$ $\times\left[\begin{array}{l}x\left(3 x^{2}+5 a^{2}\right) \\ 2 a^{2}\left(x^{2}+a^{2}\right)^{2}\end{array}+\frac{3}{2 a^{3}} \arctan \frac{x}{a}\right] . \quad$ 1428. $\quad I_{n}=-\frac{\cos x \sin ^{n-1} x}{n}+\frac{n-1}{n} I_{n-2}$ $I_{4}=\frac{3 x}{8}-\frac{\cos x \sin ^{8} x}{4}-\frac{3 \sin 2 x}{16} ; \quad I_{5}=-\frac{\cos x \sin ^{4} x}{5}-\frac{4}{15} \cos x \sin ^{2} x-\frac{8}{15} \cos x$.
1429. $I_{n}=\frac{\sin x}{(n-1) \cos ^{n-1} x}+\frac{n-2}{n-1} I_{n-2} ; \quad I_{2}=\frac{\sin x}{2 \cos ^{2} x}+\frac{1}{2} \ln \left|\tan \left(\frac{x}{2}+\frac{\pi}{4}\right)\right| ;$ $I_{4}=\frac{\sin x}{3 \cos ^{5} x}+\frac{2}{3} \tan x . \quad$ 1430. $\quad I_{n}=-x^{n} e^{-x}+n I_{n-1} ; \quad I_{10}=-e^{-x}\left(x^{10}+10 x^{2}+\right.$ $\left.+10.9 x^{8}+\ldots+10.9 .8 \ldots 2 x+10.9 \ldots 1\right)$. 1431. $\frac{1}{\sqrt{14}} \arctan \frac{\sqrt{2}(x-1)}{\sqrt{7}}$. 1432. $\ln \sqrt{x^{2}-2 x+2}-4 \arctan (x-1)$. 1433. $\frac{(x-1)^{2}}{2}+\frac{1}{4} \ln \left(x^{2}+x+\frac{1}{2}\right)+$ $+\frac{1}{2} \arctan (2 x+1) .1434 . \frac{1}{5} \ln \sqrt{\frac{x^{2}}{x^{2}+5}} .1435 .2 \ln \left|\frac{x+3}{x+2}\right|-\frac{1}{x+2}-\frac{1}{x+3}$. 1436. $\frac{1}{2}\left(\ln \left|\frac{x+1}{\sqrt{x^{2}+1}}\right|-\frac{1}{x+1}\right)$. 1437. $\frac{1}{4}\left(\frac{x}{x^{2}+2}+\frac{1}{\sqrt{2}} \arctan \frac{x}{\sqrt{2}}\right)$.
1438. $\frac{1}{4}\left(\frac{2 x}{1-x^{2}}+\ln \left|\frac{x+1}{x-1}\right|\right)$ 1439. $\frac{1}{6} \frac{x-2}{\left(x^{2}-x+1\right)^{2}}+\frac{1}{6} \frac{2 x-1}{x^{2}-x+1}+$ $+\frac{2}{3 \sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}} . \quad$ 1440. $\frac{x(3+2 \sqrt{x})}{1-2 \sqrt{x}} . \quad$ 1441. $-\frac{1}{x}-\frac{4}{3 x \sqrt{x}}-\frac{1}{2 x^{2}}$. 1442. $\ln \left(x+\frac{1}{2}+\sqrt{x^{2}+x+1}\right) \cdot$ 1443. $\sqrt{2 x}-\frac{3}{5} \sqrt[6]{(2 x)^{5}} .1444 .-\frac{3}{\sqrt[3]{x}+1}$.
1445. $\frac{2 x-1}{\sqrt{4^{2}}-2 x+1}$ 1446. $-2(\sqrt[4]{5-x}-1)^{2}-4 \ln (1+\sqrt[4]{5-x})$.
1477. $\ln \left|x+V \overline{x^{2}-1}\right|-\frac{x}{\sqrt{x^{2}-1}}$. 1448. $-\frac{1}{2} \sqrt{\frac{1-x^{2}}{1+x^{2}}} . \quad$ 1449. $\frac{1}{2} \times$ $\times \arcsin \frac{x^{2}+1}{\sqrt{2}}, \quad$ 1450. $\frac{x-1}{\sqrt{x^{2}+1}} . \quad$ 1451. $\frac{1}{8} \ln \left|\frac{\sqrt{4-x^{2}}-2}{x}\right|-\frac{1}{8 \sqrt{3}} \times$ $x \arcsin \frac{2(x+1)}{x+4} . \quad$ Hint. $\frac{1}{x^{2}+4 x}=\frac{1}{4}\left(\frac{1}{x}-\frac{1}{x+4}\right)$. 1452. $\frac{x}{2} \sqrt{x^{2}-9}-$ $-\frac{9}{2} \ln \left|x+\sqrt{x^{2}-9}\right| . \quad$ 1453. $\quad \frac{1}{16}(8 x-1) \sqrt{x-4 x^{2}}+\frac{1}{64} \arcsin (8 x-1)$.
1454. $\ln \left|\frac{x}{2 x+1+2 \sqrt{x^{2}+x+1}}\right| . \quad$ 1455. $\quad \frac{\left(x^{2}+2 x+2\right) \sqrt{x^{2}+2 x+2}}{3}-$
$-\frac{(x+1)}{2} \sqrt{x^{2}+2 x+2}-\frac{1}{2} \ln \left(x+1+\sqrt{x^{2}+2 x+2}\right) . \quad$ 1456. $\frac{\sqrt{x^{2}-1}}{x}-$
$-\frac{\sqrt{\left(x^{2}-1\right)^{5}}}{3 x^{3}} . \quad$ 1457. $\frac{1}{3} \ln \left|\frac{\sqrt{1-x^{3}}-1}{\sqrt{1-x^{3}}+1}\right| . \quad$ 1458. $-\frac{1}{3} \ln |z-1|+$
$+\frac{1}{6} \ln \left(z^{2}+z+1\right)-\frac{1}{\sqrt{3}} \arctan \frac{2 z+1}{\sqrt{3}}$, where $z=\frac{\sqrt[3]{1+x^{3}}}{x}$. 1459. $\frac{5}{2} \times$
$x \ln \left(x^{2}+\sqrt{\left.1+x^{4}\right)} \quad\right.$ 1460. $\frac{3 x}{8}+\frac{\sin 2 x}{4}+\frac{\sin 4 x}{32}$. 1461. $\ln |\tan x|-\cot ^{2} x-$ $-\frac{1}{4} \cot ^{4} x . \quad 1462 . \quad-\cot x-\frac{2 \sqrt{(\cot x)^{3}}}{3}$. 1463. $\frac{5}{12}\left(\cos ^{2} x-6\right) \sqrt[5]{\cos ^{2} x}$.
1464. $-\frac{\cos 5 x}{20 \sin ^{4} 5 x}-\frac{3 \cos 5 x}{40 \sin ^{2} 5 x}+\frac{3}{40} \ln \left|\tan \frac{5 x}{2}\right|$. 1465. $\frac{\tan ^{3} x}{3}+\frac{\tan ^{5} x}{5}$.
1466. $\frac{1}{4} \sin 2 x$. 1467. $\tan ^{2}\left(\frac{x}{2}+\frac{\pi}{4}\right)+2 \ln \left|\cos \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|$. 1468. $-\frac{1}{\sqrt{3}} \times$ $\times \arctan \frac{4 \tan \frac{x}{2}-1}{\sqrt{3}}$. 1469. $\frac{1}{\sqrt{10}} \arctan \left(\frac{2 \tan x}{\sqrt{10}}\right) \cdot$ 1470. $\arctan (2 \tan x+1)$.
1471. $\frac{1}{2} \ln |\tan x+\sec x|-\frac{1}{2} \operatorname{cosec} x$. 1472. $\frac{2}{\sqrt{3}} \times \arctan \left(\frac{\tan \frac{x}{2}}{\sqrt{3}}\right)-\frac{1}{\sqrt{2}} \times$ $\times \arctan \left(\frac{\tan \frac{x}{2}}{\sqrt{2}}\right)$. 1473. $\ln \left|\tan x+2+\sqrt{\tan ^{2} x+4 \tan x+1}\right|$. 1474. $\frac{1}{a} \times$ $x \ln \left(\sin a x+\sqrt{a^{2}+\sin ^{2} a x}\right) . \quad$ 1475. $\frac{1}{3} x \tan 3 x+\frac{1}{9} \ln |\cos 3 x|$. 1476. $\frac{x^{2}}{4}-$ $=\frac{x \sin 2 x}{4}-\frac{\cos 2 x}{8} .1477 . \frac{e^{2 x}}{4}(2 x-1) .1478 \frac{1}{3} e^{x^{3}}$. 1479. $\frac{x^{3}}{3} \cdot \ln \sqrt{1-x}-$
$-\frac{1}{6} \ln |x-1|-\frac{x^{3}}{18}-\frac{x^{2}}{12}-\frac{x}{6} . \quad$ 1480. $\sqrt{1+x^{2}} \arctan x-\ln \left(x+\sqrt{1+x^{2}}\right)$. 1481. $\frac{1}{3} \sin \frac{3 x}{2}-\frac{1}{10} \sin \frac{5 x}{2}-\frac{1}{2} \sin \frac{x}{2}$. 1482. $-\frac{1}{1+\tan x} \cdot 1483 . \ln |1+\cot x|-\cot x$. 1481. $\frac{\sinh ^{2} x}{2}$. 1485. $-2 \cosh \sqrt{1-x}$. 1486. $\frac{1}{5} \ln \cosh 2 x$. 1487. $-x \operatorname{coth} x+$ $+\ln |\sinh x|$. 1488. $\frac{1}{2 e^{x}}-\frac{x}{4}+\frac{1}{4} \ln \left|e^{x}-2\right|$ 1489. $\frac{1}{2} \arctan \frac{e^{x}-3}{2}$. 1490. $\frac{4}{7} \sqrt[4]{\left(e^{x}+1\right)^{7}}-\frac{4}{3} \sqrt[4]{\left(e^{x}+1\right)^{2}}$. 1491. $\frac{1}{\ln 4} \ln \frac{1+2^{x}}{1-2^{x}}$. 1492. $-\frac{10^{-2 x}}{2 \ln 10} \times$
$\times\left(x^{2}-1+\frac{x}{\ln 10}+\frac{1}{2 \ln ^{2} 10}\right)$.
1494. $\ln \left|\frac{x}{\sqrt{1+x^{2}}}\right|-\frac{\arctan x}{x}$.
1493. $2 \sqrt{e^{x}+1}+\ln \frac{\sqrt{e^{x}+1}-1}{\sqrt{e^{x}+1}+1}$.
1496. $\frac{x}{2}(\cos \ln x+\sin \ln x)$.
1495. $\frac{1}{4}\left(x^{4} \arcsin \frac{1}{x}+\frac{x^{2}+2}{3} \sqrt{x^{2}-1}\right)$. 2 2 5 . $5\left(-x^{2} \cos 5 x+\frac{2}{5} \sin 5 x+3 x \cos 5 x+\right.$ $\left.+\frac{2}{25} \cos 5 x-\frac{3}{5} \sin 5 x\right)$. 1498. $\frac{1}{2}\left[\left(x^{2}-2\right) \arctan (2 x+3)+\frac{3}{4} \ln \left(2 x^{2}+6 x+5\right)-\right.$ $\left.-\frac{x}{2}\right] .1499 . \frac{1}{2} \sqrt{x-x^{2}}+\left(x-\frac{1}{2}\right) \arcsin \sqrt{x} .1500 . \frac{x|x|}{2}$.

Chapter V

1501. $b-a$. 1502. $v_{0} T-g \frac{T^{2}}{2}$. 1503. 3. \quad 1504. $\frac{2^{10}-1}{\ln 2}$. 1505. 156.

Hint. Divide the interval from $x=1$ to $x=5$ on the x-axis into subintervals so that the abscissas of the points of division should form a geometric progression: $x_{0}=1, x_{1}=x_{0} q, x_{2}=x_{0} q^{2}, \ldots, x_{n}=x_{0} q^{n} . \quad 1506 . \ln \frac{b}{a}$. Hint. See Problem 1505. 1507. $1-\cos x$. Hint. Utilize the formula $\sin \alpha+\sin 2 \alpha+\ldots+\sin n \alpha=\frac{1}{2 \sin \frac{\alpha}{2}}\left[\cos \frac{\alpha}{2}-\cos \left(n+\frac{1}{2}\right) \alpha\right] .1508$. 1) $\frac{d l}{d a}=$ $\left.=-\frac{1}{\ln a} ; 2\right) \frac{d I}{d b}=\frac{1}{\ln b} . \quad$ 1509. $\ln x . \quad$ 1510. $-\sqrt{1+x^{4}} . \quad$ 1511. $2 x e^{-x^{4}}-e^{-x^{2}}$. 1512. $\frac{\cos x}{2 \sqrt{x}}+\frac{1}{x^{2}} \cos \frac{1}{x^{2}}$. 1513. $x=n \pi(n=1,2,3, \ldots)$ 1514. $\ln 2.1515 .-\frac{3}{8}$. 1516. $e^{x}-e^{-x}=2 \sinh x$. 1517. $\sin x$. 1518. $\frac{1}{2}$. Solution. The sum $s_{n}=$ $=\frac{1}{n^{2}}+\frac{2}{n^{2}}+\ldots+\frac{n-1}{n^{2}}=\frac{1}{n}\left(\frac{1}{n}+\frac{2}{n}+\ldots+\frac{n-1}{n}\right)$ may be regarded as the integral sum of the function $f(x)=x$ on the interval [0,1]. Therefore, $\lim _{n \rightarrow \infty} s_{n}=$ $=\int_{0}^{1} x d x=\frac{1}{2}$. 1519. In 2. Solution. The sum $s_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{n+n}=$ $=\frac{1}{n}\left(\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\ldots+\frac{1}{1+\frac{n}{n}}\right)$ may be regarded as the integral sum of
the function $f(x)=\frac{1}{1+x}$ on the interval $[0,1]$ where the division points have the form $x_{k}=1+\frac{k}{n}(k=1,2, \ldots, n)$. Therefore, $\lim _{n \rightarrow \infty} s_{n}=\int^{1} \frac{d x}{1+x}=\ln 2$. 1520. $\frac{1}{p+1}$, 1521. $\frac{7}{3}$. 1522. $\frac{100}{3}=33 \frac{1}{3}$. 1523. $\frac{7}{4}$. 1524. $\frac{16}{3}$. 1525. $-\frac{2}{3}$. 1526. $\frac{1}{2} \ln \frac{2}{3}$. 1527. $\ln \frac{9}{8}$. 1528. $35 \frac{1}{15}-32 \ln 3$. 1529. $\arctan 3-\arctan 2=$ $=\arctan \frac{1}{7} . \quad 1530 . \ln \frac{4}{3}$. 1531. $\frac{\pi}{16}$. 1532. $1-\frac{1}{\sqrt{3}}$. 1533. $\frac{\pi}{4}$. 1534. $\frac{\pi}{2}$. 1535. $\frac{1}{3} \ln \frac{1+\sqrt{5}}{2}$. 1536. $\frac{\pi}{8}+\frac{1}{4}$. 1537. $\frac{2}{3}$. 1538. $\ln 2$. 1539. $1-\cos 1$. 1540. 0. 1541. $\frac{8}{9 \sqrt{3}}+\frac{\pi}{6}$. 1542. $\arctan e-\frac{\pi}{4}$. 1543. $\sinh 1=\frac{1}{2}\left(e-\frac{1}{e}\right)$. 1544. $\tanh (\ln 3)-\tanh (\ln 2)=\frac{1}{5}$. 1545. $-\frac{\pi}{2}+\frac{1}{4} \sinh 2 \pi$. 1546. 2. 1547. Diverges, 1548. $\frac{1}{1-p}$, if $p<1$; diverges, if $p \geqslant 1$. 1549. Diverges. 1550. $\frac{\pi}{2}$. 1551. Diverges. 1552. 1. 1553. $\frac{1}{p-1}$, if $p>1$; diverges, if $p \leqslant 1$. 1554. π. 1555. $\frac{\pi}{\sqrt{5}}$. 1556. Diverges. 1557. Diverges. 1558. $\frac{1}{\ln 2}$ 1559. Diverges. 1560. $\frac{1}{\ln a}$. 1561. Diverges. 1562. $\frac{1}{k} \quad$ 1563. $\frac{\pi^{2}}{8} \cdot 1564 \cdot \frac{1}{3}+\frac{1}{4} \ln 3 \quad 1565 . \frac{2 \pi}{3 \sqrt{3}}$. 1566. Diverges 1567. Converges 1568. Diverges 1569. Converges. 1570. Converges. 1571. Converges. 1572. Diverges 1573. Converges. 1574. Hint. $B(p, q)=$ $=\int_{0}^{1 / 2} f(x) d x+\int_{1 / 2}^{1} f(x) d x$, where $f(x)=x^{p-1}(1-x)^{q-1} ;$ since $\lim _{x \rightarrow 0} f(x) x^{1-p}=1$ and $\lim _{x \rightarrow 1}(1-x)^{1 / 2}-q f(x)=1$, both integrals converge when $1-p<1$ and $1-q<1$, that is, when $p>0$ and $q>0$. 1575. Hint. $\Gamma(p)=\int_{0}^{1} f(x) d x+\int_{1}^{\infty} f(x) d x$, where $f(x)=x^{p-1} e^{-x}$. The first integral converges when $p>0$, the second when p is arbitrary. 1576. No. 1577. $2 \sqrt{2} \int_{1}^{2} \sqrt{t} d t$. 1578. $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{d t}{\sqrt{1+\sin ^{2} t}} \cdot 1579 . \int_{\ln 2}^{\ln 3} d t$. 1580. $\int_{0}^{\infty} \frac{f(\arctan t)}{1+t^{2}} d t$. 1581. $x=(b-a) t+a .1582 .4-2 \ln 3.1583 .8-\frac{9}{2 \sqrt{3}} \pi$. 1584. $2-\frac{\pi}{2}$, 1585. $\frac{\pi}{\sqrt{5}}$ 1586. $\frac{\pi}{2 \sqrt{1+a^{2}}}$. 1587. $1-\frac{\pi}{4}$. 1588. $\sqrt{ } \quad$ $3-\frac{\pi}{3}$ 1589. 4 - ת. 1590. $\frac{1}{5} \ln 112$. 1591. $\ln \frac{7+2}{9} \frac{\sqrt{7}}{2}$. 1592. $\frac{1}{2}+\frac{\pi}{4}$. 1593. $\frac{\pi a^{2}}{8}$
1594. $\frac{\pi}{2}$. 1599. $\frac{\pi}{2}-1.1600$. 1. 1601. $\frac{e^{2}+3}{8} .1602 . \frac{1}{2}\left(e^{\pi}+1\right)$. 1603. 1. 1604. $\frac{a}{a^{2}+b^{2}}$. 1605. $\frac{b}{a^{2}+b^{2}}$. 1606. Solution. $\Gamma(p+1)=\int^{\infty} x^{p^{-}} e^{-x} d x$. Applying the formula of integration by parts, we put $x^{p}=u, e^{-x^{0}} d x=d v$. Whence

$$
d u=p x^{p-1} d x, \quad v=-e^{-x}
$$

and

$$
\begin{equation*}
\Gamma(p+1)=\left[-x^{p} e^{-x}\right]_{0}^{\infty}+p \int_{0}^{\infty} x^{p-1} e^{-x} d x=p \Gamma(p) \tag{*}
\end{equation*}
$$

If p is a natural number, then, applying formula (*) p times and taking into account that

$$
\Gamma(1)=\int_{0}^{\infty} e^{-x} d x=1
$$

we get:

$$
\Gamma(p+1)=p 1
$$

1607. $I_{2 k}=\frac{1 \cdot 3 \cdot 5 \ldots(2 k-1)}{2 \cdot 4 \cdot 6 \ldots 2 k} \frac{\pi}{2}$, if $n=2 k$ is an even number; $I_{2 k+1}=$ $=\frac{2 \cdot 4 \cdot 6 \cdot 2 k}{1 \cdot 3 \cdot 5 \ldots(2 k+1)}$, if $n=2 k+1$ is an odd number

$$
I_{0}=\frac{128}{315} ; \quad I_{10}=\frac{63 \pi}{512} .
$$

1608. $\frac{(p-1)!(q-1)!}{(p+q-1)!}$. 1609. $\frac{1}{2} \mathrm{~B}\left(\frac{m+1}{2}, \frac{n+1}{2}\right)$. Hint. Put $\sin ^{2} x=t$. 1610. a) Plus; b) minus; c) plus Hint. Sketch the graph of the integrand for values of the argument on the interval of integration 1611. a) First; b) second; c) first. 1612. $\frac{1}{3}$ 1613. a. \quad 1614. $\frac{1}{2} . \quad$ 1615. $\frac{3}{8} . \quad$ 1616. $2 \arcsin \frac{1}{3}$. 1617. $2<l<\sqrt{5}$. 1618. $\frac{2}{9}<l<\frac{2}{7}$. 1619. $\frac{2}{13} \pi<l<\frac{2}{7} \pi$. 1620. $0<l<\frac{\pi^{2}}{32}$. Hint. The integrand increases monotonically. 1621. $\frac{1}{2}<l<\frac{\sqrt{2}}{2}$. 1623. $s=\frac{32}{3}$. 1624. 1. 1625. $\frac{1}{2}$ Hint. Take account of the sign of the function. 1626. $4 \frac{1}{4}$. 1627. 2. 1628. $\ln 2$. 1629. $m^{2} \ln 3$. 1630. л a^{2}. 1631. 12. 1632. $\frac{4}{3} p^{2}$. 1633. $4 \frac{1}{2}$. 1634. $10 \frac{2}{3}$. 1635. 4. 1636. $\frac{32}{3}$. 1637. $\frac{\pi}{2}-\frac{1}{3}$. 1638. $e+\frac{1}{e}-2=2(\cosh 1-1)$. 1639. $a b[2 \sqrt{3}-\ln (2+\sqrt{\overline{3}})]$. 1640. $\frac{3}{8} \pi a^{2}$. Hint. See Appendix VI, Fig. 27. 1641. $2 a^{2} e^{-1}$. 1642. $\frac{4}{3} a^{2}$. 1643. 15л. 1644. $\frac{9}{2} \ln 3$. 1645. 1. 1646. 3 πa^{2}. Hint. See Appendix VI, Fig. 23. 1647. $a^{2}\left(2+\frac{\pi}{2}\right)$. Hint. See Appendix VI, Fig. 24. 1648. $2 \pi+\frac{4}{3}$ and $6 \pi-\frac{4}{3}$. 1049. $\frac{16}{3} \pi-\frac{4 \sqrt{3}}{3}$ and $\frac{32}{3} \pi+\frac{4 \sqrt{3}}{3} .1650 \cdot \frac{3}{8} \pi a b$.
1609. $3 \pi a^{2}$. 1652. $\pi\left(b^{2}+2 a b\right)$. 1653. $6 \pi a^{2}$. 1654. $\frac{3}{2} a^{2}$. Hint. For the loop, the parameter t varies within the limits $0 \leqslant t \leqslant+\infty$ See Appendix V1, Fig. 22. 1655. $\frac{3}{2} \pi a^{2}$. Hint. See Appendix VI, Fig. 28. 1656. $8 \pi^{3} a^{2}$. Hint. See Appendix VI, Fig. 30. 1657. $\frac{\pi a^{2}}{8}$. 1658. a^{2}. 1659. $\frac{\pi a^{2}}{4}$. Hint. See Appendix VI,
Fig. 33. 1660. $\frac{9}{2} \pi$. 1661. $\frac{14-8 \sqrt{2}}{3} a^{2}$. 1662. $\frac{\pi p^{2}}{\left(1-\mathrm{e}^{2}\right)^{1 / 2}} \cdot 1663 . a^{2}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right)$.
1610. $\pi \sqrt{\overline{2}}$. Hint. Pass to polar coordinates. 1665. $\frac{8}{27}(10 \sqrt{\overline{10}}-1)$.
1611. $\sqrt{h^{2}-a^{2}}$. Hint. Utilize the formula $\cosh ^{2} a-\sinh ^{2} a=1$.
1612. $\sqrt{2}+\ln (1+\sqrt{2})$. 1668. $\sqrt{1+e^{2}}-\sqrt{2}+\ln \frac{\left(\sqrt{1+e^{2}}-1\right)(\sqrt{2}+1)}{e}$. 1669. $1+\frac{1}{2} \ln \frac{3}{2}$. $1670 . \ln \left(e+\sqrt{e^{2}-1}\right)$. 1671. $\ln (2+\sqrt{3}) \quad 1672 . \frac{1}{4}\left(e^{2}+1\right)$. 1673. $a \ln \frac{a}{b}$. 1674. $2 a \sqrt{3}$. 1675. $\ln \frac{e^{2 b}-1}{e^{2 a}-1}+a-b=\ln \frac{\sinh b}{\sinh a} .1676 . \frac{1}{2} a T^{2}$. Hint. See Appendix VI, Fig. 29. 1677. $\frac{4\left(a^{3}-b^{3}\right)}{a b}$. 1678. 16a. 1679. $\pi a \sqrt{1+4 \pi^{2}}+$ $+\frac{a}{2} \ln \left(2 \pi+\sqrt{1+4 \pi^{2}}\right) \cdot 1680.8 a .1681 .2 a[\sqrt{2}+\ln (\sqrt{2}+1)] .1682 \cdot \frac{\sqrt{5}}{2}+$ $+\ln \frac{3+\sqrt{5}}{2}$. 1683. $\frac{a \sqrt{1+m^{2}}}{m}$. 1684. $\frac{1}{2}[4+\ln 3]$. 1685. $\frac{\pi a^{5}}{30} \cdot 1686 . \frac{4}{3} \pi a b^{2}$. 1687. $\frac{a^{3} \pi}{4}\left(c^{2}+4-e^{-2}\right) . \quad 1688 . \quad \frac{3}{8} \pi^{2} . \quad 1689 . \quad v_{x}=\frac{\pi}{4} . \quad 1690 . \quad v_{y}=\frac{4}{7} \pi$. 1691. $v_{x}=\frac{\pi}{2} ; v_{y}=2 \pi$. 1692. $\frac{16 \pi a^{3}}{5}$. 1693. $\frac{32}{15} \pi a^{3}$. 1694. $\frac{4}{3} \pi \rho^{3}$. 1695. $\frac{3}{10} \pi$. 1696. $\frac{\pi a^{3}}{2}(15-16 \ln 2)$. 1697. $2 \pi^{2} a^{3}$. 1698. $\frac{\pi R^{2} H}{2}$. 1699. $\frac{16}{15} \pi h^{2} a$. 1701. a) $5 \pi^{2} a^{3}$; b) $6 \pi^{2} a^{2}$; c) $\frac{\pi a^{4}}{6}\left(9 \pi^{2}-16\right)$. 1702. $\frac{32}{105} \pi a^{2}$. 1703. $\frac{8}{3} \pi a^{2}$. 1704. $\frac{4}{21} \pi a^{2}$. 1705. $\frac{h}{3}\left(A B+\frac{A b+a B}{2}+a b\right)$. 1706. $\frac{\pi a b h}{3}$. 1707. $\frac{128}{105} a^{3}$. 1708. $\frac{8}{3} \pi a^{2} b$. 1709. $\frac{1}{2} \pi a^{2} h$. 1710. $\frac{16}{3} a^{3}$. 1711. $\pi a^{2} \sqrt{\rho q}$. 1712. $\pi a b h\left(1+\frac{h^{2}}{3 c^{2}}\right)$. 1713. $\frac{4}{3} \pi a b c$. 1714. $\frac{8 \pi}{3}\left[\sqrt{17^{2}}-1\right] ; \quad \frac{16}{3} \pi a^{2}[5 \sqrt{5}-8] . \quad$ 1715. $\quad 2 \pi[\sqrt{2}+\ln (\sqrt{2}+1)]$. 1716. $\pi(\sqrt{5}-\sqrt{2})+\pi \ln \frac{2(\sqrt{2}+1)}{\sqrt{5}+1} . \quad 1717 . \quad \pi[\sqrt{2}+\ln (1+\sqrt{2})]$. 1718. $\frac{\pi a^{2}}{4}\left(e^{2}+e^{-2}+4\right)=\frac{\pi a^{2}}{2}(2+\sinh 2)$. 1719. $\frac{12}{5} \pi a^{2}$. 1720. $\frac{\pi}{3}(e-1)\left(e^{2}+e+4\right)$. 1721. $4 \pi^{2} a b$ Hint. Here, $y=b \pm \sqrt{a^{2}-x^{2}}$. Taking the plus sign, we get the external surface of a torus; taking the minus sign, we get the internal surface of a torus. 1722. 1) $2 \pi b^{2}+\frac{2 \pi a b}{8} \operatorname{arc} \sin \varepsilon$; 2) $2 \pi a^{2}+\frac{\pi b^{2}}{8} \ln \frac{1+\varepsilon}{1-\varepsilon}$, where $\varepsilon=\frac{\sqrt{a^{2}-b^{2}}}{a}$ (eccentricity of ellipse). 1723. a) $\frac{64 \pi a^{2}}{3}$; b) $16 \pi^{2} a^{2}$; c) $\frac{32}{3} \pi a^{2}$.
 $M_{Y}=\frac{a}{2} \sqrt{a^{2}+b^{2}} . \quad$ 1728. $\quad M_{a}=\frac{a b^{2}}{2} ; \quad M_{b}=\frac{a^{2} b}{2} . \quad$ 1729. $\quad M_{X}=M_{Y}=\frac{a^{3}}{6}$: $\bar{x}=\bar{y}=\frac{a}{3} . \quad$ 1730. $\quad M_{X}=M_{Y}=\frac{3}{5} a^{2} ; \quad \bar{x}=\bar{y}=\frac{2}{5} a . \quad 1731 . \quad 2 \pi a^{2} . \quad$ 1732. $x=0$: $\vec{y}=\frac{a}{4} \frac{2+\sinh 2}{\sinh 1}$. 1733. $\bar{x}=\frac{a \sin a}{\alpha} ; \bar{y}=0$. 1734. $\bar{x}=\pi a ; \bar{y}=\frac{4}{3} a .1735 . \bar{x}=\frac{4 a}{3 \pi}$ i $\bar{y}=\frac{4 b}{3 \pi} . \quad$ 1736. $\quad \bar{x}=\bar{y}=\frac{9}{20}$. 1737. $\bar{x}=\pi a ; \quad \bar{y}=\frac{5}{6} a . \quad$ 1738. $\quad\left(0,0, \frac{a}{2}\right) . \quad$ Solu-
tion. Divide the hemisphere into elementary spherical slices of area do by horizontal planes. We have $d \sigma=2 \pi a d z$, where $d z$ is the altitude of a slice. Whence $\bar{z}=\frac{2 \pi \int_{0}^{a} a z d z}{2 \pi a^{2}}=\frac{a}{2}$. Due to symmetry, $\bar{x}=\bar{y}=0$. 1739. At a distance of $\frac{3}{4}$ altitude from the vertex of the cone. Solution. Partition the cone into elements by planes parallel to the base. The mass of an elementary layer (slice) is $d m_{i}=\gamma \pi \varrho^{2} d z$, where γ is the density, z is the distance of the cutting plane from the vertex of the cone, $\varrho=\frac{r}{h} 2$. Whence $\pi \int_{0}^{h} \frac{r^{2}}{h^{2}} z^{2} d z$
$\bar{z}=\frac{\int_{0}}{\frac{1}{3} \pi r^{2} h}=\frac{3}{4} h . \quad 1740 .\left(0 ; 0 ;+\frac{3}{8} a\right)$. Solution. Due to symmetry, $\bar{x}=\bar{y}=0$. To determine \bar{z} we partition the hemisphere into elementary layers (slices) by planes parallel to the horizontal plane. The mass of such an elementary layer $d m=\gamma \pi r^{2} d z$, where γ is the density, 2 is the distance of the cutting plane from the base of the hemisphere, $r=\sqrt{a^{2}-2^{2}}$ is the radius of a cross-section. We have: $\bar{z}=\frac{\pi \int_{0}^{a}\left(a^{2}-z^{2}\right) z d z}{\frac{2}{3} \pi a^{2}}=\frac{3}{8} a .1741 . I=\pi a^{3}$. 1742. $I_{a}=\frac{1}{3} a b^{3} ; I_{b}=\frac{1}{3} a^{2} b$. 1743. $I=\frac{4}{15} h b^{3} . \quad$ 1744. $I_{a}=\frac{1}{4} \pi a b^{3} ; I_{b}=\frac{1}{4} \pi a^{2} b$. 1745. $I=\frac{1}{2} \pi\left(R_{2}^{4}-R_{1}^{4}\right)$. Solution. We partition the ring into elementary concentric circles. The mass of each such element $d m=\gamma 2 \pi r d r$ and the moment of inertia $l=2 \pi \int_{R_{1}}^{R_{2}} r^{2} d r=\frac{1}{2} \pi\left(R_{2}^{4}-R_{1}^{4}\right) ;(\gamma=1) .1746 . l=\frac{1}{10} \pi R^{4} H \gamma$. Solution. We partition the cone into elementary cylindrical tubes paralle to the axis of the cone. The volume of each such elementary tube is $d V=2 \pi r h d r$, where r is the radius of the tube (the distance to the axis of the cone), $h=H\left(1-\frac{r}{R}\right)$ is the altitude of the tube; then the moment of
inertia $I=\gamma \int_{0}^{R} 2 \pi H\left(1-\frac{r}{R}\right) r^{3} d r=\frac{\gamma \pi R^{4} H}{10}$, where γ is the density of the cone. 1747. $l=\frac{2}{5} M a^{2}$. Solution. We partition the sphere into elementary cylindrical tubes, the axis of which is the given diameter. An elementary volume $d V=2 \pi r h d r$, where r is the radius of a tube, $h=2 a \sqrt{1-\frac{r^{2}}{a^{2}}}$ is its altitude. Then the moment of inertia $I=4 \pi a \gamma \int_{0}^{u} \sqrt{1-\frac{r^{2}}{a^{2}}} r^{8} d r=\frac{8}{15} \pi a^{5} \gamma^{a^{2}}$ where γ is the density of the sphere, and since the mass $M=\frac{4}{3} \pi a^{8} \gamma$, it follows that $J=\frac{2}{5} M a^{2}$. 1748. $\quad V=2 \pi^{2} a^{2} b ; \quad S=4 \pi^{2} u b . \quad$ 1749. a) $\bar{x}=\bar{y}=\frac{2}{5} a$; b) $\bar{x}=\bar{y}=\frac{9}{10} p$. 1750. a) $\bar{x}=0, \bar{y}==\frac{4}{3} \frac{r}{\pi}$ Hint. The coordinate axes are chosen so that the x-axis coincides with the diameter and the origin is the centre of the circle; b) $\bar{x}=\frac{h}{3}$ Solution. The volume of the solid-a double cone obtained from rotating a triansle about its base, is equal to $V=\frac{1}{3} r b h^{2}$, where b is the base, h is the altitude of the triangle. By the Guldin theorem, the same volume $V=2 \pi \bar{x} \frac{1}{2} b^{\prime}$, where \bar{x} is the distance of th: centre of gravity trom the base. Whence $\bar{x}=\frac{h}{3}$ 1751. $v_{0} t-\frac{g t^{2}}{2}$. 1752. $\frac{c^{2}}{2 g} \ln \left(1+\frac{v_{0}^{2}}{c^{-}}\right) . \quad$ 1753. $x=\frac{v_{0}}{\omega}$ a $111 \omega t ; \quad v_{a v}=\frac{2}{\pi} v_{0} \quad$ 1754. $S=10^{7} \mathrm{~m}$. 1755. $v=\frac{A}{b} \ln \left(\frac{a}{a-b t}\right) ; ~ h=\frac{A}{b^{2}} \times\left[b t_{1}-\left(a-b t_{1}\right) \ln \frac{a}{a-b t_{1}}\right] . \quad$ 1756. $\quad A=$ $=\frac{\pi Y}{2} R^{2} H^{2}$ Hint. The elementary force (force of gravity) is equal to the weight of water in the volume of a layer of thickness $d x$, that is, $d F=$ $=\gamma \pi R^{2} d x$, where γ is the weight of unit volume of water. Hence, the elementary work of a force $d A=\gamma \pi R^{i}(H-x) d x$, where x is the water level. 1757. $A=\frac{\pi}{12} \gamma R^{2} H^{2}$. 1758. $A=\frac{\pi \gamma}{4} R^{4} T M=079 \cdot 10^{4}=079 \cdot 10^{2} \quad \mathrm{kgm}$. 1759. $A=\gamma \pi R^{3} H$. 1760. $A=\frac{m g h}{1+\frac{h}{R}}: A_{\infty}=m g R$. Solution. The force acting on a mass m is equal to $F=k \frac{m M}{r^{2}}$, where r is the distance from the centre of the earth. Since for $r=R$ we have $F=m g$, it follows that $k M=g R^{2}$. The
 $=\frac{m g h}{1+\frac{h}{R}}$. When $h=\infty$ we have $A_{\infty}=m g R$. 1761. $1.8 \cdot 10^{4}$ ergs. Solution.

The force of interaction of charges is $F=\frac{e_{0} e_{1}}{x^{2}}$ dynes. Consequently, the work performed in moving charge e_{1} from point x_{1} to x_{2} is $A=e_{0} e_{1} \int_{x_{1}}^{x_{2}} \frac{d x}{x^{2}}=$ $=e_{0} e_{1}\left(\frac{1}{x_{1}}-\frac{1}{x_{2}}\right)=1.8 \cdot 10^{4}$ ergs. 1762. $A=800 \pi \ln 2 \mathrm{kgm}$. Solution. For an isothermal process, $p u=p_{0} v_{0}$. The work performed in the expansion of a gas from volume v_{0} to volume v_{1} is $A=\int_{v_{0}}^{v_{1}} p d v=p_{0} v_{0} \ln \frac{v_{1}}{v_{0}} \cdot 1763 . A \approx 15,000 \mathrm{kgm}$.

Solution. For an adiabatic process, the Poisson law $\rho v^{k}=p_{0} v_{0}^{k}$, where $k \approx 1.4$, holds true. Hence $A=\int_{v_{0}}^{v_{1}} \frac{p_{0} v_{0}^{k}}{v^{k}} d v=\frac{p_{0} v_{0}}{k-1}\left[1-\left(\frac{v_{0}}{v_{1}}\right)^{k-1}\right]$. 1764. $A=\frac{4}{3} \pi \mu P a$. Solution. If a is the radius of the base of a shaft, then the pressure on unit area of the support $p=\frac{P}{\pi a^{2}}$. The frictional force of a ring of width $d r$, at a distance r from the centre, is $\frac{2 \mu P}{a^{2}} r d r$. The work performed by frictional forces on a ring in one complete revolution is $d A=\frac{4 \pi \mu P}{a^{2}} r^{2} d r$. Therefore, the complete work $A=\frac{4 \pi \mu P}{a^{2}} \times \int_{0}^{a} r^{2} d r=\frac{4}{3} \pi \mu P a$. 1765. $\frac{1}{4} M R^{2} \omega^{2}$. Solution. The kinetic energy of a particle of the disk $d K=\frac{m v^{2}}{2}=\frac{\mathrm{e}^{2} \omega^{2}}{2} d \sigma$, where $d \sigma$ is an element of area, r is the distance of it from the axis of rotation, Q is the surface density, $Q=\frac{M}{\pi R^{2}}$. Thus, $d K=\frac{M \omega^{2}}{2 \pi R^{2}} r^{2} d \sigma$. Whence $K=\frac{M \omega^{2}}{R^{2}} \int_{0}^{R} r^{2} d r=\frac{M R^{2} \omega^{2}}{4} \quad$ 1766. $K=\frac{3}{20} \times M R^{2} \omega^{2}-$ 1767. $K=\frac{M}{5} R^{2} \omega^{2}=2.3 \cdot 10^{8} \mathrm{kgm}$. Hint. The amount of work required is equal to the reserve of kinetic energy. 1768. $p=\frac{b h^{2}}{6}$. 1769. $P=\frac{(a+2 b) h^{2}}{6} \approx 11.3 \cdot 10^{2} T$ 1770. $P=a b y$ vith. 1771. $P=\frac{\pi R^{2} H}{3}$ (the vertical component is directed upwards). 1772. $533 \frac{1}{3} \mathrm{gm}$ 1773. 99.8 cal . 1774. $M=\frac{h b^{2} p}{2} \mathrm{gf} \mathrm{cm} .1775 . \frac{k M m}{a(a+l)}(k$ is the gravitational constant). 1776. $\frac{\pi p a^{4}}{8 \mu l}$. Solution. $Q=\int_{0}^{a} v 2 \pi r d r=\frac{2 \pi p}{4 \mu l} \int_{0}^{a}\left(a^{2}-r^{2}\right) r d r=$ $=\frac{\pi p}{2 \mu l}\left[\frac{a^{2} r^{2}}{2}-\frac{r^{4}}{4}\right]_{0}^{a}=\frac{\pi p a^{4}}{8 \mu l}$. 1777. $Q=\int_{0}^{2 b} v_{a} d y=\frac{2}{3} p \frac{a b^{2}}{\mu l}$ Hint. Draw the x-axis 15-1900
along the large lower side of the rectangle, and the y-axis, perpendicular to it in the middle. 1778. Solution. $S=\int_{v_{1}}^{v_{2}} \frac{1}{a} d v$; on the other hand, $\frac{d v}{d t}=a$, whence $d t=\frac{1}{a} d v$, and consequently, the acceleration time is $t=\int_{v_{1}}^{v_{3}} \frac{d v}{a}=S$.
1779.

$$
M_{x}=-\int_{0}^{x} \frac{Q}{l}(x-t) d t+\frac{Q}{2} x=-\frac{Q}{l}\left[x t-\frac{t^{2}}{2}\right]_{0}^{x}+\frac{Q}{2} x=\frac{Q x}{2}\left(1-\frac{x}{l}\right)
$$

1780. $M_{x}=-\int_{0}^{x}(x-t) k t d t+A x=\frac{k x}{6}\left(l^{2}-x^{2}\right)$. 1781. $Q=0.12 T R I_{0}^{2}$ cal. Hint.

Use the Joule-Lenz law.

Chapter VI

1782. $V=\frac{2}{3}\left(y^{2}-x^{2}\right) x$.

$$
\text { 1783. } \quad S=\frac{2}{3}(x+y) \sqrt{4 z^{2}+3(x-y)^{2}} .
$$

1784. $f\left(\frac{1}{2}, 3\right)=\frac{5}{3} ; f(1,-1)=-2$. 1785. $\frac{y^{2}-x^{2}}{2 x y}, \frac{x^{2}-y^{2}}{2 x y}, \frac{y^{2}-x^{2}}{2 x y}$, $\frac{2 x y}{x^{2}-y^{2}}$. 1786. $f\left(x, x^{2}\right)=1+x-x^{2}$. 1787. $z=\frac{R^{4}}{1-R^{2}}$. 1788. $f(x)=\frac{\sqrt{1+x^{2}}}{x}$. Hint. Represent the given function in the form $f\left(\frac{y}{x}\right)=\sqrt{\left(\frac{x}{y}\right)^{2}+1}$ and replace $\frac{y}{x}$ by x. 1789. $f(x, y)=\frac{x^{2}-x y}{2}$. Solution. Designate $x+y=u$, $x-y=v$. Then $x=\frac{u+v}{2}, y=\frac{u-v}{2} ; f(u, v)=\frac{u+v}{2} \cdot \frac{u-v}{2}+\left(\frac{u-v}{2}\right)^{2}=$ $=\frac{u^{2}-u v}{2}$. It romains to name the arguments u and v, x and $y .1790 . f(u)=$ $=u^{2}+2 u ; z=x-1+\sqrt{y}$. Hint. In the identity $x=1+f(\sqrt{x}-1)$ put $\sqrt{x}-1=u$; then $x=(u+1)^{2}$ and, hence, $f(u)=u^{2}+2 u$. 1791. $f(y)=$ $=\sqrt{1+y^{2}} ; \quad z=\sqrt{x^{2}+y^{2}}$ Solution. When $x=1$ we have the identity $\sqrt{1+y^{2}}=1 \cdot f\left(\frac{y}{1}\right)$, i. e., $f(y)=\sqrt{1+y^{2}}$. Then $f\left(\frac{y}{x}\right)=\sqrt{1+\left(\frac{y}{x}\right)^{2}}$ and $z=x \sqrt{1+\left(\frac{y}{x}\right)^{2}}=\sqrt{x^{2}+y^{2}}$. 1792. a) Single circle with centre at origin, including the circle $\left(x^{2}+y^{2} \leqslant 1\right)$; b) bisector of quadrantal angle $y=x$; c) halfplane loated above the straight line $x+y=0(x+y>0)$; d) strip contained between the straight lines $y= \pm 1$, including these lines $(-1 \leqslant y \leqslant 1) ;$ e) a square formed by the segments of the straight lines $x= \pm 1$ and $y= \pm 1$, including its sides ($-1 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 1$); f) part of the plane adjoining the x-axis and contained between the straight lines $y= \pm x$, including these lines and excluding the coordinate origin ($-x \leqslant y \leqslant x$ when $x>0, x \leqslant y \leqslant-x$ when $x<0$); g) two strips $x \geqslant 2,-2 \leqslant y \leqslant 2$ and $x \leqslant-2,-2 \leqslant y \leqslant 2$; h) the ring contained between the circles $x^{2}+y^{2}=a^{2}$ and $x^{2}+y^{2}=2 a^{2}$, including the boundaries; i) strips $2 n \pi \leqslant x \leqslant(2 n+1) \pi, y \geqslant 0$ and $(2 n+1) \pi \leqslant x \leqslant(2 n+2) \pi$, $y \leqslant 0$, where n is an integer; j) that part of the plane located above the
parabola $y=-x^{2}\left(x^{2}+y>0\right)$; k) the entire $x y$-plane; 1) the entire $x y$-plane, with the exception of the coordinate origin; m) that part of the plane located above the parabola $y^{2}=x$ and to the right of the y-axis, including the points of the y-axis and excluding the points of the parabola $(x \geqslant 0, y>\sqrt{x})$; $\mathrm{n})$ the entire piace except points of the straight lines $x=1$ and $y=0$; o) the family of concentric circles $2 \pi k \leqslant x^{2}+y^{2} \leqslant \pi(2 k+1) \quad(k=0,1,2, \ldots)$. 1793. a) First octant (including boundary); b) First, Third. Sixth and Eighth octants (excluding the boundary); c) a cube bounded by the planes $x= \pm 1$, $y= \pm 1$ and $z= \pm 1$, including its faces; d) a sphere of radius 1 with centre at the origin, including its surface 1794. a) a plane; the level lines are straight lines parallel to the straight line $x+y=0$; b) a paraboloid of revolution; the level lines are concentric circles with centre at the origin; c) a hyperbolic paraboloid; the level limes are equilateral hyperbolas; d) second-order cone; the level lines are equilateral hyperbolas; e) a parabolic cylinder, the generatrices of which are parallel to the straight line $x+y+1=0$; the level lines are parallel lines; f) the lateral surface of a quadrangular pyramid; the level lines are the outlines of squares; g) level lines are parabolas $y=C x^{2} ; h$) the level lines are parabolas $y=C \sqrt{x} ;$) the level lines are the circles $C\left(x^{2}+y^{2}\right)=2 x$. 1795. a) Parabolas $y=C-x^{2}(C>0)$; b) hyperbolas $x y=C(|C| \leqslant 1) ;$ c) circles $x^{2}+y^{2}=C^{2}$; d) straight lines $y=a x+C$; c) straight lines $y=C x(x \neq 0)$. 1796. a) Planes parallel to the plane $x+y+z=0$; b) concentric spheres with centre at origin; c) for $u>0$, one-sheet hyperboloids of revolution about the z-axis; for $u<0$, two-sheet hyperbolords of revolution about the same axis; both families of surfaces are divided by the cone $x^{2}+y^{2}-z^{2}=0 \quad(u=0)$. 1797. a) 0 ; b) 0 ;c) 2 ; d) e^{k}; e) limit does not exist; f) limit does not exist. Hint. In Item(b) pass to polar coordinates In Items (e) and (f), consider the variation of x and y along the straight lines $y=k x$ and show that the given expression may tend to different limits, depending on the choice of k. 1798. Continuous. 1799. a) Discontinuity at $x=0, y=0$; b) all points of the straight line $x=y$ (line of discontinuity); c) line of discontinuity is the circle $x^{2}+y^{2}=1$; d) the tines of discontinuity are the coordmate axes. 1800 Hint. Putting $y=y_{1}=$ const, we get the function $\mathrm{C}_{1}(x)=\frac{2 x y_{1}}{x^{2}+y_{1}^{2}}$, which is continuous everywhere, since for $y_{1} \neq 0$ the denominator $x^{2}+y_{1}^{2} \neq 0$, and when $y_{1}=0, \varphi_{1}(x) \equiv 0$. Similarly, when $x=x_{3}=$ const, the function $\varphi_{2}(y)=\frac{2 x_{1}, y}{x_{1}^{2}+y^{2}}$ is everywhere continuous. From the set of variables x, y, the function z is discontinuous at the point $(0,0)$ since there is no $\lim _{x \rightarrow 0}$. Indeed, $x \rightarrow 0$
$y \rightarrow 0$
passing to polar coordinates ($x=r \cos \varphi, y=r \sin \varphi$), we get $z=\sin 2 \varphi$, , whence it is evident that if $x \rightarrow 0$ and $y \rightarrow 0$ in such manner that $\varphi=$ const $(0 \leqslant \varphi \leqslant 2 \pi)$, then $z \rightarrow \sin 2 \varphi$. Since these limiting values of the function z depend on the direction of φ, it follows that z does not have a limit as $x \rightarrow 0$ and $y \rightarrow 0$. 1801. $\frac{\partial z}{\partial x}=3\left(x^{2}-a y\right), \quad \frac{\partial z}{\partial y}=3\left(y^{2}-a x\right) . \quad$ 1802. $\frac{\partial z}{\partial x}=\frac{2 y}{(x+y)^{2}}, \frac{\partial z}{\partial y}=-\frac{2 x}{(x+y)^{2}}$.
1785. $\frac{\partial z}{\partial x}=-\frac{y}{x^{2}}, \quad \frac{\partial z}{\partial y}=\frac{1}{x} . \quad 1804$.
$\frac{\partial z}{\partial x}=\frac{x}{\sqrt{x^{z}-y^{2}}}, \quad \frac{\partial z}{\partial y}=-\frac{y}{\sqrt{x^{2}-y^{2}}}$.
1786. $\frac{\partial z}{\partial x}=\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}, \quad \frac{\partial z}{\partial y}=-\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}, \quad$ 1806. $\frac{\partial z}{\partial x}=\frac{1}{\sqrt{x^{2}+y^{2}}}, \quad \frac{\partial z}{\partial y}=$ $=\frac{y}{\sqrt{x^{2}+y^{2}}\left(x+\sqrt{x^{2}+y^{2}}\right)}$. 1807. $\frac{\partial z}{\partial x}=-\frac{y}{x^{2}+y^{2}}, \frac{\partial z}{\partial y}=\frac{x}{x^{2}+y^{2}}$. 1808. $\frac{\partial z}{\partial x}=y x^{y-1}$,
$\frac{\partial z}{\partial y}=x^{y} \ln x . \quad$ 1809. $\frac{\partial z}{\partial x}=-\frac{y}{x^{2}} e^{\sin \frac{y}{x}} \cos \frac{y}{x}, \frac{\partial z}{\partial y}=\frac{1}{x} e^{\sin \frac{y}{x}} \cos \frac{y}{x} . \quad$ 1810. $\frac{\partial z}{\partial x}=$ $=\frac{x y^{2} \sqrt{2 x^{2}-2 y^{2}}}{|y|\left(x^{4}-y^{4}\right)}, \quad \frac{\partial z}{\partial y}=-\frac{y x^{2} \sqrt{2 x^{2}-2 y^{2}}}{|y|\left(x^{4}-y^{4}\right)} . \quad$ 1811. $\frac{\partial z}{\partial x}=\frac{1}{\sqrt{y}} \cot \frac{x+a}{\sqrt{y}}$, $\frac{\partial z}{\partial y}=-\frac{x+a}{2 y \sqrt{y}} \cot \frac{x+a}{\sqrt{y}} .1812 . \frac{\partial u}{\partial x}=y z(x y)^{z-1}, \frac{\partial u}{\partial y}=x z(x y)^{z-1}, \frac{\partial u}{\partial z}=(x y)^{z} \ln (x y)$. 1813. $\frac{\partial u}{\partial x}=y z^{x y} \ln z, \quad \frac{\partial u}{\partial y}=x z^{x y} \ln z, \quad \frac{\partial u}{\partial z}=x y z^{x y-1} . \quad$ 1814. $f_{x}^{\prime}(2,1)=\frac{1}{2}$, $f_{y}^{\prime}(2,1)=0 . \quad 1815 . \quad f_{x}^{\prime}(1,2,0)=1, \quad f_{y}(1,2,0)=\frac{1}{2}, \quad f^{z}(1,2,0)=\frac{1}{2}$.
1787. $-\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}}$. 1821. r. 1826. $z=\arctan \frac{y}{x}+\varphi(x)$. 1827. $z=\frac{x^{2}}{2}+$
$+y^{2} \ln x+\sin y-\frac{1}{2}$. 1828. 1) $\tan \alpha=4, \tan \beta=\infty, \tan \gamma=\frac{1}{4}$; 2) $\tan \alpha=\infty$,
$\tan \beta=4, \tan \gamma=\frac{1}{4}$. 1829. $\frac{\partial S}{\partial a}=\frac{1}{2} h, \frac{\partial S}{\partial b}=\frac{1}{2} h, \frac{\partial S}{\partial h}=\frac{1}{2}(a+b)$. 1830. Hint.
Check to see that the function is equal to zero over the entire x-axis and the entire y-axis, and take advantage of the definition of partial derivatives. Be convinced that $f_{x}^{\prime}(0,0)=f_{y}^{\prime}(0,0)=0$. 1831. $\Delta f=4 \Delta x+\Delta y+2 \Delta x^{2}+$ $+2 \Delta x \Delta y+\Delta x^{2} \Delta y ; \quad d f=4 d x+d y ; \quad$ a) $\quad \Delta f-d f=8 ; \quad$ b) $\quad \Delta f-d f=0.062$. 1833. $d z=3\left(x^{2}-y\right) d x+3\left(y^{2}-x\right) d y$. 1834. $d z=2 x y^{3} d x+3 x^{2} y^{2} d y$. 1835. $d z=$ $=\frac{4}{\left(\Lambda^{2}+u^{2}\right)^{2}}\left(x y^{2} d x-x^{2} y d y\right)$. 1836. $d z=\sin 2 x d x-\sin 2 y d y$. 1837. $d z=y^{2} x^{y-1} d x+$ $+x^{y}(1+y \ln x) d y .1838 . d z=\frac{2}{x^{2}+y^{2}}(x d x+y d y) .1839 . d f=\frac{1}{x+y}\left(d x-\frac{x}{y} d y\right)$. 1840. $d z=0$. 1841. $d z=\frac{2}{x \sin \frac{2 y}{x}}\left(d y-\frac{y}{x} d x\right)$. 1842. $d f(1,1)=d x-2 d y$.
1788. $d u=y z d x+z x d y+x y d z$. 1844. $\quad d u=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}(x d x+y d y+z d z)$. 1845. $\mathfrak{d} u=\left(x y+\frac{x}{y}\right)^{z-1}\left[\left(y+\frac{1}{y}\right) z d x+\left(1-\frac{1}{y^{2}}\right) x z d y+\left(x y+\frac{x}{y}\right) \ln \times\right.$ $\left.\times\left(x y+\frac{x}{y}\right) d x\right]$. 1846. $d u=\frac{z^{2}}{x^{2} y^{2}+z^{4}}\left(y d x+x d y-\frac{2 x y}{z} d z\right)$. 1847. $d f(3,4,5)=$ $=\frac{1}{25}(5 d z-3 d x-4 d y) .1848 . d l=0.062 \mathrm{~cm} ; \Delta l=0.065 \mathrm{~cm} .1849 .75 \mathrm{~cm}^{3}$ (relative to inner dimensions). 1850. $\frac{1}{8} \mathrm{~cm}$. Hint. Put the differential of the area of the sector equal to zero and find the differential of the radius from that. 1851. a) 1.00 ; b) 4.998 , c) 0.273 . 1853. Accurate to 4 metres (more exactly, $4.25 \mathrm{~m}) . \quad$ 1854. $\pi \frac{\alpha g-\beta l}{g \sqrt{\overline{l g}}} . \quad$ 1855. $d \alpha=\frac{1}{\varrho}(d y \cos \alpha-d x \sin \alpha) . \quad$ 1856. $\frac{d z}{d t}=$ $=\frac{\boldsymbol{e}^{t}(t \ln t-1)}{t \ln ^{2} t}$. 1857. $\frac{d u}{d t}=\frac{t}{\sqrt{y}} \cot \frac{x}{\sqrt{y}}\left(6-\frac{x}{2 y^{2}}\right)$. 1858. $\frac{d u}{d t}=2 t \ln t \tan t+$ $+\frac{\left(t^{2}+1\right) \tan t}{t}+\frac{\left(t^{2}+1\right) \ln t}{\cos ^{2} t} .1859 . \frac{d u}{d t}=0.1860 . \frac{d z}{d x}=(\sin x)^{\cos x}(\cos x \cot x-$
$-\sin x \ln \sin x$). 1861. $\frac{\partial z}{\partial x}=-\frac{y}{x^{2}+y^{2}} ; \quad \frac{d z}{d x}=\frac{1}{1+x^{2}} . \quad$ 1862. $\frac{\partial z}{\partial x}=y x^{y-1} ; \quad \frac{d z}{d x}=$ $=x^{y}\left[\varphi^{\prime}(x) \ln x+\frac{y}{x}\right] \cdot 1863 . \frac{\partial z}{\partial x}=2 x f_{u}^{\prime}(u, v)+y e^{x y} f_{v}^{\prime}(u, v) ; \frac{\partial z}{\partial y}=-2 y f_{u}^{\prime}(u, v)+$ $+x e^{x y} f_{v}^{\prime}(u, v) . \quad 1864 \frac{\partial z}{\partial u}=0, \quad \frac{\partial z}{\partial v}=1 . \quad$ 1865. $\frac{\partial z}{\partial x}=y\left(1-\frac{1}{x^{2}}\right) f^{\prime}\left(x y+\frac{y}{x}\right) ;$ $\frac{\partial z}{\partial y}=\left(x+\frac{1}{x}\right) f^{\prime}\left(x y+\frac{y}{x}\right) . \quad$ 1867. $\frac{d u}{d x}=f_{x}^{\prime}(x, y, z)+\varphi^{\prime}(x) f_{y}^{\prime}(x, y, z)+$ $+f_{z}^{\prime}(x, y, z)\left[\Psi_{x}^{\prime}(x, y)+\Psi_{y}^{\prime}(x, y) \varphi^{\prime}(x)\right]$. 1873. The perimeter increases at a rate of $2 \mathrm{~m} / \mathrm{sec}$, the area increases at a rate of $70 \mathrm{~m}^{2} / \mathrm{sec}$. 1874. $\frac{1+2 t^{2}+3 t^{4}}{\sqrt{1+t^{2}+t^{4}}}$. 1875. $20 \sqrt{5-2 \sqrt{2}} \mathrm{~km} / \mathrm{hr}$. 1876. $-\frac{9 \sqrt{3}}{2}$. 1877. 1. 1878. $\frac{\sqrt{2}}{2}$. 1879. $-\frac{\sqrt{3}}{3}$. 1880. $\frac{68}{13}$. 1881. $\frac{\operatorname{crs} \alpha+\operatorname{crs} \beta+\cos \gamma}{3}$. 1882. a) (2, 0); b) $(0,0)$; and (1,1$)$; c) $(7,2,1)$. 1884. $9 i-3 j$. 1885. $\frac{1}{4}(5 i-3 j) .1886 .6 i+3 j+2 k .1887 .|\operatorname{grad} u|=6$; $\cos \alpha=\frac{2}{3}, \cos \beta=-\frac{2}{3}, \cos \gamma=\frac{1}{3} .1888 . \cos \varphi=\frac{3}{\sqrt{10}} \cdot \quad 1889 . \tan \varphi \approx 8.944 ;$ $\varphi \approx 83^{\circ} 37^{\prime} . \quad$ 1891. $\frac{\partial^{2} z}{\partial x^{2}}=\frac{a b c u^{2}}{\left(b^{2} x^{2}+a^{2} y^{2}\right)^{1 / 2}} ; \quad \frac{\partial^{2} z}{\partial x \partial y}=-\frac{a b c x y}{\left(b^{2} x^{2}+a^{2} y^{2}\right)^{1 / 2}} ; \quad \frac{\partial^{2} z}{\partial y^{2}}=$ $=\frac{a b c x^{2}}{\left(b^{2} x^{2}+a^{2} y^{2}\right)^{1 / 2}} .1892 \frac{\partial^{2} z}{\partial x^{2}}=\frac{2\left(y-x^{2}\right)}{\left(x^{2}+y\right)^{2}} ; \quad \frac{\partial^{2} z}{\partial x \partial y}=-\frac{2 x}{\left(x^{2}+y\right)^{2}} ; \frac{\partial^{2} z}{\partial y^{2}}=-\frac{1}{\left(x^{2}+y\right)^{2}}$. 1893. $\frac{\partial^{2} z}{\partial x \partial y}=\frac{x u}{\left(2 x y+y^{2}\right)^{3 / 2}}$. 1834. $\frac{\partial^{2} z}{\partial x \partial y}=0$. 1895. $\frac{\partial^{2} r}{\partial x^{2}}=\frac{r^{2}-x^{2}}{r^{2}}$ 1896. $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial y^{2}}=$ $=\frac{\partial^{2} u}{\partial z^{2}}=0 ; \quad \frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y \partial z}=\frac{\partial^{2} u}{\partial z \partial x}=1 . \quad$ 1897. $\frac{\partial^{2} u}{\partial x \partial y \partial z}=\alpha \beta \gamma x^{z-1} y^{3-1} z^{\gamma-1}$. 1898. $\frac{\partial^{2} z}{\partial x \partial y^{2}}=-\lambda^{2} y \cos (x y)-2 x \sin (x y)$. 1899. $\quad f_{x}^{\prime \prime} \quad(0,0)=m(m-1)$; $f_{x!}^{\prime \prime}(0,0)=m n ; f_{l \prime \prime \prime}^{\prime \prime}(0,0)=n(n-1)$. 1902. Hint. Using the rules of differentiation and the defimition of a partial derivative, verify that $f_{x}^{\prime}(x, y)=$ $=y\left[\frac{x^{2}-y^{2}}{x^{2}+y^{2}}+\frac{4 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right]$ (when $\left.x^{2}+y^{2} \neq 0\right), f_{x}^{\prime}(0,0)=0$ and, consequently, that for $x=0$ and for any $y, f_{x}^{\prime}(0, y)=-y$. Whence $f_{x y}^{\prime \prime}(0, y)=-1$; in par.

1789. $\frac{\partial^{2} z}{\partial \partial^{2}}=2 f_{u}^{\prime}(u, v)+4 x^{2} f_{u u}^{\prime \prime}(u, v)+4 x v f_{u v}^{\prime \prime}(u, v)+y^{2} f_{v v}^{\prime \prime}(u, v)$;

$$
\begin{aligned}
& \frac{\partial^{2} z}{\partial x \partial y}=f_{v}^{\prime}(u, v)+4 x y f_{u u}^{\prime \prime}(u, v)+2\left(x^{2}+y^{2}\right) f_{u v}^{\prime \prime}(u, v)+x y f_{v v}^{\prime \prime}(u, v) ; \\
& \frac{\partial^{2} z}{\partial y^{2}}=2 f_{u}^{\prime}(u, v)+4 y^{2} f_{u u}^{\prime \prime}(u, v)+4 x v f_{u v}^{\prime \prime}(u, v)+x^{2} f_{v v}^{\prime \prime}(u, v) .
\end{aligned}
$$

1904.

$$
\frac{\partial^{2} u}{\partial \lambda^{2}}=f_{x x}^{\prime \prime}+2 f_{x z}^{\prime \prime} \varphi_{x}^{\prime}+f_{z z}^{\prime \prime}\left(\varphi_{x}^{\prime}\right)^{2}+f_{z}^{\prime} \varphi_{x x}^{\prime \prime}
$$

1905. $\frac{\partial^{2} z}{\partial x^{2}}=f_{u u}^{\prime \prime}\left(\varphi_{x}^{\prime}\right)^{2}+2 f_{u v}^{\prime \prime} \varphi_{x}^{\prime} \psi_{x}^{\prime}+f_{v v}^{\prime \prime}\left(\psi_{x}^{\prime}\right)^{2}+f_{u}^{\prime} \varphi_{x x}^{\prime \prime}+f_{v}^{\prime} \psi_{x x}^{\prime \prime} ;$

$$
\frac{\partial^{2} z}{\partial x \partial y}=f_{u u}^{\prime \prime} \varphi_{x}^{\prime} \varphi_{y}^{\prime}+f_{u v}^{\prime \prime}\left(\varphi_{x}^{\prime} \psi_{y}^{\prime}+\psi_{x}^{\prime} \varphi_{y}^{\prime}\right)+f_{v v}^{\prime \prime} \psi_{x}^{\prime} \psi_{y}^{\prime}+f_{u}^{\prime} \varphi_{x y}^{\prime \prime}+f_{v}^{\prime} \psi_{x y}^{\prime \prime}
$$

$$
\frac{\partial^{2} z}{\partial y^{2}}=f_{u u}^{\prime \prime}\left(\varphi_{y}^{\prime}\right)^{2}+2 f_{u v}^{\prime \prime} \varphi_{y}^{\prime} \psi_{y}^{\prime}+f_{v u}^{\prime \prime}\left(\psi_{y}^{\prime}\right)^{2}+f_{u}^{\prime} \varphi_{y y}^{\prime \prime}+f_{v}^{\prime} \psi_{y y}^{\prime \prime}
$$

1914. $u(x, y)=\varphi(x)+\psi(y)$. 1915. $u(x, y)=x \varphi(y)+\psi(y)$. 1916. $d^{2} z=e^{x y} \times$ $\times\left[(y d x+x d y)^{2}+2 d x d y\right]$. 1917. $d^{2} u=2(x d y d z+y d z d x+z d x d y)$.
1915. $d^{2} z=4 \varphi^{\prime \prime}(t)(x d x+y d y)^{2}+2 \varphi^{\prime}(t)\left(d x^{2}+d y^{2}\right)$.
1916. $d z=\left(\frac{x}{y}\right)^{x y} \times$
$\times\left(y \ln \frac{e x}{y} d x+x \ln \frac{x}{e y} d y\right) ; \quad d^{2} z=\left(\frac{x}{y}\right)^{x y}\left[\left(y^{2} \ln ^{2} \frac{e x}{y}+\frac{y}{x}\right) d x^{2}+\right.$
$\left.+2\left(x y \ln \frac{e x}{y} \ln \frac{x}{e y}+\ln \frac{x}{y}\right) d x d y+\left(x^{2} \ln ^{2} \frac{x}{e y}-\frac{x}{y}\right) d y^{2}\right]$.
1917. $d^{2} x=a^{2} f_{u u}^{\prime \prime}(u, v) d x^{2}+2 a b f_{u v}^{\prime \prime}(u, v) d x d y+b^{2} f_{v v}^{\prime \prime}(u, v) d y^{2}$.
1918. $d^{2} z=\left(y e^{x} f_{v}^{\prime}+e^{2 y f_{u u}^{\prime \prime}}+2 y e^{x+y} f_{u v}^{\prime \prime}+y^{2} e^{2 x} f_{v v}^{\prime \prime}\right) d x^{2}+$

$$
+2\left(e^{y} f_{u}^{\prime}+e^{x} f_{v}^{\prime}+x e^{2 y} f_{u u}^{\prime \prime}+e^{x}+y(1+x y) f_{u v}^{\prime \prime}+y e^{2 x} f_{v v}^{\prime \prime}\right) d x d y+
$$

$+\left(x e^{y} f_{u}^{\prime}+x^{2} e^{2 y} f_{u u}^{\prime \prime}+2 x e^{x+y} f_{u v}^{\prime \prime}+e^{2 x} f_{v v}^{\prime \prime}\right) d y^{2} . \quad$ 1922. $\quad d^{2} z=e^{x}\left(\cos y d x^{3}-\right.$
$\left.-3 \sin y d x^{2} d y-3 \cos y d x d y^{2}+\sin y d y^{3}\right) . \quad$ 1923. $\quad d^{3} z=-y \cos x d x^{3}-$
$-3 \sin x d x^{2} d y-3 \cos y d x d y^{2}+x \sin y d y^{3} . \quad$ 1924. $d f(1,2)=0 ; d^{2} f(1,2)=$
$=6 d x^{2}+2 d x d y+4.5 d y^{2}$. 1925. $d^{2} f(0,0,0)=2 d x^{2}+4 d y^{2}+6 d z^{2}-4 d x d y+$
$+8 d x d z+4 d y d z . \quad$ 1926. $x y+C . \quad$ 1927. $x^{3} y-\frac{y^{3}}{3}+\sin x+C$. 1928. $\frac{x}{x+y}+$
$+\ln (x+y)+C . \quad$ 1929. $\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+2 \arctan \frac{x}{y}+C . \quad$ 1930. $\frac{x}{y}+C$.
1931. $\sqrt{x^{2}+y^{2}}+$ C. 1932. $a=-1, b=-1, z=\frac{x-y}{x^{2}+y^{2}}+$ C. 1933. $x^{2}+y^{2}+z^{2}+$ $+x y+x z+y z+$ C. 1934. $x^{3}+2 x y^{2}+3 x z+y^{2}-y z-2 z+C$. 1935. $x^{2} y z-3 x y^{2} z+$ $+4 x^{2} y^{2}+2 x+y+3 z+C$. 1936. $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+C$. 1937. $\sqrt{x^{2}+y^{2}+z^{2}}+C$
1938. $\lambda=-1$. Hint. Write the condition of the total differential for the expression $X d x+Y d y . \quad$ 1939. $f_{x}^{\prime}=f_{y^{\prime}}^{\prime} \quad$ 1940. $u=\int_{a}^{x y} f(z) d z+C . \quad$ 1941. $\frac{d y}{d x}=$ $=-\frac{b^{2} x}{a^{2} y} ; \frac{d^{2} y}{d x^{2}}=-\frac{b^{4}}{a^{2} y^{3}} ; \frac{d^{5} y}{d x^{3}}=-\frac{3 b^{6} x}{a^{4} y^{5}}$. 1942. The equation defining y is the equation of a pair of straight lines. 1843. $\frac{d y}{d x}=\frac{y^{x} \ln y}{1-x y^{x-1}}$. 1944. $\frac{d y}{d x}=\frac{y}{y-1}$; $\frac{d^{2} y}{d x^{2}}=\frac{y}{(1-y)^{3}} . \quad$ 1945. $\left(\frac{d y}{d x}\right)_{x=1}=3 \quad$ or $\quad-1 ;\left(\frac{d^{2} y}{d x^{2}}\right)_{x=1}=8 \quad$ or $\quad-8$.
1946. $\frac{d y}{d x}=\frac{x+a y}{a x-y} ; \quad \frac{d^{2} y}{d x^{2}}=\frac{\left(a^{2}+1\right)\left(x^{2}+y^{2}\right)}{(a x-y)^{2}} . \quad$ 1947. $\quad \frac{d y}{d x}=-\frac{y}{x} ; \quad \frac{d^{2} y}{d x^{2}}=\frac{2 y}{x^{2}}$.
1948. $\frac{\partial z}{\partial x}=\frac{x^{2}-y z}{x y-z^{2}} ; \quad \frac{\partial z}{\partial y}=\frac{6 y^{2}-3 x z-2}{3\left(x y-z^{2}\right)} . \quad$ 1949. $\quad \frac{\partial z}{\partial x}=\frac{z \sin x-\cos y}{\cos x-y \sin z} ; \quad \frac{\partial z}{\partial y}=$
$=\frac{x \sin y-\cos z}{\cos x-y \sin z} \quad$ 1950. $\frac{\partial z}{\partial x}=-1 ; \quad \frac{\partial z}{\partial y}=\frac{1}{2} . \quad$ 1951. $\frac{\partial z}{\partial x}=-\frac{c^{2} x}{a^{2} z} ; \frac{\partial z}{\partial y}=-\frac{c^{2} y}{b^{2} z} ;$
$\frac{\partial^{2} z}{\partial x^{2}}=-\frac{c^{4}\left(b^{2}-y^{2}\right)}{a^{2} b^{2} z^{2}} ; \quad \frac{\partial^{2} z}{\partial x \partial y}=-\frac{c^{4} x y}{a^{2} b^{2} z^{3}} ; \quad \frac{\partial^{2} z}{\partial y^{2}}=-\frac{c^{4}\left(a^{2}-x^{2}\right)}{a^{2} b^{2} z^{3}} . \quad$ 1953. $\frac{d z}{d x}=$ $=\frac{\left|\begin{array}{l}\varphi_{x}^{\prime} \\ \varphi_{y}^{\prime} \\ \psi_{x}^{\prime} \\ \psi_{y}^{\prime}\end{array}\right|}{\psi_{y}^{\prime}}$.
1954. $d z=-\frac{x}{z} d x-\frac{y}{z} d y ; \quad d^{2} z=\frac{y^{2}-a^{2}}{z^{3}} d x^{2}-2 \frac{x y}{z^{3}} d x d y+$ $+\frac{x^{2}-a^{2}}{z^{2}} d y^{2} . \quad$ 1955. $d z=0 ; d^{2} z=\frac{4}{15}\left(d x^{2}+d y^{2}\right) . \quad$ 1956. $d z=\frac{z}{1-2}(d x+d y) ;$ $d^{2} z=\frac{z}{(1-z)^{2}}\left(d x^{2}+2 d x d y+d y^{2}\right)$. 1961. $\frac{d y}{d x}=\infty ; \quad \frac{d z}{d x}=\frac{1}{5} ; \frac{d^{2} y}{d x^{2}}=\infty ; \quad \frac{d^{2} z}{d x^{2}}=\frac{4}{25}$. 1962. $\quad d y=\frac{y(z-x)}{x(y-z)} d x ; \quad d z=\frac{z(x-y)}{x(y-z)} d x ; \quad d^{2} y=-d^{2} z=-\frac{a}{x^{3}(y-z)^{3}} \times$ $\times\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] d x^{2} . \quad$ 1963. $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=1 ; \quad \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial^{2} u}{\partial y^{2}}=0 ;$ $\frac{\partial v}{\partial x}=-1 ; \quad \frac{\partial v}{\partial y}=0 ; \quad \frac{\partial^{2} v}{\partial x^{2}}=2 ; \quad \frac{\partial^{2} v}{\partial x \partial y}=1 ; \quad \frac{\partial^{2} v}{\partial y^{2}}=0 . \quad$ 1964. $\quad \mathrm{d} u=\frac{y}{1+y} d x+$ $+\frac{v}{1+y} d y ; \quad d v=\frac{1}{1+y} d x-\frac{v}{1+y} d y ; \quad d^{2} u=-d^{2} v=\frac{2}{(1+y)^{2}} d x d y-$ $-\frac{2 v}{(1+y)^{2}} d y^{2} . \quad$ 1965. $\quad d u=\frac{\psi_{v}^{\prime} d x-\varphi_{v}^{\prime} d y}{\left|\begin{array}{l}\varphi_{u}^{\prime} \varphi_{v}^{\prime} \\ \psi_{u}^{\prime} \psi_{v}^{\prime}\end{array}\right|} ; \quad d v=\frac{-\psi_{u}^{\prime} d x+\varphi_{u}^{\prime} d y}{\left|\begin{array}{l}\varphi_{u}^{\prime} \varphi_{v}^{\prime} \\ \psi_{u}^{\prime} \psi_{v}^{\prime}\end{array}\right|}$. 1966. a) $\frac{\partial z}{\partial x}=-\frac{c \sin v}{u}, \quad \frac{\partial z}{\partial y}=\frac{c \cos v}{u}$; b) $\frac{\partial z}{\partial x}=\frac{1}{2}(v+u), \quad \frac{\partial z}{\partial y}=\frac{1}{2}(v-u) ;$ c) $d z=\frac{1}{2 e^{2 u}}\left[e^{u-v}(v+u) d x+e^{u+v}(v-u) d y\right] . \quad$ 1967. $\frac{\partial z}{\partial x}=F_{r}^{\prime}(r, \varphi) \cos \varphi-$ $-F_{\varphi}^{\prime}(r, \varphi) \frac{\sin \varphi}{r} ; \quad \frac{\partial z}{\partial y}=F_{r}^{\prime}(r, \varphi) \sin \varphi+F_{\varphi}^{\prime}(r, \varphi) \frac{\cos \varphi}{r} . \quad$ 1968. $\quad \frac{\partial z}{\partial x}=$ $=-\frac{c}{a} \cos \varphi \cot \psi ; \frac{\partial z}{\partial y}=-\frac{c}{b} \sin \varphi \cot \psi$. 1969. $\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+y=0$. 1970. $\frac{d^{2} y}{d t^{2}}=\theta$. 1971.
a) $\quad \frac{d^{2} x}{d y^{2}}-2 y \frac{d x}{d y}=0 ;$
b) $\frac{d^{3} x}{d y^{2}}=0$.
1972. $\tan \mu=\frac{r}{\frac{d r}{d \varphi}}$.
1973. $K=\frac{r^{2}+2\left(\frac{d r}{d \varphi}\right)^{2}-r \frac{d^{2} r}{d \varphi^{2}}}{\left[r^{2}+\left(\frac{d r}{d \varphi}\right)^{2}\right]^{3 / 2}}$. 1974. $\frac{\partial z}{\partial u}=0$. 1975. $u \frac{\partial z}{\partial u}-z=0$. 1976. $\frac{\partial^{2} u}{\partial r^{2}}+$ $+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial p^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}=0 . \quad$ 1977. $\quad \frac{\partial^{2} z}{\partial u \partial v}=\frac{1}{2 u} \frac{\partial z}{\partial v}$. 1978. $\frac{\partial w}{\partial v}=0 . \quad$ 1979. $\frac{\partial^{2} w}{\partial v^{2}}=0$. 1980. $\frac{\partial^{2} w}{\partial u^{2}}=\frac{1}{2}$. 1981. a) $2 x-4 y-z-5=0 ; \quad \frac{x-1}{2}=\frac{y+2}{-4}=\frac{z-5}{-1}$; b) $3 x+4 y-$ $-6 z=0 ; \quad \frac{x-4}{3}=\frac{y-3}{4}=\frac{z-4}{-6} ; \quad$ c) $x \cos \alpha+y \sin \alpha-R=0, \quad \frac{x-R \cos \alpha}{\cos \alpha} \Rightarrow$ $=\frac{y-R \sin a}{\sin a}=\frac{z-R}{0}$. 1982. $\pm \frac{a^{2}}{\sqrt{a^{2}+b^{2}+c^{2}}} ; \pm \frac{b^{2}}{\sqrt{a^{2}+b^{2}+c^{2}}} ; \pm \frac{c^{2}}{\sqrt{a^{2}+b^{2}+c^{2}}}$.
1983. $3 x+4 y+12 z-169=0$. 1985. $x+4 y+6 z= \pm 21 \quad$ 1986. $x+y+z=$ $= \pm \sqrt{a^{2}+b^{2}+c^{2}} 1987$ At the points $(1, \pm 1,0)$, the tangent planes are parallel to the $x z$-plane; at the points $(0,0,0)$ and $(2,0,0)$, to the $y z$-plane. There are no points on the surface at which the tangent plane is parallel to the $x y$-plane. 1991. $\frac{\pi}{3}$. 1994. Projection on the $x y$-plane: $\left\{\begin{array}{l}z=0 \\ x^{2}+y^{2}-x y-1=0 .\end{array}\right.$ Projection on the $y z$-plane: $\left\{\begin{array}{l}x=0 \\ \frac{3 y^{2}}{4}+z^{2}-1=0\end{array} \quad\right.$ Projection on the $x z$-plane: $\left\{\begin{array}{l}y=0 \\ \frac{3 x^{2}}{4}+z^{2}-1=0 .\end{array}\right.$ Hint. The line of tangency of the surface with the cylinder projecting this surface on some plane is a locus at which the tangent plane to the given surface is perpendicular to the plane of the projection 1996. $f(x+h, \quad y+k)=a x^{2}+2 b x y+c y^{2}+2(a x+b y) h+2(b x+c y) k+a h^{2}+$ $+2 b h k+c k^{2} \quad$ 1997. $\quad f(x, y)=1-(x+2)^{2}+2(x+2)(y-1)+3(y-1)^{2}$. 1998. $\Delta f(x, y)=2 h+k+h^{2}+2 h k+h^{2} k .1999 . f(x, y, z)=(x-1)^{2}+(y-1)^{2}+$ $+(z-1)^{2}+2(x-1)(y-1)-(y-1)(z-1)$. $2000 . \quad f(x+h, y+k, z+l)=$ $=f(x, y, z)+2 \mid h(x-y-z)+k(y-x-z)+l(z-x-y)]+f(h, k, l)$.
2001. $y+x y+\frac{3 x^{2} y-y^{2}}{3!} \cdot 2002.1-\frac{x^{2}+y^{2}}{2!}+\frac{x^{2}+6 x^{2} y^{2}+y^{2}}{4!} \cdot 2003.1+(y-1)+$ $+(x-1)(y-1) . \quad$ 2004. $\quad 1+[(x-1)+(y+1)]+\frac{[(x-1)+(y+1)]^{2}}{2!}+$ $+\frac{[(x-1)+(y+1)]^{3}}{3!} . \quad$ 2n05. a) $\arctan \frac{1+\alpha}{1-\beta} \approx \frac{\pi}{4}+\frac{1}{2}(\alpha+\beta)-\frac{1}{4}\left(\alpha^{2}-\beta^{2}\right) ;$ b) $\sqrt{\frac{(1+\alpha)^{m}+(1+\beta)^{n}}{2}} \approx 1+\frac{1}{4}(m \alpha+n \beta)+\frac{1}{32}\left[\left(3 m^{2}-4 m\right) \alpha^{2}-2 m n \alpha \beta+\right.$ $\left.+\left(3 n^{2}-4 n\right) \beta^{2}\right]$. 2006. a) 1.0081 ; b) 0.902. Hint. Apply Taylor's formula for the functions: a) $f(x, y)=\sqrt{x} \sqrt[3]{y}$ in the neighbourhood of the point $(1,1)$; b) $f(x, y)=y^{x}$ in the neighbourhood of the point (2,1). 2007. $z=1+2(x-1)$ -$-(y-1)-8(x-1)^{2}+10(x-1)(y-1)-3(y-1)^{2}+\ldots 2008 . z_{\min }=0$ when $x=1$, $y=0$ 2009. No extremum. 2010. $z_{\min }=-1$ when $x=1, y=0.2011 . z_{\text {max }}=108$ when $x=3, y=2.2012 . z_{\min }=-8$ when $x=\sqrt{2}, y=-\sqrt{2}$ and when $x=$ $=-\sqrt{2}, y=\sqrt{2}$. There is no extremum for $x=y=0$. 2013. $z_{\text {max }}=\frac{a b}{3 \sqrt{3}}$ at the points $x=\frac{a}{\sqrt{3}}, y=\frac{b}{\sqrt{3}}$ and $x=-\frac{a}{\sqrt{3}}, y=-\frac{b}{\sqrt{3}} ; z_{\min }=-\frac{a b}{3 \sqrt{3}}$ at the points $x=\frac{a}{\sqrt{3}}, y=-\frac{b}{\sqrt{3}}$ and $x=-\frac{a}{\sqrt{3}}, y=\frac{b}{\sqrt{3}}$. 2014. $z_{\max }=1$ when $x=y=0$. 2015. $z_{\text {min }}=0$ when $x=y=0$; nonrigorous maximum $\left(z=\frac{1}{e}\right)$ at points of the circle $x^{2}+y^{2}=1$. 2016. $z_{\max }=\sqrt{3}$ when $x=1, y=-1$. 2017. $u_{\min }=-\frac{4}{3}$ when $x=-\frac{2}{3}, y=-\frac{1}{3}, z=1$. 2018. $u_{\min }=4$ when $x=\frac{1}{2}, y=1, z=1$. 2019. The equation defines two functions, of which one has a maximum ($z_{\max }=8$) when $x=1, y=-2$; the other has a minimum $\left(z_{\min }=-2\right.$, when $x=1, y=-2$, at points of the circle $(x-1)^{2}+(y+2)^{2}-25$, each of these functions has a boundary ext-emum $(z=3)$. Hint. The functions mentioned in the answer are explicitly defined by the equalities
$2=3 \pm \sqrt{25-(x-1)^{2}-(y+2)^{2}}$ and consequently exist only inside and on the boundary of the circle $(x-1)^{2}+(y+2)^{2}=25$, at the points of which both functions assume the value $z=3$. This value is the least for the first function and is the greatest for the second. 2020. One of the functions defined by the equation has a maximum $\left(z_{\max }=-2\right)$ for $x=-1, y=2$, the other has a minimum ($z_{\min }=1$) for $x=-1, y=2$, both functions have a boundary extremum at the points of the curve $4 x^{3}-4 y^{2}-12 x+16 y-33=0$. 2021. $z_{\text {max }}=\frac{1}{4}$ for $x=y=\frac{1}{2} .2022 . z_{\max }=5$ for $x=1, y=2 ; 2_{\text {min }}=-5$ for $x=-1, y=-2$ 2023. $z_{\text {min }}=\frac{36}{13}$ for $x=\frac{18}{13}, y=\frac{12}{13}$. 2024. $z_{\max }=\frac{2+\sqrt{2}}{2}$ for $x=\frac{7 \pi}{8}+k \pi$, $y=\frac{9 \pi}{8}+k \pi, \quad z_{\min }=\frac{2-\sqrt{2}}{2} \quad$ for $x=\frac{3 \pi}{8}+k \pi, \quad y=\frac{5 \pi}{8}+k \pi . \quad$ 2025. $\quad u_{\mathrm{mm}}=$ $=-9$ for $x=-1, y=2, z=-2, \quad u_{\text {max }}=9$ for $x=1, y=-2, z=2$. 2026. $u_{\text {max }}=a$ for $x= \pm a, y=z=0 ; u_{\text {min }}=c \quad$ for $\quad x=y=0 \quad z= \pm c$. 2027. $u_{\text {max }}=2 \cdot 4^{2} \cdot 6^{3}$ for $x=2, y=4,{ }^{z}=6$. 2028. $u_{\text {max }}=4^{4} / \frac{27}{}$ at the points $\left(\frac{4}{3}, \frac{4}{3}, \frac{7}{3}\right) ;\left(\frac{4}{3}, \frac{7}{3}, \frac{4}{3}\right):\left(\frac{7}{3}, \frac{4}{3}, \frac{4}{3}\right) ; u_{\operatorname{man}}=4$ at the points $(2$, 2, 1) $(2,1,2)(1,2,2) .2030$. a) Greatest value $z=3$ for $x=0, y=1$; b) smallest value $z=2$ for $x=1, y=0$.2031. a) Greatest value $z=\frac{2}{3 \sqrt{3}}$ for $x= \pm \sqrt{\frac{\overline{2}}{3}}, y=\sqrt{\frac{1}{3}} ;$ smallest value $z=-\frac{2}{3 \sqrt{3}}$ for $x= \pm \sqrt{\frac{\overline{2}}{3}}$, $y=-\sqrt{\frac{T}{3}} ;$ b) greatest value $z=1$ for $x= \pm 1, y=0$; smallest value $z=-1$ for $x=0, y= \pm 1$ 2032. Greatest value $z=\frac{3 \sqrt{3}}{2}$ for $x=y=\frac{\pi}{3} \quad$ (internal maximum); smallest value $z=0$ for $x=y=0$ (boundary mınımum). 2033. Greatest value $z=13$ for $x=2, y=-1$ (boundary maximum); smallest value $z=-2$ for $x=y=1$ (internal minimum) and for $x=0, y=-1$ (boundary minimum). 2034. Cube. 2035. $\sqrt[3]{2 V}, \sqrt[3]{2 V}, \frac{1}{2} \sqrt[3]{2 V} .2036$. I sosceles triangle. 2037. Cube. 2038. $a=\sqrt[4]{a} \cdot \sqrt[4]{a} \cdot \sqrt[4]{a} \cdot \sqrt[4]{a}$ 2039. $M\left(-\frac{1}{4}, \frac{1}{4}\right)$. 2040. Sides of the triangle are $\frac{3}{4} p, \frac{3}{4} p$, and $\frac{p}{2}$. 2041. $x=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} r_{3}}{m_{1}+m_{2}+m_{3}}$, $y=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} \psi_{3}}{m_{1}+m_{2}+m_{5}}$. 2042. $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=3$. 2043. The dimensions of the parallelepiped are $\frac{2 a}{\sqrt{3}}, \frac{2 b}{\sqrt{3}}, \frac{2 c}{\sqrt{3}}$, where $a, \mathrm{~b}$, and c are the semiaxes of the ellipsoid. 2044. $x=y=2 \delta+\sqrt[3]{2 V}, z=\frac{x}{2}$. 2045. $x= \pm \frac{a}{\sqrt{2}}$, $y:= \pm \frac{b}{\sqrt{2}}$ 2046. Major axis, $2 a=6$, minor axis, $2 b=2$. Hint. The square of the distance of the point (x, y) of the ellipse from its centre (coordinate origin) is equal to $x^{2}+y^{2}$. The problem reduces to finding the extremum of the function $x^{2}+y^{2}$ provided $5 x^{2}+8 x y+5 y^{2}=9.2047$. The radius of the base of the cylinder
is $\frac{R}{2} \sqrt{2+\frac{2}{\sqrt{5}}}$, the altitude $R \sqrt{2-\frac{2}{\sqrt{5}}}$, where R is the radius of the sphere. 2048. The channel must connect the point of the parabola $\left(\frac{1}{2}, \frac{1}{4}\right)$ with the point of the straight line $\left(\frac{11}{8},-\frac{5}{8}\right)$; its length is $\frac{7 \sqrt{2}}{8}$ 2049. $\frac{1}{14} \sqrt{2730}$. 2050. $\frac{\sin \alpha}{\sin \beta}=\frac{v_{1}}{v_{2}}$. Hint. Obviously, the point M, at which the ray passes from one medium into the other, must lie between A_{1} and B_{1}; $A M=\frac{a}{\cos \alpha}, B M=\frac{b}{\cos \beta}, A_{1} M=a \tan \alpha, B_{1} M=b \tan \beta$. The duration of motion of the ray is $\frac{a}{v_{1} \cos \alpha}+\frac{b}{v_{2} \cos \beta}$. The problem reduces to finding the minimum of the function $f(\alpha, \beta)=\frac{a}{v_{1} \cos \alpha}+\frac{b}{v_{2} \cos \beta}$ provided that $a \tan \alpha+b \tan \beta=c$. 2051. $\alpha=\beta$. 2052. $I_{1}: I_{2}: I_{3}=\frac{1}{R_{1}}: \frac{1}{R_{2}}: \frac{1}{R_{3}}$. Hint. Find the minimum of the function $f\left(I_{1}, I_{2}, I_{3}\right)=I_{1}^{2} R_{1}{ }^{1}+I_{2}^{2} R_{2}+I_{2}^{2} R_{3}$ provided that $I_{1}+I_{2}+I_{3}=I$. 2053. The isolated point (0,0). 2054. Cusp of second kind (0,0). 2055. Tacnode (0,0). 2056. Isolated point (0,0). 2057. Node (0,0). 2058. Cusp of first kind $(0,0)$. 2059. Node $(0,0) .2060$. Node (0,0). 2061. Origin is isolated point if $a>b$; it is a cusp of the first kind if $a=b$, and a node if $a<b$. 2062. If among the quantities a, b, and c, none are equal, then the curve does not have any singular points. If $a=b<c$, then $A(a, 0)$ is an isolated point; if $a<b=c$, then $B(b, 0)$ is a node; if $a=b=c$, then $A(a, 0)$ is a cusp of the first kind. 2063. $y= \pm x$. 2064. $y^{2}=2 p x$. 2065. $y= \pm R$. 2066. $x^{2 / 3}+$ $+y^{2 / 3}=l^{3 / 3}$. 2067. $x y=\frac{1}{2} \mathrm{~S}$. 2068. A pair of conjugate equilateral hyperbolas, whose equations, if the axes of symmetry of the ellipses are taken as the coordinate axes, have the form $x y= \pm \frac{S}{2 \pi}$. 2069. a) The discriminant curve $y=0$ is the locus of points of inflection and of the envelope of the given family; b) the discriminant curve $y=0$ is the locus of cusps and of the envelope of the family; c) the discriminant curve $y=0$ is the locus of cusps and is not an envelope; d) the discriminant curve decomposes into the straight lines: $x=0$ (locus of nodes) and $x=a$ (envelope). 2070. $y=\frac{v_{0}^{2}}{2 g}-\frac{g x^{2}}{2 v_{0}^{2}} .2071 .7 \frac{1}{3} .2072 . \sqrt{9+4 \pi^{2}}$. 2073. $\sqrt{\overline{3}}\left(e^{t}-1\right) .2074 .42 .2075 . \quad 5$. 2076. $\quad x_{0}+z_{0} .2077 . \quad 11+\frac{\ln 10}{9}$ 2079. a) Straight line; b) parabola; c) ellipse; d) hyperbola. 2080. 1) $\frac{d a}{d t} a^{0}$ 2) $a \frac{d a^{0}}{d t}$; 3) $\frac{d a}{d t} a^{0}+a \frac{d a^{0}}{d t}$. 2081. $\frac{d}{d t}(a b c)=\left(\frac{d a}{d t} b c\right)+\left(a \frac{d b}{d t} c\right)+\left(a b \frac{d c}{d t}\right)$ 2082. $4 t\left(t^{2}+1\right)$. 2083. $x=3 \cos t ; y=4 \sin t$ (ellipse); for $t=0, v=4 j$, $w=-3 t$; fo $t=\frac{\pi}{4}, v=-\frac{3 \sqrt{2}}{2} i+2 \sqrt{2} j, w=-\frac{3 \sqrt{2}}{2} i-2 \sqrt{2} j ;$ for $t=\frac{\pi}{2}, v=-3 i, w=$ $=-4 j . \quad$ 2084. $\quad x=2 \cos t, \quad y=2 \sin t, \quad z=3 t \quad$ (screw-line); $\quad v=-2 i \sin t+$ $+2 j \cos t+3 k ; \quad v=\sqrt{13}$ for any $t ; w=-2 i \cos t-2 j \sin t ; w=2$ for any t for $t=0, \quad v=2 j+3 k, \quad w=-2 i ; \quad$ for $\quad t=\frac{\pi}{2}, \quad v=-2 i+3 k, \quad w=-2 J$
2085. $x=\cos \alpha \cos \omega t ; y=\sin \alpha \cos \omega t ; z=\sin \omega t$ (circle); $v=-\dot{\omega} t \cos \alpha \sin \omega t-$ $-\omega j \sin \alpha \sin \omega t+\omega k \cos \omega t ; v=|\omega| ; \quad \omega=-\omega^{2} i \cos \alpha \cos \omega t-\omega^{2} j \sin \alpha \cos \omega t$ -$-\omega^{2} k \sin \omega t ; w=\omega^{2}$. 2086. $v=\sqrt{v_{x_{0}}^{2}+v_{y_{0}}^{2}+\left(v_{x_{0}}-g t\right)^{2}} ; w_{x}=w_{y}=0 ; w_{z}=-g ;$ $w=g$. 2088. $\omega \sqrt{a^{2}+h^{2}}$, where $\omega=\frac{d \theta}{d t}$ is the angular speed of rotation of the screw. 2089. $\sqrt{a^{2} \omega^{2}+v_{0}^{2}-2 a \omega v_{0} \sin \omega t} .2090 . \quad \tau=\frac{\sqrt{2}}{2}(i+k) ; \quad v=-j ; \quad \beta=$ $=\frac{\sqrt{2}}{2}(t-k) . \quad 2091 . \tau=\frac{1}{\sqrt{3}}[(\cos t-\sin t) t+(\sin t+\cos t) J+k] ; \quad v=$ $=-\frac{1}{\sqrt{2}}[(\sin t+\cos t) t+(\sin t-\cos t) J] ; \quad \cos (\widehat{\tau}, 2)=\frac{\sqrt{3}}{3} ; \quad \cos (\nu, \widehat{z})=0$. 2092. $\tau=\frac{t+4 j+2 k}{\sqrt{21}} ; \nu=\frac{-4 i+5 j-8 k}{\sqrt{105}} ; \beta=\frac{-2 t+k}{\sqrt{5}} . \quad$ 2093. $\frac{x-a \cos t}{-a \sin t}=$ $=\frac{y-a \sin t}{a \cos t}=\frac{z-b t}{b} \quad$ (tangent); $\quad \frac{x-a \cos t}{b \sin t}=\frac{y-a \sin t}{-b \cos t}=\frac{z-b t}{a}$ (binormal); $\frac{x-a \cos t}{\cos t}=\frac{y-a \sin t}{\sin t}=\frac{z-b t}{0}$ (principal normal). The direction cosines of the tangent are $\cos \alpha=-\frac{a \sin t}{\sqrt{a^{2}+b^{2}}} ; \cos \beta=\frac{a \cos t}{\sqrt{a^{2}+b^{2}}} ; \cos \gamma=\frac{b}{\sqrt{a^{2}+b^{2}}}$. The direction cosines of the principal normal are $\cos \alpha_{1}=\cos t ; \cos \beta_{1}=\sin t$; $\cos \gamma_{1}=0$. 2094. $2 x-z=0$ (normal plane); $y-1=0$ (osculating plane); $x+2 z-5=0$ (rectifying plane). 2095. $\frac{x-2}{1}=\frac{y-4}{4}=\frac{z-8}{12} \quad$ (tangent); $x+$ $+4 y+12 z-114=0$ (normal plane); $\quad 12 x-6 y+z-8=0$ (oscutating plane). 2096. $\frac{x-\frac{t^{2}}{4}}{t^{2}}=\frac{y-\frac{t^{3}}{3}}{t}=\frac{z-\frac{t^{2}}{2}}{1}$ (tangent); $\frac{x-\frac{t^{4}}{4}}{t^{3}+2 t}=\frac{y-\frac{t^{3}}{3}}{1-t^{3}}=\frac{z-\frac{t^{2}}{2}}{-2 t^{3}-t} \quad$ (principal normal); $\frac{x-\frac{t^{4}}{4}}{1}=\frac{y-\frac{t^{2}}{3}}{-2 t}=\frac{z-\frac{t^{2}}{2}}{t^{2}} \quad$ (binormal); $\quad M_{1}\left(\frac{1}{4},-\frac{1}{3}, \frac{1}{2}\right)$; $M_{2}\left(4,-\frac{8}{3}, 2\right)$. 2097. $\frac{x-2}{1}=\frac{y+2}{-1}=\frac{z-2}{2}$ (tangent); $x+y=0$ (osculating plane); $\frac{x-2}{1}=\frac{y+2}{-1}=\frac{z-2}{-1} \quad$ (principal normal); $\quad \frac{x-2}{+1}=\frac{y+2}{1}=\frac{z-2}{0}$ (binormal); $\cos \alpha_{2}=\frac{1}{\sqrt{2}} ; \cos \beta_{2}=\frac{1}{\sqrt{2}}, \cos \gamma_{2}=0$. 2098. a) $\frac{x-\frac{R}{2}}{2}=\frac{y-\frac{R}{2}}{0}=$ $=\frac{z-\frac{\sqrt{2}}{2} R}{-\sqrt{2}}$ (tangent); $x \sqrt{2}-z=0$ (normal plane); b) $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-2}{4}$ (tangent); $x+y+4 z-10=0$ (normal plane); c) $\frac{x-2}{2 \sqrt{3}}=\frac{y-2 \sqrt{3}}{1}=\frac{z-3}{-2 \sqrt{3}}$ (tangent); $2 \sqrt{3} x+y-2 \sqrt{3 z}=0$ (normal plane); 2099. $x+y=0$. 2100, $x-$ $-y-z \sqrt{2}=0 . \quad 2101 . \quad$ a) $\quad 4 x-y-z-9=0 ; \quad$ b) $\quad 9 x-6 y+2 z-18=0$; c) $b^{2} x_{0}^{3} x-a^{2} y_{0}^{3} y+\left(a^{2}-b^{2}\right) z_{0}^{2} z=a^{2} b^{2}\left(a^{2}-b^{2}\right)$. 2102. $6 x-8 y-z+3=0$ (osculating plane); $\frac{x-1}{31}=\frac{y-1}{26}=\frac{z-1}{-22} \quad$ (principal normal); $\quad \frac{x-1}{-6}=\frac{y-1}{8}=\frac{z-1}{1}$
(binormal). 2103. $b x-z=0$ (osculating plane); $\left.\begin{array}{l}x=0, \\ z=0\end{array}\right\}$ (principal normal); $\left.\begin{array}{rl}x+b z & =0, \\ y & =0\end{array}\right\}$ (binormal); $\tau=\frac{i+b k}{\sqrt{1+b^{2}}} ; \beta=\frac{-b i+k}{\sqrt{1+b^{2}}} ; \boldsymbol{v}=J . \quad$ 2106. $2 x+$ $+3 y+19 z-27=0.2107$. а) $\sqrt{2}$; b) $\frac{\sqrt{\overline{6}}}{4}$. 2108. а) $K=\frac{e^{-t} \sqrt{2}}{3} ; T=\frac{e^{-t}}{3}$ t b) $K=T=\frac{1}{2 a \cosh ^{2} t}$. 2109. a) $R=\mathrm{Q}=\frac{(y+a)^{2}}{a}$; b) $R=\mathrm{Q}=\frac{\left(p^{4}+2 x^{4}\right)^{3}}{8 p^{4} x^{3}}$. 2111. $\frac{a v^{2}}{a^{2}+b^{2}}$ 2112. When $\quad t=0, \quad K=2, \quad w_{\tau}=0$, $w_{n}=2 ; \quad$ when $\quad t=1, \quad K=\frac{1}{7} \quad \sqrt{\frac{19}{14}}, \quad w_{\tau}=\frac{22}{\sqrt{14}}, \quad w_{n}=2 \sqrt{\frac{19}{14}}$.

Chapter VII

2113. $4 \frac{2}{3}$. $2114 . \ln \frac{25}{24}$ 2115. $\frac{\pi}{12}$. 2116. $\frac{9}{4}$. 2117. 50.4. 2118. $\frac{\pi a^{2}}{2}$. 2119. 2.4. 2120. $\frac{\pi}{6}$. 2121. $x=\frac{y^{2}}{4}-1 ; x=2-y ; y=-6 ; y=2$. 2122. $y=x^{2} ; y=x+9$; $x=1 ; \quad x=3$. 2123. $y=x ; y=10-x ; y=0 ; \quad y=4 . \quad$ 2124. $y=\frac{x}{3} ; \quad y=2 x ;$ $x=1 ; x=3$. 2125. $y=0 ; y=\sqrt{2 \overline{5}-x^{2} ;} x=0 ; x=3$. 2126. $y=x^{2} ; y=x+2$; $x=-1 ; \quad x=2$. 2127. $\quad \int_{0}^{1} d y \int_{0}^{2} f(x, y) d x=\int_{0}^{2} d x \int_{0}^{1} f(x, y) d y$. 2128. $\int_{0}^{1} d y \int_{y}^{1} f(x, y) d x=\int_{0}^{1} d x \int_{0}^{x} f(x, y) d y .2129 . \int_{0}^{1} d y \int_{0}^{2-y} f(x, y) d x=$ $=\int_{0}^{1} d x \int_{0}^{1} f(x, y) d y+\int_{1}^{2} d x \int_{0}^{2-x} f(x, y) d y . \quad$ 2130. $\quad \int_{i}^{2} d x \int_{2 x}^{2 x+3} f(x, y) d y=$ $=\int_{2}^{4} d y \int_{1}^{\frac{y}{2}} f(x, y) d x+\int_{i}^{1} d y \int_{1}^{2} f(x, y) d x+\int_{i}^{2} d y \int_{\frac{y-3}{2}}^{2} f(x, y) d x$.
2114. $\int_{0}^{1} d y \int_{-y}^{y} f(x, y) d x+\int_{1}^{\sqrt{2}} d y \int_{-\sqrt{2-y^{2}}}^{\sqrt{2}-y^{2}} f(x, y) d x=\int_{-1}^{0} d x \int_{-x}^{\sqrt{2-x^{2}}} f(x, y) d y+$ $+\int_{0}^{1} d x \int_{x}^{\sqrt{2-x^{2}}} f(x, y) d y .2132 . \int_{-1}^{1} d x \int_{2 x^{2}}^{2} f(x, y) d y=\int_{0}^{2} d y \int_{-\sqrt{\frac{y}{2}}}^{\sqrt{\frac{y}{2}}} f(x, y) d x$.
2115. $\int_{-2}^{-1} d x \int_{\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} f(x, y) d y+\int_{-1}^{1} d x \int_{-\sqrt{4-x^{2}}}^{-\sqrt{1-x^{2}}} f(x, y) d y+\int_{-1}^{1} d x \int_{\sqrt{1-x^{2}}}^{\sqrt{4-x^{2}}} f(x, y) d y+$ $+\int_{1}^{2} d x \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} f(x, y) d y=\int_{-2}^{1} d y \int_{-\sqrt{\sqrt{4}-y^{2}}}^{\sqrt{4-y^{2}}} f(x, y) d x+\int_{-1}^{1} d y \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} \int_{2}^{\sqrt{1-y^{2}}} f(x, y) d x+$ $+\int_{-1}^{1} d y \int_{\sqrt{3}-y^{2}}^{\sqrt{4}-y^{2}} f(x, y) d x+\int_{1}^{2} d y \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} f(x, y), d x$
2116. $\int_{-1}^{-2} d x \int_{-\sqrt{-x^{2}}}^{\sqrt{9-x^{2}}} f(x, y) d y+\int_{-2}^{2} d x \int_{-1}^{\sqrt{1+x^{2}}} f(x, y) d y+$

$+\int_{-\sqrt{5}}^{-1} d y \int_{\sqrt{y^{2}-1}}^{\sqrt{9-y^{2}}} f(x, y) d x+\int_{-1}^{1} d y \int_{-\sqrt{9-y^{2}}}^{\sqrt{9-4^{2}}} f(x, y) d x+\int_{1}^{\sqrt{5}} d y \int_{-\sqrt{-y^{2}}}^{-\sqrt{y^{2}-1}} f(x, y) d y+$
$+\int_{1}^{\sqrt{5}} d y \int_{\sqrt{\frac{y^{2}-1}{2}}}^{\sqrt{a^{2}-x^{2}}} f(x, y) d x .2135 . \quad$ a) $\int_{0}^{1} d x \int_{0}^{1-x} f(x, y) d y=\int_{0}^{1} d y \int_{0}^{1-y} f(x, y) d x=$
b) $\left.\int_{-a}^{a} d x \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} f(x, y) d y=\int_{-a}^{a} d y \int_{-V}^{\sqrt{a^{2}-y^{2}}} f(x, y) d x ; c\right) \int_{0}^{1} d x \int_{-\sqrt{x-x^{2}}}^{\sqrt{x-x^{2}}} f(x, y) d y=$ $1+\sqrt{1-41^{2}}$
$\left.=\int_{-1 / 2}^{1 / 2} d y \int_{\frac{1-\sqrt{1-1 / 1^{2}}}{2}}^{2} f(x, y) d x ; \mathrm{d}\right) \int_{-1}^{1} d x \int_{x}^{1} f(x, y) d y=\int_{-1}^{1} d y \int_{-1}^{y} f(x, y) d x$
e) $\int_{0}^{a} d y \int_{y}^{y+2 a} f(x, y) d x=\int_{0}^{a} d x \int_{0}^{x} f(x, y) d y+\int_{a}^{2 a} d x \int_{0}^{a} f(x, y) d y+\int_{2 a}^{2 a} d x \int_{x}^{a} f(x, y) d y$.
2117. $\int_{0}^{48} d y \int_{\frac{y}{12}}^{\sqrt{\frac{1}{3}}} f(x, y) d x$. 2137. $\int_{0}^{2} d y \int_{\frac{y}{3}}^{\frac{y}{2}} f(x, y) d x+\int_{2}^{2} d y \int_{\frac{y}{3}}^{1} f(x, y) d x$
2118. $\int_{0}^{\frac{a}{2}} d y \int_{\sqrt{a^{2}-2 a y}}^{\sqrt{a^{2}-y^{2}}} f(x, y) d x+\int_{\frac{a}{2}}^{a} d y \int_{0}^{\sqrt{a^{2}-y^{2}}} f(x, y) d x$.
(binormal). 2103. $b x-z=0$ (osculating plane); $\left.\begin{array}{l}x=0, \\ z=0\end{array}\right\}$ (principal normal); $\left.\begin{array}{rl}x+b z & =0, \\ y & =0\end{array}\right\}$ (binormal); $\tau=\frac{t+b k}{\sqrt{1+b^{2}}} ; \beta=\frac{-b i+k}{\sqrt{1+b^{2}}} ; v=j . \quad 2106.2 x+$ $+3 y+19 z-27=0.2107$. a) $\sqrt{2}$; b) $\frac{\sqrt{\overline{6}}}{4}$. 2108. a) $K=\frac{e^{-t} \sqrt{2}}{3}$; $T=\frac{e^{-t}}{3}$; b) $K=T=\frac{1}{2 a \cosh ^{2} t}$. 2109. a) $R=\mathrm{Q}=\frac{(y+a)^{2}}{a}$; b) $R=\mathrm{Q}=\frac{\left(p^{4}+2 x^{4}\right)^{2}}{8 p^{4} x^{3}}$. 2111. $\frac{a v^{2}}{a^{2}+b^{2}}$ 2112. When $\quad t=0, \quad K=2, \quad w_{\tau}=0$, $w_{n}=2 ; \quad$ when $\quad t=1, \quad K=\frac{1}{7} \quad \sqrt{\frac{19}{14}}, \quad w_{\tau}=\frac{22}{\sqrt{14}}, \quad w_{n}=2 \sqrt{\frac{\overline{19}}{14}}$.

Chapter VII

2113. $4 \frac{2}{3}$. 2114. $\ln \frac{25}{24}$. 2115. $\frac{\pi}{12}$ 2116. $\frac{9}{4}$. 2117. 50.4. 2118. $\frac{\pi a^{2}}{2}$. 2119. 2.4. 2120. $\frac{\pi}{6}$. 2121. $x=\frac{y^{2}}{4}-1 ; x=2-y ; y=-6 ; y=2$. 2122. $y=x^{2} ; y=x+9$; $x=1 ; x=3$. 2123. $y=x ; y=10-x ; y=0 ; y=4$. 2124. $y=\frac{x}{3} ; y=2 x ;$ $x=1 ; x=3$. 2125. $y=0 ; y=\sqrt{25-x^{2} ;} x=0 ; x=3$. 2126. $y=x^{2} ; y=x+2$; $x=-1 ; \quad x=2$ 2127. $\quad \int_{0}^{1} d y \int_{0}^{2} f(x, y) d x=\int_{0}^{2} d x \int_{0}^{1} f(x, y) d y$. 2128. $\int_{0}^{1} d y \int_{y}^{1} f(x, y) d x=\int_{0}^{1} d x \int_{0}^{x} f(x, y) d y .2129 . \int_{0}^{1} d y \int_{0}^{2-y} f(x, y) d x=$ $=\int_{0}^{1} d x \int_{0}^{1} f(x, y) d y+\int_{1}^{2} d x \int_{0}^{2-x} f(x, y) d y . \quad 2130 . \quad \int_{i}^{2} d x \int_{2 x}^{2 x+0} f(x, y) d y=$ $=\int_{2}^{4} d y \int_{1}^{\frac{y}{2}} f(x, y) d x+\int_{i}^{1} d y \int_{1}^{2} f(x, y) d x+\int_{i}^{z} d y \int_{\frac{y-x}{2}}^{2} f(x, y) d x$. 2131. $\int_{0}^{1} d y \int_{-y}^{y} f(x, y) d x+\int_{1}^{\sqrt{2}} d y \int_{-\sqrt{2-y^{2}}}^{\sqrt{2-y^{2}}} f(x, y) d x=\int_{-1}^{0} d x \int_{-x}^{\sqrt{2-x^{2}}} f(x, y) d y+$ $+\int_{0}^{1} d x \int_{x}^{\sqrt{2-x^{2}}} f(x, y) d y .2132 . \int_{-1}^{1} d x \int_{2 x^{2}}^{2} f(x, y) d y=\int_{0}^{2} d y \int_{-\sqrt{\frac{y}{2}}}^{\sqrt{\frac{4}{2}}} f(x, y) d x$.
 2134. $\int_{-1}^{-2} d x \int_{\sqrt{-2}}^{\sqrt{2-x^{2}}} f_{-x^{2}}^{2}(x, y) d y+\int_{-2}^{2} d x \int_{-\sqrt{-1} \frac{-1}{y^{2}-1}+x^{2}}^{\sqrt{1+x^{2}}} f(x, y) d y+$ $+\int_{2}^{8} d x \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} f(x, y) d y=\int_{-\sqrt{5}}^{-1} d y \int_{-\sqrt{9}-y^{2}}^{-\sqrt{y^{2}-1}} f(x, y) d x+$ $+\int_{-V=}^{-1} d y \int_{\sqrt{2}}^{\sqrt{9}-y^{2}} f(x, y) d x+\int_{-1}^{1} d y \int_{-\sqrt{2}-y^{2}}^{\sqrt{9-y^{2}}} f(x, y) d x+\int_{1}^{\sqrt{3}} d y \int_{-\sqrt{2-1}}^{-\sqrt{y^{2}-1}} f(x, y) d y \perp$ $+\int_{1}^{V} d y \int_{\sqrt{y^{2}-1}}^{\sqrt{5}-y^{2}} f(x, y) d x$. 2135. a) $\int_{0}^{1} d x \int_{0}^{1-x} f(x, y) d y=\int_{0}^{3} d y \int_{0}^{1-y} f(x, y) d x=$
b) $\int_{-a-\sqrt{a^{2}-x^{2}}}^{a} d x \int_{-a}^{\sqrt{a^{2}-x^{2}}} f(x, y) d y=\int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}}} d y \int_{0}^{1 y^{2}} f(x, y) d x ;$ c) $\int_{0}^{1} d x \int_{-\sqrt{x-x^{2}}}^{\sqrt{x-x^{2}}} f(x, y) d y=$ $\left.=\int_{-1 / 2}^{1 / 2} d y \int_{\frac{1-V}{2}}^{\frac{1+\sqrt[V]{-1 / /^{2}}}{2}} f(x, y) d x ; \mathrm{d}\right) \quad \int_{-1}^{1} d x \int_{x}^{1} f(x, y) d y=\int_{-1}^{1} d y \int_{-1}^{y} f(x, y) d x ;$
e) $\int_{0}^{a} d y \int_{y}^{y+2 a} f(x, y) d x=\int_{0}^{a} d x \int_{0}^{x} f(x, y) d y+\int_{a}^{2 a} d x \int_{0}^{a} f(x, y) d y+\int_{2 a}^{3 a} d x \int_{-2 a}^{a} f(x, y) d y-$
2114. $\int_{0}^{48} d y \int_{\frac{y}{12}}^{\sqrt{\frac{y}{2}}} f(x, y) d x$. 2137. $\int_{0}^{2} d y \int_{\frac{y}{3}}^{\frac{y}{2}} f(x, y) d x+\int_{2}^{1} d y \int_{\frac{y}{3}}^{1} f(x, y) d x_{x}$
2115. $\int_{0}^{\frac{a}{2}} d y \int_{\sqrt{u^{2}-2 a y}}^{\sqrt{u^{2}-y^{2}}} f(x, y) d x+\int_{\frac{a}{2}}^{a} d y \int_{0}^{\sqrt{a^{2}-y^{2}}} f(x, y) d x$.
2116. $\int_{0}^{\frac{a \sqrt{2}}{2}} d y \int_{\frac{a}{2}}^{a} f(x, y) d x+\int_{\frac{a \sqrt{3}}{2}}^{a} d y \int_{a-\sqrt{a^{2}-y^{2}}}^{a} f(x, y) d x$.
2117. $\int_{0}^{a} d y \int_{\frac{y^{2}}{4 a}}^{a-\sqrt{a^{2}-y^{2}}} f(x, y) d x+\int_{0}^{a} d y \int_{a+\sqrt{a^{2}-y^{2}}}^{2 a} f(x, y) d x+\int_{0}^{2 \sqrt{z a}} d y \int_{\frac{y^{2}}{4 a}}^{2 a} f(x, y) d x$.
2118. $\int_{-1}^{0} d x \int_{0}^{\sqrt{1-x^{2}}} f(x, y) d y+\int_{0}^{1} d x \int_{0}^{1-x} f(x, y) d y .2142 . \int_{0}^{\frac{1}{2}} d x \int_{0}^{\sqrt{2 x}} f(x, y) d y+$ $+\int_{\frac{1}{2}}^{\sqrt{2}} d x \int_{0}^{1} f(x, y) d y+\int_{\sqrt{2}}^{\sqrt{2}} d x \int_{0}^{\sqrt{3-x^{2}}} f(x, y) d y .2143 . \int_{0}^{\frac{R \sqrt{2}}{2}} d y \int_{y}^{\sqrt{R^{2}-y^{2}}} f(x, y) d x$. 2144. $\int_{0}^{1} d y \int_{\operatorname{arc} \operatorname{din} y}^{\pi-\arcsin y} f(x, y) d x .2145 . \frac{1}{6}$. 2146. $\frac{1}{6}$. 2147. $\frac{\pi}{2}$ a. 2148. $\frac{\pi}{6}$. 2149. 6. 2150. $\frac{1}{2}$, 2151. $\ln 2 \quad 2152$. а) $\frac{4}{3} ; \quad$ b) $\frac{15 \pi-16}{150} ; \quad$ c) $2 \frac{2}{5}$. 2153. $\frac{8 \sqrt{2}}{21} p^{5} . \quad$ 2154. $\quad \int_{1}^{\mathrm{a}} d x \int_{0}^{\sqrt{1-(x-2)^{2}}} x y d y=\frac{4}{3} . \quad$ 2155. $\quad \frac{8}{3} a \sqrt{2 a}$. 2156. $\frac{5}{2} \pi R^{3}$. Hint. $\iint_{(S)} y d x d y=\int_{0}^{2 \pi R} d x \int_{0}^{y=f(x)} y d y=$ $=\int_{0}^{2 \pi} R(1-\cos t) d t \int_{0}^{R(t-\cos t)} y d y$, where the last integral is obtained from the preceding one by the substitution $x=R(t-\sin t)$.2157. $\frac{R^{4}}{80} \cdot 2158 . \frac{1}{6}$. 2159. \quad 2160. $\quad a^{2}+\frac{R^{2}}{2} . \quad d \varphi \int_{0}^{\frac{\pi}{4}} r f(r \cos \varphi, r \sin \varphi) d r+$ $+\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} d \varphi \int_{0}^{\frac{1}{\sin \varphi}} r f(r \cos \varphi, r \sin \varphi) d r . \quad$ 2161. $\quad \int_{0}^{\frac{\pi}{4}} d \varphi \int_{0}^{\frac{2}{\cos \varphi} r f\left(r^{2}\right) d r . ~ . ~ . ~}$
2119. $\int_{\frac{\pi}{4}}^{\frac{\pi \pi}{4}} d \varphi \int_{0}^{\frac{1}{\sin \varphi}} r f(r \cos \varphi, r \sin \varphi) d r . \quad$ 2163. $\quad \int_{0}^{\frac{\pi}{4}} f(\tan \varphi) d \varphi \int_{0}^{\frac{\sin \varphi}{\cos 2 \varphi}} r d r+$ $+\int_{\frac{\pi}{4}}^{\frac{9 \pi}{2}} f(\tan \varphi) d \varphi \int_{0}^{\frac{1}{\sin \varphi}} r d r+\int_{\frac{a \pi}{4}}^{\pi} f(\tan \varphi) d \varphi \int_{0}^{\frac{\sin \varphi}{\cos ^{2} \varphi}} r d r$.
2120. $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d \varphi \int_{0}^{a r \overline{\cos 2 \varphi}} r f(r \cos \varphi, r \sin \varphi) d r+\int_{\frac{a \pi}{4}}^{s \pi a} d \varphi \int_{0}^{V \overline{\cos 2 \varphi}} r f(r \cos \varphi, r \sin \varphi) d r$. 2165. $\int_{0}^{\frac{\pi}{2}} d \varphi \int_{0}^{a \cos \varphi} r^{2} \sin \varphi d r=\frac{a^{3}}{12} . \quad$ 2166. $\quad \frac{3}{2} \pi a^{4} . \quad$ 2167. $\quad \frac{\pi a^{3}}{3}$. 2168. $\left(\frac{22}{9}+\frac{\pi}{2}\right) a^{3} . \quad 2169 . \quad \frac{\pi a^{3}}{6} . \quad 2170 . \quad\left(\frac{\pi}{3}-\frac{16 \sqrt{2}-20}{9}\right) \frac{a^{3}}{2}$. 2171. $\frac{2}{3} \pi a b$. Hint. The Jacobian is $I=a b r$. The limits of integration are $0 \leqslant \varphi \leqslant 2 \pi, 0 \leqslant r \leqslant 1.2172 . \int_{\frac{a}{1+\alpha}}^{\frac{\beta}{1+\beta}} d v \int_{0}^{\frac{c}{1-v}} f(u-u v, u v) u d u$. Solution. We have $x=u(1-v)$ and $y=u v$; the Jacobian is $I=u$. We define the limits u as functions of v : when $x=0, u(1-v)=0$, whence $u=0$ (since $1-v \neq 0$); when $x=c, u=\frac{c}{1-v}$. Limits of variation of v : since $y=\alpha x$, it follows that $u v=\alpha u(1-v)$, whence $v=\frac{a}{1+a}$; for $y=\beta x$ we find $v=\frac{\beta}{1+\beta} . \quad$ 2173. $\quad I=\frac{1}{2}\left[\int_{0}^{1} d u \int_{-u}^{u} f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) d v+\right.$ $\left.+\int_{1}^{2} d u \int_{u-2}^{2-u} f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) d v\right]=\frac{1}{2}\left[\int_{-1}^{0} d v \int_{-v}^{2+v} f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) d u+\right.$ $\left.+\int_{0}^{1} d v \int_{v}^{2-v} f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) d u\right]$. Hint. After change of variables, the equations of the sides of the square will be $u=v ; u+v=2 ; u-v=2 ; u=-v$. 2174. $a b\left[\left(\frac{a^{2}}{h^{2}}-\frac{b^{2}}{k^{2}}\right) \arctan \frac{a k}{b h}+\frac{a b}{h k}\right]$. Solution. The equation of the curve
$\boldsymbol{r}^{4}=r^{2}\left(\frac{a^{2}}{h^{2}} \cos ^{2} \varphi-\frac{b^{2}}{k^{2}} \sin ^{2} \varphi\right)$, whence the lower limit for r will be 0 and 2he upper limit, $r=\sqrt{\frac{a^{2}}{h^{2}} \cos ^{2} \varphi-\frac{b^{2}}{k^{2}} \sin ^{2} \varphi}$. Since r must be real, it Yollows that $\frac{a^{2}}{h^{2}} \cos ^{2} \varphi-\frac{b^{2}}{k^{2}} \sin ^{2} \varphi \geqslant 0$; whence for the first quadrantal angle we have $\tan \varphi \leqslant \frac{a k}{b h}$. Due to symmetry of the region of integration relative Eo the axes, we can compute $\frac{1}{4}$ of the entire integral, confining ourselves To the first quadrant: $\iint_{(S)} d x d y=4 \int_{0}^{\arctan } d \varphi \int_{0}^{\frac{a k}{b h}} \sqrt{\frac{a^{2}}{h^{2}}} \int_{0}^{\cos } \varphi d r$. 2178. a) $4 \frac{1}{2} ; \int_{0}^{1} d y \int_{-\sqrt{y}}^{\sqrt{y}} d x+\int_{1}^{2} d y \int_{y-2}^{\sqrt{y}} d x$; b) $\frac{\pi a^{2}}{4}-\frac{a^{2}}{2} ; \int_{0}^{a \sqrt{a^{2}-x^{2}}} d x \int_{a-x} d y$. 2176. a) $\frac{9}{2}$; b) $\left(2+\frac{\pi}{4}\right) a^{2}$. 2177. $\frac{7 a^{2}}{120}$. 2178. $\frac{10}{3} a^{2}$. 2179. π Hint. $-1<x<1 . \quad 2180 . \quad \frac{16}{3} \sqrt{15} . \quad 2181 . \quad 3\left(\frac{\pi}{4}+\frac{1}{2}\right) . \quad 2182 . \frac{4 \pi}{3}-\sqrt{3}$. 2183. $\frac{B}{4} \pi a^{2}$. 2184. 6. 2185. 10π. Hint. Change the variables $x-2 y=u$, $8 x+4 y=v . \quad 2188 . \quad \frac{1}{3}(b-a)(\beta-\alpha) . \quad$ 2187. $\quad \frac{1}{3}(\beta-a) \ln \frac{b}{a}$.
2121. $v=\int_{0}^{1} d y \int_{y}^{1}(1-x) d x=\int_{0}^{1} d x \int_{0}^{x}(1-x) d y$. 2193. $\frac{\pi a^{2}}{6} . \quad$ 2194. $\frac{3}{4}$. 2195. $\frac{1}{6}$.
2122. $\frac{a^{3}}{3}$. 2197. $\frac{\pi r^{4}}{4 a}$. 2198. $\frac{48 \sqrt{6}}{5}$. 2199. $\frac{88}{105}$. 2200. $\frac{a^{3}}{18}$. 2201. $\frac{a b c}{3}$. 2202. $\quad \pi a^{2}(\alpha-\beta) . \quad 2203 . \quad \frac{4}{3} \pi a^{3}(2 \sqrt{2}-1) . \quad 2204 . \quad \frac{4}{3} \pi a^{3}(\sqrt{2}-1)$. 2205. $\quad \frac{\pi a^{3}}{3} . \quad 2206 . \quad \frac{4}{3} \pi a b c . \quad 2207 . \quad \frac{\pi a^{3}}{3}(6 \sqrt{3}-5) . \quad 2208 . \quad \frac{32}{9} a^{3}$. 2209. $\pi a\left(1-e^{-R^{2}}\right)$. 2210. $\frac{3 \pi a b}{2}$. 2211. $\frac{3 \sqrt{3}-2}{2}$. 2212. $\frac{\sqrt{2}}{2}(2 \sqrt{2}-1)$. Hint. Change the variables $x y=u, \frac{y}{x}=0$. 2213. $\frac{1}{2} \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}$ 2214. $4(m-n) R^{2}$. 2215. $\frac{\sqrt{2}}{2} a^{2}$. Hint. Integrafe in the $y z$-plane. 2216. $4 a^{2}$. 2217. $8 a^{2} \operatorname{arc} \sin \frac{b}{a}$. 2218. $\frac{1}{3} \pi a^{2}(3 \sqrt{3}-1)$. 2219. 8 a^{2}. 2220. $3 \pi a^{2}$. Hint. Pass to polar coordinates. 2221. $\sigma=\frac{2}{3} \pi a^{2}\left[\left(1+\frac{R^{2}}{a^{2}}\right)^{\frac{2}{2}}-1\right]$. Hint. Pass to
polar coordinates. 2222. $\frac{16}{9} a^{2}$ and $8 a^{2}$. Hint. Pass fo polar coordinates. 2223. $8 a^{2} \arctan \frac{\sqrt{2}}{5}$ Hint. $\sigma=\int_{0}^{\frac{a}{2}} d x \int_{0}^{\frac{a}{2}} \frac{a d y}{\sqrt{a^{2}-x^{2}-y^{2}}}=8 a \int_{0}^{\frac{a}{2}} \arcsin \frac{a}{2 \sqrt{a^{2}-x^{2}}} d x$. Integrate by parts, and then change the variable $x=\frac{a \sqrt{3}}{2} \sin t$; transform the answer. $2224 \frac{\pi}{4}\left(b \sqrt{b^{2}+c^{2}}-a \sqrt{a^{2}+c^{2}}+c^{2} \ln \frac{b+\sqrt{b^{2}+c^{2}}}{a+\sqrt{a^{2}+c^{2}}}\right)$. Hint. Pass to polar coordinates 2225. $\frac{2 \pi \delta R^{2}}{3}$. 2228. $\frac{a^{3} b}{12}$; $\frac{a^{2} b^{2}}{24}$. 2227. $\bar{x}=\frac{12-\pi^{2}}{3(4-\pi)}$; $\bar{y}=\frac{\pi}{6(4-\pi)} .2228 . \quad \bar{x}=\frac{5}{6} a ; \bar{y}=0.2229 . \quad \bar{x}=\frac{2 a \sin \alpha}{3 \alpha} ; \bar{y}=0.2230 . \quad \bar{x}=\frac{2}{5} ;$ $\bar{y}=0 . \quad$ 2231. $\quad I_{X}=4 \quad$ 2232. a) $\quad I_{0}=\frac{\pi}{32}\left(D^{4}-d^{4}\right) ; \quad$ b) $\quad I_{X}=\frac{\pi}{64}\left(D^{4}-d^{4}\right)$. 2233. $I=\frac{2}{3} a^{4}$. 2234. $\quad \frac{8}{5} a^{4}$. Hint. $\quad I=\int_{0}^{a} d x \int_{-V \overline{a x}}^{\sqrt{a x}}(y+a)^{2} d y$. 2235. $16 \ln 2-9 \frac{3}{8}$. Hint. The distance of the point (x, y) from the straight line $x=y$ is equal to $d=\frac{x-y}{\sqrt{2}}$ and is found by means of the normal equation of the straight line. 2236. $I=\frac{1}{40} k a^{5}[7 \sqrt{\overline{2}}+3 \ln (\sqrt{\overline{2}}+1)]$, where k is the proportionality factor. Hint. Placing the coordinate origin at the vertex, the distance from which is pronortonal to the density of the lamina, we direct the coordinate axes along the sides of the square. The moment of inertia is determined relative to the x-axis Passing to polar coordinates, we have $I_{x}=\int_{0}^{\frac{\pi}{4}} d \varphi \int_{0}^{a \sec \varphi} k r(r \sin \varphi)^{2} r d r+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d \varphi \int_{0}^{a \operatorname{cosec} \varphi} k r(r \sin \varphi)^{2} r d r 2237 . I_{0}=\frac{35}{16} \pi a^{4}$. 2238. $I_{0}=\frac{\pi a^{4}}{2}$.2239. $\frac{35}{12} \pi a^{4}$. Hint. For the variables of integration take t and y (see Problem 2156). 2240. $\int_{0}^{1} d x \int_{0}^{1-x} d y \int_{0}^{1-x-y} f(x, y, z) d z$ 2241. $\int_{-R}^{R} d x \int_{-\sqrt{R^{2}-x^{2}}}^{\sqrt{R^{2}-x^{2}}} d y \int_{0}^{H} f(x, y, z) d z$. 2242. $\int_{-a}^{a} d x \int_{-\frac{b}{a}}^{\frac{a}{a}} d y \int_{\sqrt{a^{2}-x^{2}}}^{c} f(x, y, z) d z$.
2123. $\int_{-1}^{1} d x \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} d y \int_{0}^{\sqrt{1-x^{2}-y^{2}}} f(x, y, z) d z$.
2124. $\frac{8}{15}(31+12 \sqrt{2}-27 \sqrt{3}) . \quad$ 2245. $\frac{4 \pi \sqrt{2}}{3}$. 2246. $\frac{\pi^{2} a^{2}}{8}$. 2247. $\frac{1}{720}$.
2125. $\frac{1}{2} \ln 2-\frac{5}{16} . \quad$ 2249. $\frac{\pi a^{5}}{5}\left(18 \sqrt{3}-\frac{97}{6}\right)$. 2250. $\frac{59}{480} \pi R^{5} .2251 . \frac{\pi a b c^{2}}{4}$. 2252. $\frac{4}{5} \pi a b c$. 2253. $\frac{\pi h^{2} R^{2}}{4}$. 2254. πR^{3}. 2255. $\frac{8}{9} a^{2}$. 2256. $\frac{8}{3} r^{3}\left(\pi-\frac{4}{3}\right)$. 2257. $\frac{4}{15} \pi R^{s} . \quad 2258 . \quad \frac{\pi}{10}$. 2259. $\frac{32}{9} a^{2} h . \quad$ 2260. $\frac{3}{4} \pi a^{3}$. Selution. $v=$ $=2 \int_{0}^{2 a} d x \int_{0}^{\sqrt{2 a x-x^{2}}} d y \int_{0}^{\frac{x^{2}+y^{2}}{2 a}} d z=2 \int_{0}^{\frac{\pi}{2}} d \varphi \int_{0}^{2 a \cos \varphi} r d r \int_{0}^{\frac{r^{2}}{2 a}} d h=$ $=2 \int_{0}^{2} d \varphi \int_{0}^{2 a \cos \varphi} \frac{r^{2} d r}{2 a}=\frac{1}{a} \int_{0}^{2} \frac{(2 a \cos \varphi)^{4}}{4} d \varphi=\frac{3}{4} \pi a^{3}$. 2261. $\frac{2 \pi a^{3} \sqrt{2}}{3}$. Hint. Pass to spherical coordinates. 2262. $\frac{19}{6} \pi$. Hint. Pass to cylindrical coordinates. 2263. $\frac{a^{8}}{9}(3 \pi-4) . \quad$ 2264. $\quad \pi a b c . \quad 2265 . \quad \frac{a b c}{2}(a+b+c) . \quad$ 2266. $\frac{a b}{24}\left(6 c^{2}-a^{2}-b^{2}\right)$. 2267. $\bar{x}=0 ; \quad \bar{y}=0 ; \quad \bar{z}=\frac{2}{5} a$. Hint. Introduce spherical coordinates. 2268. $\bar{x}=\frac{4}{3}, \bar{y}=0, \bar{z}=0$. 2269. $\frac{\pi a^{2} h}{12}\left(3 a^{2}+4 h^{2}\right)$. Hint. For the axis of the cylinder we take the z-axis, for the plane of the base of the cylinder, the $x y$-plane The moment of inertia is computed about the x-axis. After passing to cylindrical coordinates, the square of the distance of an element $r d \varphi d r d z$ from the x-axis is equal to $r^{2} \sin ^{2} \varphi+z^{2}$. 2270. $\frac{\pi \rho h a^{2}}{60}\left(2 h^{2}+3 a^{2}\right)$. Hint. The base of the cone is taken for the $x y$-plane, the axis of the cone, for the z-axis. The moment of inertia is computed about the x-axis. Passing to cylindrical coordinates, we have for points of the surface of the cone: $r=\frac{a}{h}(h-z)$; and the square of the distance of the element $r d \varphi d r d z$ from the x-axis is equal to $r^{2} \sin ^{2} \varphi+z^{2}$. 2271. $2 \pi k \varrho h(1-\cos \alpha)$, where k is the proportionality factor and ϱ is the density. Solution. The vertex of the cone is taken for the coordinate origin and its axis is the z-axis. If we introduce spherical coordinates, the equation of the lateral surface of the cone will be $\psi=\frac{\pi}{2}-\alpha$, and the equation of the plane of the base will be $r=\frac{h}{\sin \psi}$. From the symmetry it follows that the resulting stress is directed along the z-axis. The mass of an element of volume $d m=0 r^{2} \cos \psi d \varphi d \psi d r$, where g is the density. The component of attraction, along the z-axis, by this element of unit mass lying at the point 0 is equal to $\frac{k d m}{r^{2}} \sin \psi=k \varrho \sin \psi \cos \psi d \psi d \varphi d r$.

The resulting attraction is equal to $\int_{0}^{2 \pi} d \varphi \int_{0}^{\frac{\pi}{2}-a} d \psi \int_{0}^{h \operatorname{cosec} \psi} k \varrho \sin \psi \cos \psi d r$. 2272. Solution. We introduce cylindrical coordinates (ϱ, φ, z) with origin at the centre of the sphere and with the z-axis passing through a material point whose mass we assume equal to m. We denote by ξ the distance of this point from the centre of the sphere. Let $r=\sqrt{\rho^{2}+(\xi-z)^{2}}$ be the distance from the element of volume $d v$ to the mass m. The attractive force of the element of volume $d v$ of the sphere and the material point m is directed along r and is numerically equal to $-k \gamma m \frac{d v}{r^{2}}$, where $\gamma=\frac{M}{\frac{4}{3} \pi R^{3}}$ is the density of the sphere and $d v=\varrho d \varphi d \varrho d z$ is the element of volume. The projection of this force on the z-axis is

$$
d F=-\frac{k m \gamma d v}{r^{2}} \cos (\widehat{r z})=-k m \gamma \frac{\xi-z}{r^{3}} \varrho d \varphi d \varrho d z
$$

Whence

$$
F=-k m \gamma \int_{0}^{2 \pi} d \varphi \int_{-R}^{R}(\xi-z) d z \int_{0}^{V \overline{R^{2}-z^{2}}} \frac{\mathrm{Q} d \varrho}{r^{3}}=k m \gamma \frac{4}{3} \pi R^{3} \frac{1}{\xi^{2}} .
$$

But since $\frac{4}{3} \gamma^{\pi} R^{3}=M$, it follows that $F=\frac{k M m}{\xi^{2}}$. 2273. $-\int_{x}^{\infty} y^{2} e^{-x y^{2}} d y-e^{-x^{3}}$. 2275. a) $\frac{1}{p}(p>0)$; b) $\frac{1}{p-\alpha}$ for $p>\alpha$; c) $\frac{\beta}{p^{2}+\beta^{2}}(p>0)$; d) $\frac{p}{p^{2}+\beta^{2}}(p>0)$ 2276. $-\frac{1}{n^{2}}$. 2277. $\frac{2}{p^{3}}$. Hint. Differentiate $\int_{0}^{\infty} e^{-\mu t} d t=\frac{1}{p}$ twice. 2278. $\ln \frac{\beta}{\alpha}$. 2279. $\arctan \frac{\beta}{m}-\arctan \frac{\alpha}{m}$. 2280. $\frac{\pi}{2} \ln (1+\alpha) . \quad$ 2281. $\pi\left(\sqrt{\left.\sqrt{1-\alpha^{2}}-1\right) .}\right.$ 2282. $\operatorname{arccot} \frac{\alpha}{\beta}$. 2283. 1. 2284. $\frac{1}{2}$. 2285. $\frac{\pi}{4}$. 2286. $\frac{\pi}{4 a^{2}}$. Hint. Pass to polar coordinates. 2287. $\frac{\sqrt{\pi}}{2}$. 2288. $\frac{\pi^{2}}{8}$, 2289. Converges. Solution. Eliminate from S the coordinate origin together with its e-neighbourhood, that is, consider $I_{\mathrm{a}}=\iint_{\left(S_{\mathrm{E}}\right)} \ln \sqrt{x^{2}+y^{2}} d x d y$, where the eliminated region is a circle of radius e with centre at the origin. Passing to polar coordinates, we have $I_{\mathrm{a}}=\int_{0}^{2 \pi} d \varphi \int_{\varepsilon}^{1} r \ln r d r=\int_{0}^{2 \pi}\left[\left.\frac{r^{2}}{2} \ln r\right|_{\varepsilon} ^{1}-\frac{1}{2} \int_{\varepsilon}^{1} r d r\right] d \varphi=2 \pi\left(\frac{\varepsilon^{2}}{4}-\frac{\varepsilon^{2}}{2} \ln \varepsilon-\frac{1}{4}\right)$. Whence $\lim _{\varepsilon \rightarrow 0} I_{\mathrm{s}}=-\frac{\pi}{2}$. 2290. Converges for $\alpha>1$. 2291. Converges. Hint. Surround the straight line $y=x$ with a narrow strip and put $\iint_{(S)} \frac{d x d y}{\sqrt[3]{(x-y)^{2}}}=$
$=\lim _{\varepsilon \rightarrow 0} \int_{0}^{1} d x \int_{0}^{x-e} \frac{d y}{\sqrt[3]{(x-y)^{2}}}+\lim _{\delta \rightarrow 0} \int_{0}^{1} d x \int_{x+0}^{1} \frac{d y}{\sqrt[3]{(x-y)^{2}}} . \quad$ 2292. Converges fot $\alpha>\frac{3}{2}$. 2293. 0. 2294. $\ln \frac{\sqrt{5}+3}{2}, \quad 2295 . \frac{a b\left(a^{2}+a b+b^{2}\right)}{3(a+b)} .2296 . \frac{256}{15} a^{3}$. 2297. $\frac{a^{2}}{3}\left[\left(1+4 \pi^{2}\right)^{\frac{2}{2}}-1\right]$. 2298. $\frac{a^{5} \sqrt{1+m^{2}}}{5 m}$. 2299. $a^{2} \sqrt{2} .2300 . \frac{1}{54}(56 \sqrt{7}-$. $-1)$ 2301. $\frac{\sqrt{a^{2}+b^{2}}}{a b} \arctan \frac{2 \pi b}{a}$. 2302. $2 \pi a^{2}$. 2303. $\frac{16}{27}(10 \sqrt{10}-1)$. Hint. $\int_{C} f(x, y) d s$ may be interpreted geometrically as the area of a cylindrical surface with generatrix parallel to the z-axis, with base, the contour of integra tion, and with altitudes equal to the values of the integrand. Therefore, $S=\int_{C} x d s$, where C is the arc $O A$ of the parabola $y=\frac{3}{8} x^{2}$ that connects the points $(0,0)$ and $(4,6) .2304 . a \sqrt{3}$. 2305. $2\left(b^{2}+\frac{a^{2} b}{\sqrt{a^{2}-b^{2}}} \arcsin \frac{\sqrt{a^{2}-b^{2}}}{a}\right)$. 2306. $\sqrt{a^{2}+b^{2}}\left(\pi \sqrt{a^{2}+4 \pi b^{2}}+\frac{a^{2}}{2 b} \ln \frac{2 \pi b+\sqrt{a^{2}+4 \pi^{2} b^{2}}}{a}\right)$. 2307. $\left(\frac{4}{3} a, \frac{4}{3} a\right)$. 2308. $2 \pi a^{2} \sqrt{a^{2}+b^{2}} . \quad$ 2309. $\frac{k M m b}{\sqrt{\left(a^{2}+b^{2}\right)^{3}}} . \quad$ 2310. $40 \frac{19}{30}$. 2311. $-2 \pi a^{2}$. 2312. a) $\frac{4}{3}$; b) 0 ; c) $\frac{12}{5}$; d) -4 ; e) 4. 2313. In all cases 4. 2314. -2π. Hint. Use the parametric equations of a circle. 2315. $\frac{4}{3} a b^{2}$. 2316. $-2 \sin 2$. 2317
0. 2318.
a) 8 ;
b) $12 ;$ c) 2 ; d) $\frac{3}{2}$; e) $\ln (x+y) ;$ f) $\int_{x_{1}}^{x_{2}} \varphi(x) d x+$ $+\int^{y / 2} \psi(y) d y . \quad$ 2319. \quad a) $62 ;$ b) $1 ;$ c) $\frac{1}{4}+\ln 2 ;$ d) $1+\sqrt{2}$. 2320. $\sqrt{1+a^{2}}-$ $-\sqrt[y_{1}]{1+b^{2}} . \quad$ 2322. \quad a) $\quad x^{2}+3 x y-2 y^{2}+C$; \quad b) $\quad x^{3}-x^{2} y+x y^{2}-y^{3}+C$; c) $e^{x-y}(x+y)+C$; d) $\ln |x+y|+C .2323 .-2 \pi \alpha(a+b) .2324 .-\pi R^{2} \cos ^{2} \alpha$ 2325. $\left(\frac{1}{6}+\frac{\pi \sqrt{2}}{16}\right) R^{8}$. 2326. a) -20 ; b) $a b c-1$; c) $5 \sqrt{2}$; d) 0 . 2327. $I=$ $=\iint_{(S)} y^{2} d x d y .2328 .-\frac{4}{3} .2329 . \frac{\pi R^{4}}{2} . \quad$ 2330. $-\frac{1}{3} . \quad$ 2331. 0. 2332. a) 0 ;
b) $2 n \pi$. Hint In Case (b), Green's formula is used in the region between the contour C and a circle of sufficiently small radius with centre at the coordinate origin 2333. Solution. If we consider that the direction of the tangent coincides with that of positive circulation of the contour, then $\cos (X, n)=$ $=\cos (Y, t)=\frac{d y}{d s}$, hence, $\oint_{C} \cos (X, n) d s=\oint_{C} \frac{d y}{d s} d s=\oint_{C} d y=0$ 2334. 2S, where S is the area bounded by the contour C. 2335. -4. Hint. Green's formula is not applicable. 2336. sab. 2337. $\frac{3}{8} \pi a^{2}$. 2338. $6 \pi a^{2}$. 2339. $\frac{3}{2} a^{2}$. Hint. Put
$y=t x$, where t is a parameter, 2340. $\frac{a^{2}}{60}$, 2341. $\pi(R+r)(R+2 r) ; 6 \pi R^{2}$ for $R=r$ Hint. The equation of an epicycloid is of the form $x=(R+r) \cos t-$ $-r \cos \frac{R+r}{r} t, y=(R+r) \sin t-r \sin \frac{R+r}{r} t$, where t is the angle of turn of the radius of a stationary circle drawn to the point of tangency. 2342. $\pi(R-r)(R-2 r), \frac{3}{8} \pi R^{2}$ for $r=\frac{R}{4} \quad$ Hint. The equation of the hypocycloid is obtained from the equation of the corresponding epicycloid (see Problem 2341) by replacing r by $-r$ 2343. $F R$. 2344. mg $\left(z_{1}-z_{2}\right)$. 2345. $\frac{k}{2}\left(a^{2}-b^{2}\right)$, where k is a proportionality factor, 2346. a) Potential, $U=m g z$, work, $m g\left(z_{1}-z_{2}\right)$; b) potential, $U=\frac{\mu}{r}$, work, $\frac{\mu}{\sqrt{a^{2}+b^{2}+c^{2}}}$; c) potential, $U=-\frac{k^{2}}{2}\left(x^{2}+y^{2}+z^{2}\right)$, work, $\frac{k^{2}}{2}\left(R^{2}-r^{2}\right)$. $\quad 2347 . \quad \frac{8}{3} \pi a^{*}$. 2348. $\frac{2 \pi a^{2} \sqrt{a^{2}+b^{2}}}{3} . \quad$ 2349. 0. 2350. $\frac{4}{3}$ лabc. \quad 2351. $\frac{\pi a^{4}}{2}$. 2352. $\frac{3}{4}$. 2353. $\frac{25 \sqrt{5}+1}{10(5 \sqrt{5}-1)}$ a. 2354. $\frac{\pi \sqrt{2}}{2} h^{4}$. 2355. a) 0 ; b) $-\iint_{(S)}(\cos \alpha+\cos \beta+$ $+\cos \gamma) d S . \quad 2356.0 .2357 .4 \pi$. 2358. - \boldsymbol{a}^{2}. 2359. $-a^{2} . \quad 2360 . \frac{\partial R}{\partial y}=\frac{\partial Q}{\partial z}$, $\frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$. 2361. 0. 2362. $2 \iint_{(V)}(x+y+z) d x d y d z$.
2363. $\quad 2 \iiint_{i V} \frac{d x d y d z}{\sqrt{\lambda^{2}+y^{2}+z^{2}}}$. 2364. $\iint_{V} \int_{V}\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}\right) d x d y d z$.
2365. $3 a^{4} \quad$ 2366. $\frac{a^{3}}{2}$. 2367. $\frac{12}{5} \pi a^{5}$. 2363. $\frac{\pi a^{2} b^{2}}{2} \quad$ 2371. Spheres; cylinders. 2372. Cones. 2373. Circles, $x^{2}+y^{2}=c_{1}^{2}, z=c_{2}$. 2376. $\operatorname{grad} U(A)=9 t-3 J-3 k$; $|\operatorname{grad} U(A)|=\sqrt{99}=3 \sqrt{\overline{1}} ; z^{2}=x y ; x=y=2 . \quad$ 2377. a) $\frac{r}{r}$; b) $2 r$. c) $-\frac{r}{r^{3}}$; d) $f^{\prime}(r) \frac{r}{r}$ 2378. $\operatorname{grad}(c r)=c$; the level surfaces are planes perpendicular to the vector c. 2379. $\frac{\partial U}{\partial r}=\frac{2 U}{r}, \frac{\partial U}{\partial r}=|\operatorname{grad} U|$ when $a=b=c$. 2380. $\frac{\partial U}{\partial l}=$ $=-\frac{\cos (l, r)}{r^{2}} ; \quad \frac{\partial U}{\partial l}=0$ for $l \perp r .2382 . \frac{2}{r} . \quad$ 2383. $\quad \operatorname{div} a=\frac{2}{r} f(r)+f^{\prime}(r)$. 2385. a) $\operatorname{div} r=3$, rot $r=0$; b) $\left.\operatorname{div}(r c)=\frac{r c}{r}, \quad \operatorname{rot}(r c)=\frac{r \times c}{r} ; c\right) \operatorname{div}(f(r) c)=$ $=\frac{f^{\prime}(r)}{r}(c, r), \quad \operatorname{rot}(f(r) c)=\frac{f^{\prime}(r)}{r} c \times r . \quad$ 2386. $\operatorname{div} \theta=0 ; \quad \operatorname{rot} \theta=2 \omega$, where $\omega=\omega k$ 2387. $2 \omega \boldsymbol{n}^{\circ}$, where \boldsymbol{n}° is a unit vector parallel to the axis of rotation. 2388. div $\operatorname{grad} U=\frac{\partial^{2} U}{\partial \lambda^{2}}+\frac{\partial-U}{\partial y^{2}}+\frac{\partial^{2} U}{\partial z^{2}}$; rot grad $U=0$. 2391. $3 \pi R^{2} H$. 2392. a) $\frac{1}{10} \pi R^{2} H\left(3 R^{2}+2 H^{2}\right)$; b) $\frac{3}{10} \pi R^{2} H\left(R^{2}+2 H^{2}\right)$. 2393. $\operatorname{div} F=0$ at all points except the origin. The flux is equal to $-4 \pi m$. Hint. When calculating
the flux, use the Ostrogradsky-Gauss theorem. 2394. $2 \pi^{2} h^{2} .2395 . \frac{-\pi R^{0}}{8}$. 2396. $U=\int_{r_{0}}^{r} r f(r) d r$. 2397. $\frac{m}{r}$. 2398. a) No polential; b) $U=x y z+C$; c) $U=x y+x z+y z+$ C. 2400 . Yes.

Chapter VIII

2401. $\frac{1}{2 n-1}$. 2402. $\frac{1}{2 n}$. 2403. $\frac{n}{2^{n-1}}$. 2404. $\frac{1}{n^{2}}$. 2405. $\frac{n+2}{(n+1)^{2}}$. 2406. $\frac{2 n}{3 n+2}$.
2402. $\frac{1}{n(n+1)}$. 2408. $\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{1 \cdot 4 \cdot 7 \ldots(3 n-2)}$. 2409. $(-1)^{n+1} . \quad 2410 . n^{(-1)^{n+1}}$. 2416. Diverges. 2417. Converges. 2418. Diverges. 2419. Diverges. 2420. Diverges. 2421. Diverges. 2422. Diverges. 2423. Diverges. 2424. Diverges. 2425. Converges. 2426. Converges. 2427. Converges. 2428. Converges. 2429. Converges. 2430. Converges. 2431. Converges. 2432. Converges. 2433. Converges. 2434. Diverges. 2435. Diverges. 2436. Converges. 2437. Diverges. 2438. Converges. 2439. Converges. 2440. Converges. 2441. Diverges. 2442. Converges. 2443. Converges. 2444. Converges. 2445. Converges. 2446. Converges. 2447. Converges. 2448. Converges. 2449. Converges. 2450. Diverges. 2451. Converges. 2452. Diverges. 2453. Converges. 2454. Diverges. 2455. Diverges. 2456. Converges. 2457. Diverges. 2458. Converges. 2459. Diverges. 2460. Converges. 2461. Diverges. 2462. Converges. 2463. Diverges. 2464. Converges. 2465. Converges. 2466. Converges. 2467. Diverges. 2468. Diverges. Hint. $\frac{a_{h+1}}{a_{n}}>1$ 2470. Converges conditionally. 2471. Converges conditionally. 2472. Converges absolutely 2473. Diverges. 2474. Converges conditionally. 2475. Converges absolutely. 2476. Converges conditionally. 2477. Converges absolutely. 2478. Converges absolutely. 2479. Diverges. 2480. Converges absolutely. 2481. Converges conditionally. 2482. Converges absolutely. 2484. a) Diverges; b) converges absolutely; c) diverges; d) converges conditionally. Hint. In examples (a) and (d) consider the series $\sum_{k=1}^{\infty}\left(a_{2 k-1}+a_{2 k}\right)$ and in examples (b) and (c) investigate separately the series $\sum_{k=1}^{\infty} a_{2 k-1}$ and $\sum_{k=1}^{\infty} a_{2 k}$. 2485. Diverges. 2486. Converges absolutely. 2487. Converges absolutely. 2488. Converges conditionally. 2489. Diverges. 2490. Converges absolutely. 2491. Converges absolutely. 2492. Converges absolutely. 2493. Yes. 2494. No. 2495. $\sum_{n=1}^{\infty} \frac{1+(-1)^{n}}{3^{n}}$; converges. 2486. $\sum_{n=1}^{\infty} \frac{1}{2 n(2 n-1)}$; converges. 2497. Diverges. 2499. Converges. 2500. Converges. 2501. $\left|R_{4}\right|<\frac{1}{120},\left|R_{8}\right|<\frac{1}{720} ; R_{4}<0, R_{5}>0.2502 . R_{n}^{\cdot}<\frac{a_{n}}{2 n+1}=\frac{1}{2^{n}(2 n+1) n!}$ Hint. The remainder of the series may be evaluated by means of the sum of a geometric progression exceeding this remainder: $\quad R_{n}=a_{n}\left[\frac{1}{2} \frac{1}{n+1}+\right.$ $\left.+\left(\frac{1}{2}\right)^{2} \frac{1}{(n+1)(n+2)}+\ldots\right]<a_{n}\left[\frac{1}{2} \cdot \frac{1}{n+1}+\left(\frac{1}{2}\right)^{2} \cdot \frac{1}{(n+1)^{2}}+\ldots\right]$.
2403. $R_{n}<\frac{n+2}{(n+1)(n+1)!} ; R_{10}<3 \cdot 10^{-8} .2504 . \frac{1}{n+1}<R_{n}<\frac{1}{n}$. Solution. $R_{n}=\frac{1}{(n+1)^{2}}+\frac{1}{(n+2)^{2}}+\ldots>\frac{1}{(n+1)(n+2)}+\frac{1}{(n+2)(n+3)}+\ldots=$ $=\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\left(\frac{1}{n+2}-\frac{1}{n+3}\right)+\ldots=\frac{1}{n+1}, R_{n}<\frac{1}{n(n+1)}+$ $+\frac{1}{(n+1)(n+2)}+\ldots=\frac{1}{n}$. 2505. For the given series it is easy to find the exact value of the remainder:

$$
\begin{gathered}
R_{n}=\frac{1}{15}\left(n+\frac{16}{15}\right)\left(\frac{1}{4}\right)^{2 n-2} \\
\text { Solution. } R_{n}=(n+1)\left(\frac{1}{4}\right)^{2 n}+(n+2)\left(\frac{1}{4}\right)^{2 n+2}+\ldots
\end{gathered}
$$

We multiply by $\left(\frac{1}{4}\right)^{2}$:

$$
\frac{1}{16} R_{n}=(n+1)\left(\frac{1}{4}\right)^{2 n+2}+(n+2)\left(\frac{1}{4}\right)^{2 n+4}+\ldots
$$

Whence we obtain

$$
\begin{gathered}
\frac{15}{16} R_{n}=n\left(\frac{1}{4}\right)^{2 n}+\left(\frac{1}{4}\right)^{2 n}+\left(\frac{1}{4}\right)^{2 n+2}+\left(\frac{1}{4}\right)^{2 n+4}+\ldots= \\
=n\left(\frac{1}{4}\right)^{2 n}+\frac{\left(\frac{1}{4}\right)^{2 n}}{1-\frac{1}{16}}=\left(n+\frac{16}{15}\right)\left(\frac{1}{4}\right)^{2 n} .
\end{gathered}
$$

From this we find the above value of R_{n}. Putting $n=0$, we find the sum of the series $S=\left(\frac{16}{15}\right)^{2} . \quad$ 2506. 99; 999. 2507. 2; 3; 5. 2508. $S=1$. Hint. $a_{n}=\frac{1}{n}-\frac{1}{n+1}$ 2509. $S=1$ when $x>0, S=-1$ when $x<0 ; S=0$ when $x=0$. 2510. Converges absolutely for $x>1$, diverges for $x \leq 1$. 2511. Converges absolutely for $x>1$, converges conditionally for $0<x \leqslant 1$, diverges for $x \leqslant 0$. 2512. Converges absolutely for $x>e$, converges conditionally for $1<x \leqslant c$, diverges for $x \leqslant 1$. 2513. $-\infty<x<\infty$. 2514. $-\infty<x<\infty$. 2515. Converges absolutely for $x>0$, diverges for $x \leqslant 0$. Solution. 1) $\left|a_{n}\right| \leqslant$ $\leqslant \frac{1}{e^{n \bar{x}}}$; and when $x>0$ the series with general term $\frac{1}{e^{n x}}$ converges; 2) $\frac{1}{e^{n x}} \geqslant 1$ for $x \leqslant 0$, and $\cos n x$ does not tend to zero as $n \rightarrow \infty$, since from $\cos n x \rightarrow 0$ it would follow that $\cos 2 n x \rightarrow-1$; thus, the necessary condition for convergence is violated when $x \leqslant 0$. 2516. Converges absolutely when $2 k \pi<x<$ $<(2 k+1) \pi(k=0, \pm 1, \pm 2, \ldots)$; at the remaining points it diverges. 2517. Diverges every where. 25i8. Converges absolutely for $x \neq 0$. 2519. $x>1, x \leqslant-1$. 2520. $x>3, x<1$. 2521. $x \geqslant 1, x \leqslant-1$. 2522. $x \geqslant 5 \frac{1}{3}, \quad x<4 \frac{2}{3} . \quad 2523$. $x>1, x<-1 . \quad$ 2524. $-1<x<-\frac{1}{2}, \frac{1}{2}<x<1$. Hint. For these values of x, both the series $\sum_{k=1}^{\infty} x^{k}$ and the series $\sum_{k=1}^{\infty} \frac{1}{2^{k} x^{k}}$ converge. When $|x| \geqslant 1$
and when $|x| \leqslant \frac{1}{2}$, the general term of the series does not tend to zero 2525. $-1<x<0, \quad 0<x<1 . \quad$ 2526. $-1<x<1$. 2527. $-2 \leqslant x<2$ 2528. $-1<x<1 \quad 2529 .-\frac{1}{\sqrt{2}} \leqslant x \leqslant \frac{1}{\sqrt{2}} .2530 .-1<x \leqslant 1.2531 .-1<x<1$
2532. $-1<x<1$. 2533. $-\infty<x<\infty$. 2534. $x=0$. 2535. $-\infty<x<\infty$.
2536. $-4<x<4$. 2537. $-\frac{1}{3}<x<\frac{1}{3}$. 2538. $-2<x<2$. 2539. $-e<x<e$.
2540. $-3 \leqslant x<3$. 2541. $-1<x<1$ 2542. $-1<x<1$ Solution. The divergence of the series for $|x| \geqslant 1$ is obvious (it is interesting, however, to note that the divergence of the series at the end-points of the interval of convergence $x= \pm 1$ is detected not only with the aid of the necessary condition of convergence, but also by means of the d'Alembert test). When $|x|<1$ we have
$\lim _{n \rightarrow \infty}\left|\frac{(n+1)!x^{(n+1)!}}{n!x^{n^{\prime}}}\right|=\lim _{n \rightarrow \infty}\left|(n+1) x^{n!n}\right| \leqslant \lim _{n \rightarrow \infty}(n+1)|x|^{n}=\lim _{n \rightarrow \infty} \frac{n+1}{\left|\frac{1}{x}\right|^{n}}=0$
(this equality is readily obtained by means of l'Hospital's rule).
2543. $-1 \leqslant x \leqslant 1$ Hint. Using the d'Alembert test, it is possible not only to find the interval of convergence, but also to investigate the convergence of the given series at the extremities of the interval of convergence. 2544. $-1 \leqslant x \leqslant 1$. Hint. Using the Cauchy test, it is rossible not only to find the interval of convergence, but also to investigate the convergence of the given series at the extremities of the interval of convergence. 2;45. $2<x \leqslant 8$.
2546. $-2 \leqslant x<8$. 2547. $-2<x<4$. 2548. $1 \leqslant x \leqslant 3$ 2549. $-4 \leqslant x \leqslant-2$.
2550. $x=-3$ 2551. $-7<x<-3$ 2552. $0 \leqslant x<4$. 2553. $-\frac{5}{4}<x<\frac{13}{4}$.
2554. $-e-3<x<e-3$. 2555. $-2 \leqslant x \leqslant 0$. 2556. $2<x<4$ 2557. $1<x \leqslant 3$.
2558. $-3 \leqslant x \leqslant-1 \quad$ 2559. $1-\frac{1}{e}<x<1+\frac{1}{e} \quad$ Hint. For $x=1 \pm \frac{1}{e}$ the
series diverges, since $\lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n}\right)^{n^{3}}}{e^{n}}=\frac{1}{\sqrt{e}} \neq 0 \quad 2560$. $\quad-2<x<0$
2561. $1<x \leqslant 3$ 2562. $1 \leqslant x<$ 5. 2563. $2 \leqslant x \leqslant 4$. 2564. $|z|<1$ 2565. $|z|<1$
2566. $|z-2| \mid<3$ 2567. $|z|<\sqrt{2}$ 2568. $z=0$ 2569. $|z|<\infty$. 2570. $|z|<\frac{1}{2}$
2576. $\quad \frac{-\ln (1-x) \quad(-1 \leqslant x<1) \quad \text { 2577. } \quad \ln (1+x) \quad(-1<x \leqslant 1) .}{\text { 2578. } \frac{1}{2} \ln \frac{1+x}{1-x}(|x|<1) \quad \text { 2579. } \arctan x(|x| \leqslant 1) . \quad 2580 . \frac{1}{(x-1)^{2}}(|x|<1) .}$.
2581. $\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}(|x|<1) \quad$ 2582. $\quad \frac{2}{(1-x)^{3}}(|x|<1) . \quad 2583 \quad \frac{x}{(x-1)^{2}}(|x|>1)$. 2584. $\frac{1}{2}\left(\arctan x-\frac{1}{2} \ln \frac{1-x}{1+x}\right)(|x|<1)$. 2585. $\frac{\pi \sqrt{3}}{6}$. Hint. Consider the sum of the series $x-\frac{x^{8}}{3}+\frac{x^{3}}{5}-\ldots$ (see Problem 2579) for $x=\frac{1}{\sqrt{3}}$.
2586. 3. 2587. $a^{x}=1+\sum_{n=1}^{\infty} \frac{x^{n} \ln ^{n} a}{n!},-\infty<x<\infty$. 2588. $\sin \left(x+\frac{\pi}{4}\right)=$ $=\frac{\sqrt{2}}{2}\left[1+x-\frac{x^{2}}{2!}-\frac{x^{9}}{3!}+\frac{x^{4}=1}{4!}+\frac{x^{5}}{5!}-\ldots+(-1)^{\frac{n^{2}-n}{2}} \frac{x^{n}}{n!}+\ldots\right]$.
2589.
$\cos (x+a)=\cos a-x \sin a-\frac{x^{2}}{2!} \cos a+\frac{x^{5}}{3!} \sin a+\frac{x^{4}}{4!} \cos a+\ldots$
$\ldots+\frac{x^{n}}{n!} \sin \left[a+\frac{(n+1) \pi}{2}\right]+\ldots,-\infty<x<\infty .2590 . \sin ^{2} x=\frac{2 x^{2}}{2!}-\frac{2^{5} x^{4}}{4!}+\frac{2^{5} x^{6}}{6!}-\ldots$ $\ldots+(-1)^{n-1} \frac{2^{2 n-1} x^{2 n}}{(2 n)!}+\ldots,-\infty<x<\infty . \quad 2591 \quad \ln (2+x)=\ln 2+\frac{x}{2}-$ $-\frac{x^{2}}{2 \cdot 2^{2}}+\frac{x^{3}}{3 \cdot 2^{3}}-\ldots+(-1)^{n-1} \frac{x^{n}}{n \cdot 2^{n}}+\ldots,-2<x \leqslant 2$. Hint. When investigating the remainder, use the theorem on integrating a power series
2592.

$$
\frac{2 x-3}{(x-1)^{2}}=-\sum_{n=0}^{\infty}(n+3) x^{n},|x|<1.2593 . \quad \frac{3 x-5}{x^{2}-4 x+3}=
$$

$$
=-\sum_{n=0}^{\infty}\left(1+\frac{2}{3^{n+1}}\right) x^{n},|x|<1.2594 . x e^{-2 x}=x+\sum_{n=2}^{\infty} \frac{(-1)^{n-1} 2^{n-1} x^{n}}{(n-1)!}
$$

$$
-\infty<x<\infty \text {. 2595. } e^{x^{2}=1}+\sum_{n=1}^{\infty} \frac{x^{2 n}}{n!},-\infty<x<\infty \quad \text { 2596. } \quad \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}
$$

$$
(-\infty<x<\infty) \text { 2597. } 1+\sum_{n=1}^{\infty}(-1)^{n} \frac{2^{n} x^{2 n}}{(2 n)!} \cdot 2598 \cdot 1+\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}(2 x)^{2 n}}{(2 n)!}
$$

$$
-\infty<x<\infty . \quad 2599 . \quad 2 \sum_{n=0}^{\infty}(-1)^{n} \frac{(n+2) 3^{2 n} \cdot x^{2 n+1}}{(2 n+1)!}(-\infty<x<\infty) .
$$

2600. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{9^{n+1}} \quad(-3<x<3) . \quad$ 2601. $\quad \frac{1}{2}+\frac{1}{2} \cdot \frac{x^{2}}{2^{3}}+\frac{1 \cdot 3}{2 \cdot 4} \quad \frac{x^{4}}{2^{3}}+$ $+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{6}}{2^{2}}+\cdots+\frac{1 \cdot 3 \cdot 5 \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \cdot \frac{x^{2 n}}{2 n}} 2^{2 n+1}+\ldots \quad(-2<x<2)$
2601. $2 \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}(|x|<1)$ 2603. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 2^{n}-1}{n} x^{n}\left(-\frac{1}{2}<x<\frac{1}{2}\right)$.
$2604 x+\sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n}}{(n-1) n} \quad(|x| \leq 1) . \quad$ 2605. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1} \quad(|x| \leqslant 1)$.
2602. $\quad x+\frac{1}{2} \cdot \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5}+\ldots+\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \cdot .2 n} \frac{x^{2 n+1}}{2 n+1}+\ldots \quad(|x| \leqslant 1)$.
2603. $x-\frac{1}{2} \cdot \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{3}}{5}-\ldots+(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdot(2 n-1)}{2 \cdot 4 \cdot 6 \ldots \cdot 2 n} \frac{x^{2 n+1}}{2 n+1}+\ldots(|x| \leqslant 1)$.
2604. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2^{4 n-2} x^{2 n}}{(2 n)!}(-\infty<x<\infty)$. 2609. $1+\sum_{n=2}^{\infty}(-1)^{n-1} \frac{n-1}{n!} x^{n}$ $(-\infty<x<\infty) .2610 .8+3 \sum_{n=1}^{\infty} \frac{1+2^{n}+3^{n-1}}{n!} x^{n}(-\infty<x<\infty)$.
2605. $2+\frac{x}{2^{2} \cdot 3 \cdot 1!}-\frac{2 \cdot x^{2}}{2^{3} \cdot 3^{2} \cdot 2!}+\frac{2 \cdot 5 x^{3}}{2^{6} \cdot 3^{3} \cdot 3!}+\ldots+(-1)^{n-1} \frac{2 \cdot 5 \cdot 8 \ldots \cdot(3 n-4) x^{n}}{2^{3 n-1} \cdot 3^{n} \cdot n!}+\ldots$
$(-\infty<x<\infty)$. 2612. $\quad \frac{1}{6}-\sum_{n=1}^{\infty}\left(\frac{1}{2^{n+1}}+\frac{1}{3^{n+1}}\right) x^{n} \quad(-2<x<2)$.
2606. $1+\frac{3}{4} \sum_{n=1}^{\infty} \frac{\left(1+3^{2 n-1}\right) x^{2 n}}{(2 n)!}(|x|<\infty)$. 2614. $\sum_{n=0}^{\infty} \frac{x^{4 n}}{4^{n+1}} \quad(\forall x \mid<\sqrt{2})$. 2615. $\ln 2+\sum_{n=1}^{\infty}(-1)^{n-1}\left(1+2^{-n}\right) \frac{x^{n}}{n}(-1<x \leqslant 1)$. 2616. $\sum_{n=0}^{\infty}(-1)^{n} x$ $\times \frac{x^{2 n+1}}{(2 n+1)(2 n+1)!}(-\infty<x<\infty)$. 2617. $x+\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) n!}(|x|<\infty)$. 2618. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n^{2}} \quad(|x| \leqslant 1) . \quad$ 2619. $\quad x+\frac{1}{2 \cdot 5} x^{5}+\frac{1 \cdot 3}{2^{2} \cdot 9 \cdot 2!} x^{4}+\ldots+$ $+\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2^{n}(4 n+1) n!} x^{4 n+1}+\ldots \quad(|x|<1) . \quad 2620 . \quad x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots$ 2621. $x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}-\ldots \quad$ 2622. $e\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{6}-\ldots\right)$. 2623. $1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\ldots$
2607. $-\left(\frac{x^{2}}{2}+\frac{x^{4}}{12}+\frac{x^{6}}{45}+\ldots\right)$. 2625. $x+x^{2}+\frac{1}{3} x^{3}+\ldots$ 2626. Hint. Proceed. ing from the parametric equations of the ellipse $x=a \cos \varphi, y=b \sin \varphi$, compute the length of the ellipse and expand the expression obtained in a series of powers of e. $2628 . x^{3}-2 x^{2}-5 x-2=-78+59(x+4)-14(x+4)^{2}+$ $+(x+4)^{3} \quad(-\infty<x<\infty)$.
$+\left(15 x^{2}-8 x-3\right) h+(15 x-4) h^{2}+5 h^{9} \quad 2629 . f(x+h)=5 x^{3}-4 x^{2}-3 x+2+$
$\begin{array}{ll}+\left(15 x^{2}-8 x-3\right) h+(15 x-4) h^{2}+5 h^{3} & (-\infty<x<\infty ;-\infty<h<\infty) . \\ \text { 2630. } \sum_{n=1}^{\infty}(-1)^{n-1} \frac{(x-1)^{n}}{n}(0<x \leqslant 2) .2631 . \sum_{n=0}^{\infty}(-1)^{n}(x-1)^{n} \quad(0<x<2) .\end{array}$
2608. $\sum_{n=0}^{\infty}(n+1)(\dot{x}+1)^{n} \quad(-2<x<0)$. 2633. $\sum_{n=0}^{\infty}\left(2^{-n-1}-3^{-n-1}\right)(x+4)^{n}$ $(-6<x<-2)$. 2634. $\sum_{n=0}^{\infty}(-1)^{n} \frac{(x+2)^{2 n}}{3^{n+1}} \quad(-2-\sqrt{\overline{3}}<x<-2+\sqrt{3})$.
2609. $e^{-2}\left[1+\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n \mid}\right] \quad(|x|<\infty) . \quad$ 2636. $2+\frac{x-4}{2^{2}}-\frac{1}{4} \frac{(x-4)^{2}}{2^{4}}+$ $+\frac{1 \cdot 3}{4 \cdot 6} \frac{(x-4)^{3}}{2^{6}}-\frac{1 \cdot 3 \cdot 5}{4 \cdot 6 \cdot 8} \frac{(x-4)^{4}}{2^{8}}+\ldots+(-1)^{n-1} \frac{1 \cdot 3 \cdot 5 \ldots(2 n-3)}{4 \cdot 6 \cdot 8 \ldots 2 n} \frac{(x-4)^{n}}{2^{2 n}}+\ldots$
(0<x<8). 2637. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\left(x-\frac{\pi}{2}\right)^{2 n-1}}{(2 n-1)!}(|x|<\infty) . \quad$ 2638. $\frac{1}{2}+$ $\begin{aligned} & +\sum_{\substack{n=1 \\(0<x<\infty)}}^{\infty}(-1)^{4^{n-1}\left(x-\frac{\pi}{4}\right)^{2 n-1}} \\ & (2 n-1)!\end{aligned}(|x|<\infty) .2639 .-2 \sum_{n=0}^{\infty} \frac{1}{2 n+1}\left(\frac{1-x}{1+x}\right)^{2 n+1}$

Hint. Make the substitution $\frac{1-x}{1+x}=t$ and expand $\ln x$ in powers of t. 2640. $\frac{x}{1+-x}+\frac{1}{2}\left(\frac{x}{1+x}\right)^{2}+\frac{1 \cdot 3}{2 \cdot 4}\left(\frac{x}{1+x}\right)^{3}+\ldots+\frac{1 \cdot 3 \cdot 5 \ldots(2 n-3)}{2 \cdot 4 \cdot 6 \ldots(2 n-2)}\left(\frac{x}{1+x}\right)^{n}+\ldots$ $\ldots\left(-\frac{1}{2} \leqslant x<\infty\right) \cdot 2641 .|R|<\frac{e}{5!}<\frac{1}{40}$. 2642. $|R|<\frac{1}{11}$. 2643. $\frac{\pi}{6} \approx$ $\approx \frac{1}{2}+\frac{1}{2} \frac{\left(\frac{1}{2}\right)^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{\left(\frac{1}{2}\right)^{3}}{5} \approx 0.523$. Hint. To prove that the error does not exceed 0.001 , it is necessary to evaluate the remainder by means of a geometric progression that exceeds this remainder. 2644. Two terms, that is, $1-\frac{x^{2}}{2}$. 2645. Two terms, i. e., $x-\frac{x^{3}}{6}$. 2646. Eight terms, i. e., $1+\sum_{n=1}^{7} \frac{1}{n!}$. 2647. 99; 999. 2648. 1.92 2649. $4.8|R|<0.005$. 2650. 2.087. 2651. $|x|<0.69$; $x\left|<0.39 ;|x|<0.22 .2652 .|x|<039 ;|x|<0182653 \cdot \frac{1}{2}-\frac{1}{2^{3} \cdot 3 \cdot 3!} \approx 0.4931\right.$.
 2659. $1+\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-y)^{2 n}}{(2 n)!} \quad(-\infty<x<\infty ;-\infty<y<\infty)$.
2660. $\sum_{n=1}^{\infty}(-1)^{n} \frac{(x-y)^{2 n}-(x+y)^{2 n}}{2 \cdot(2 n)^{1}} \quad(-\infty<x<\infty ;-\infty<y<\infty)$.
2661. $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\left(x^{2}+y^{2}\right)^{2 n-1}}{(2 n-1)!} \quad(-\infty<x<\infty ; \quad-\infty<y<\infty)$.
2662. $1+2 \sum_{n=1}^{\infty}(y-x)^{n} ;|x-y|<1$ Hint. $\frac{1-x+y}{1+x-y}=-1+\frac{2}{1-(y-x)}$. Use a geometric progression 2663. $-\sum_{n=1}^{\infty} \frac{x^{n}+y^{n}}{n}(-1 \leqslant x<1 ; \quad-1 \leqslant y<1)$.
Hin'. $1-x-y+x y=(1-x)(1-y) .2664 . \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}+y^{2 n+1}}{2 n+1}(-1 \leqslant x \leqslant 1 ;$ $-1 \leqslant y \leqslant 1$). Hint. $\arctan \frac{x+y}{1-\lambda y}=\arctan x+\arctan y($ (or $|x| \leqslant 1,|y| \leqslant 1$). 2665. $f(x+h, y+k)=a x^{2}+2 b x y+c y^{2}+2(a x+b y) h+2(b x+c y) k+a h^{2}+$ $1-2 b h+c k^{2}$. 2666. $f(1+h, 2+k)-f(1,2)=9 h-21 k+3 h^{2}+3 h k-12 k^{2}+h^{2}-$ $-2 k^{3} .2667 .1+\sum_{n=1}^{\infty} \frac{[(x-2)+(y+2)]^{n}}{n!} \cdot 2668.1+\sum_{n=1}^{\infty}(-1)^{n} \frac{\left[x+\left(y-\frac{\pi}{2}\right)\right]^{2 n}}{(2 n)!}$. 2669. $\quad 1+x+\frac{x^{2}-y^{2}}{2!}+\frac{x^{3}-3 x y^{2}}{3!}+\ldots \quad$ 2670. $\quad 1+x+x y+\frac{1}{2} x^{2} y+\ldots$ 2671. $\frac{c_{1}+c_{2}}{2}-\frac{2\left(c_{1}-c_{2}\right)}{\pi} \sum_{n=0}^{\infty} \frac{\sin (2 n+1) x}{2 n+1} ; S(0)=\frac{c_{1}+c_{2}}{2} ; \quad S(\pm \pi)=\frac{c_{1}+c_{2}}{2}$.
2672.

$$
\frac{b-a}{4} \pi-\frac{2(b-a)}{\pi} \sum_{n=0}^{\infty} \frac{\cos (2 n+1) x}{(2 n+1)^{2}}+(a+b) \sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sin n x}{n} ;
$$ $S(\pm \pi)=\frac{b-a}{2} \pi$. 2673. $\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}} ; S(\pm \pi)=\pi^{2} .2674 . \frac{2}{\pi} \sinh a \pi \times$ $\times\left[\frac{1}{2 a}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}}(a \cos n x-n \sin n x)\right] ; \quad S(\pm \pi)=\cosh a \pi$. 2675. $\frac{2 \sin a \pi}{\pi} \times$ $\times \sum_{n=1}^{\infty}(-1)^{n} \frac{n \sin n x}{a^{2}-n^{2}}$ if a is nonintegral; $\sin a x$ if a is an integer; $S(\pm \pi)=0$. 2676. $\frac{2 \sin a \pi}{\pi}\left[\frac{1}{2 a}+\sum_{n=1}^{\infty}(-1)^{n} \frac{a \operatorname{cns} n x}{a^{2}-n^{2}}\right]$ if a is nonintegral; $\cos a x$ if a is an integer; $S(\pm \pi)=\cos a \pi . \quad 2677 . \frac{2 \sinh a \pi}{\pi} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{n \sin n x}{a^{2}+n^{2}} ; \quad S^{\prime}(\pm \pi)=0$. 2678. $\frac{2 \sinh a \pi}{\pi}\left[\frac{1}{2 a}+\sum_{n=1}^{\infty}(-1)^{n} \frac{a \cos n x}{a^{2}+n^{2}}\right] ; S(\pm \pi)=\cosh a \pi$. 2679. $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$. 2680. $\sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}$; а) $\frac{\pi}{4}$; b) $\frac{\pi}{3}$; c) $\frac{\pi}{2 \sqrt{3}}$. 2681. a) $2 \sum_{n=1}^{\infty}(-1)^{n-1} x$ $\times \frac{\sin n x}{n}$; b) $\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}} ; \frac{\pi^{2}}{8} .2682$. a) $\sum_{n=1}^{\infty} b_{n} \sin n x$, where $b_{2 k-1}=\frac{2 \pi}{2 k-1}-\frac{8}{\pi(2 k-1)^{3}}$ and $b_{2 k}=-\frac{\pi}{k}$; b) $\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos n x}{n^{2}}$; 1) $\frac{\pi^{2}}{6}$.

2) $\frac{\pi^{2}}{12}$.
2683.

э) $\frac{2}{\pi} \sum_{n=1}^{\infty}\left[1-(-1)^{n} e^{a \pi}\right] \frac{n \sin n x}{a^{2}+n^{2}}$;
b) $\frac{e^{a \pi}-1}{a \pi}+$ $+\frac{2 a}{\pi} \sum_{n=1}^{\infty} \frac{\left[(-1)^{n} e^{a \pi}-1\right] \cos n x}{a^{2}+n^{2}}$.2684. a) $\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1-\cos \frac{n \pi}{2}}{n} \sin n x ; \quad$ b) $\frac{1}{2}+$ $+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin \frac{n \pi}{2}}{n} \cos n x .2685 . \quad$ a) $\frac{4}{\pi} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{\sin (2 n-1) x}{(2 n-1)^{2}}$; b) $\frac{\pi}{4}-$ $-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\operatorname{ccs} 2(2 n-1) x}{(2 n-1)^{4}}$ 2696. $\sum_{n=1}^{\infty} b_{n} \sin n x$, where $b_{2 k}=(-1)^{k-1} \frac{1}{2 k}, b_{2 k+1}=$ $=(-1)^{k} \frac{2}{\pi(2 k+1)^{2}}$ 2687. $\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{(2, l-1)^{3}} .2688 . \frac{8}{\pi} \sum_{n=1}^{\infty}(-1)^{n-1} \frac{n \sin n x}{4 n^{2}-1}$.
2689. $\quad \frac{2 h}{\pi}\left(\frac{1}{2}+\sum_{n=1}^{\infty} \frac{\sin n h}{n h} \cos n x\right)$. 2690. $\frac{2 h}{\pi}\left[\frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{\sin n h}{n h}\right)^{2} \cos n x\right]$.
2691. $1-\frac{\cos x}{2}+2 \sum_{n=2}^{n=1}(-1)^{n-1} \frac{\cos n x}{n^{2}-1}$. 2692. $\frac{4}{\pi}\left[\frac{1}{2}+\sum_{n=1}^{\infty}(-1)^{n-1} \frac{\operatorname{cns} 2 n x}{4 n^{2}-1}\right]$.
2694. Solution. 1) $a_{2 n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos 2 n x d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{8}} f(x) \cos 2 n x d x+$ $+\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} f(x) \cos 2 n x d x$. If we make the substifution $t=\frac{\pi}{2}-x$ in the first Integral and $t=x-\frac{\pi}{2}$ in the second, then, taking advantage of the assumed identity $f\left(\frac{\pi}{2}+t\right)=-f\left(\frac{\pi}{2}-t\right)$, it will readily be seen that $a_{2 n}=0$ ($n=0,1,2, \ldots$);
2) $b_{2 n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin 2 n x d x=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} f(x) \sin 2 n x d x+\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi} f(x) \sin 2 n x d x$.

The same substitution as in Case (1), with account taken of the assumed identity $f\left(\frac{\pi}{2}+t\right)=f\left(\frac{\pi}{2}-t\right)$ leads to the equalities $b_{2 n}=0(n=1,2, \ldots)$. 2695. $\frac{1}{2}-\frac{4}{\pi^{2}} \sum_{n=0}^{\infty} \frac{\cos (2 n+1) \pi x}{(2 n+1)^{2}}$. 2696. $1-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin 2 n \pi x}{n}$.
2697. $\sinh l\left[\frac{1}{l}+2 \sum_{n=1}^{x}(-1)^{n} \frac{l \cos \frac{n \pi x}{l}-\pi n \sin \frac{n \pi x}{l}}{l^{2}+n^{2} \pi^{2}}\right]$.
2698. $\frac{10}{\pi} \sum_{n=1}^{\infty}(-1)^{n} \frac{\sin \frac{n \pi x}{5}}{n}$ 2699. a) $\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin 2(n-1) \pi x}{2 n-1} ; \quad$ b) 12700
a) $\frac{2 l}{\pi} \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin \frac{n \pi x}{l}}{n}$; b) $\frac{l}{2}-\frac{4 l}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\cos \frac{(2 n-1) \pi x}{l}}{(2 n-1)^{2}}$. 2701. a) $\sum_{n=1}^{\alpha} b_{n} \operatorname{sin1} \frac{n x}{2}$, where $\quad b_{2 k+1}=\frac{8}{\pi}\left[\frac{\pi^{2}}{2 k+1}-\frac{4}{(2 k+1)^{2}}\right], \quad b_{2 k}=-\frac{4 \pi}{k} ; \quad$ b) $\quad \frac{4 \pi^{2}}{3}-$ $-16 \sum_{n=1}^{\infty}(-1)^{n-1} \frac{\cos \frac{n x}{2}}{n^{2}}, 2702$. a) $\frac{8}{\pi^{2}} \sum_{n=0}^{\infty}(-1)^{n} \frac{\sin \frac{(2 \cdot 2+1) \pi x}{2}}{(2.2+1)^{2}}, \quad$ b) $\quad \frac{1}{2}-$ $-\frac{4}{\pi^{2}} \sum_{n=0}^{\infty} \frac{\cos (2 n+1) \pi x}{(2 n+1)^{2}} .2703, \quad \frac{2}{3}-\frac{9}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos \frac{2 \imath \pi x}{3}+\frac{1}{2 \pi^{2}} \sum_{n=1}^{\infty} \frac{\operatorname{crs} 2 i \pi x}{n^{2}}$.

Chapter IX

2704. Yes. 2705. No. 2706. Yes. 2707. Yes. 2708. Yes. 2709. a) Yes; b) no. 2710. Yes. 2714. $y-x y^{\prime}=0$. 2715. $x y^{\prime}-2 y=0$. 2716. $y-2 x y^{\prime}=0$. 2717. $x d x+y d y=0$. 2718. $y^{\prime}=y$. 2719. $3 y^{2}-x^{2}=2 x y y^{\prime}$. 2720. $x y y^{\prime}\left(x y^{2}+1\right)=1$. 2721. $y=x y^{\prime} \ln \frac{x}{y}$. 2722. $2 x y^{\prime \prime}+y^{\prime}=0$. 2723. $y^{\prime \prime}-y^{\prime}-2 y=0$. 2724. $y^{\prime \prime}+4 y=0$. 2725. $y^{\prime \prime}-2 y^{\prime}+y=0$. 2726. $y^{\prime \prime}=0$. 2727. $y^{\prime \prime \prime}=0$. 2728. $\left(1+y^{\prime 2}\right) y^{\prime \prime \prime}-3 y^{\prime} y^{\prime 2}-0$. 2729. $y^{2}-x^{2}=25$. 2730. $y=x e^{2 x}$. 2731. $y=-\cos x$. 2732. $y=$ $=\frac{1}{6}\left(-5 e^{-x}+9 e^{x}-4 e^{2 x}\right)$. 2738. 2.593 (exact value $y=e$). 2739. 4.780 [exact value $y=3(e-1)$]. 2740. 0.946 (exact value $y=1$). 2741. 1. 826 (exact value $y=\sqrt{3})$ 2742. $\cot ^{2} y=\tan ^{2} x+C$. 2743. $x=\frac{C y}{\sqrt{1+y^{2}}} ; y=0$. 2744. $x^{2}+y^{2}=$ $=\ln C x^{2}$. 2745. $y=a+\frac{C x}{1+a x} .2746 . \tan y=C\left(1-e^{x}\right)^{3} ; x=0.2747 . y=C \sin x$. 2748. $2 e^{\frac{y^{2}}{2}}=\sqrt{e}\left(1+e^{x}\right) . \quad$ 2749. $\quad 1+y^{2}=\frac{2}{1-x^{2}} . \quad$ 2750. $\quad y=1 . \quad 2751$. $\arctan (x+y)=x+C . \quad$ 2752. $\quad 8 x+2 y+1=2 \tan (4 x+C) . \quad$ 2753. $\quad x+2 y+$ $+3 \ln |2 x+3 y-7|=$ C. 2754. $5 x+10 y+C=3 \ln |10 x-5 y+6| .2755$. $\quad \varrho=$ $=\frac{C}{1-\cos \varphi}$ or $y^{2}=2 C x+C^{2}$. 2756. $\ln \varrho=\frac{1}{2 \cos ^{2} \varphi}-\ln |\cos \varphi|+C$ or $\ln |x|-$ $-\frac{y^{2}}{2 x^{2}}=C$. 2757. Straight line $y=C x$ or hyperbola $y=\frac{C}{x}$. Hint. The segment of the tangent is equal to $\sqrt{y^{2}+\left(\frac{y}{y^{\prime}}\right)^{2}}$. 2758. $y^{2}-x^{2}=C .2759 . y=$ $=C e^{\frac{x}{a}}$. 2760. $y^{2}=2 p x$. 2761. $y=a x^{2}$. Hint. By hypothesis $\frac{\int_{0}^{x} x y d x}{\int_{0}^{x} y d x}=\frac{3}{4} x$. Differentiating twice with respect to x, we get a differential equation. 2762. $y^{2}=\frac{1}{3} x$.
2705. $y=\sqrt{4-x^{2}}+2 \ln \frac{2-\sqrt{4-x^{2}}}{x}$. 2764. Pencil of lines $y=k x$. 2765. Family of similar ellipses $2 x^{2}+y^{2}=C^{2}$. 2766. Family of hyperbolas $x^{2}-y^{2}=C$. 2767. Family of circles $x^{2}+(y-b)^{2}=b^{2}$. 2768. $y=x \ln \frac{C}{x}$. 2769. $y=\frac{C}{x}-\frac{x}{2}$. 2770. $x=C e^{\frac{x}{y}} . \quad$ 2771. $\quad(x-C)^{2}-y^{2}=C^{2} ; \quad(x-2)^{2}-y^{2}=4 ; \quad y= \pm x . \quad 2772$. $\sqrt{\frac{x}{y}}+\ln |y|=C$. 2773. $y=\frac{C}{2} x^{2}-\frac{1}{2 C} ; \quad x=0 . \quad 2774 . \quad\left(x^{2}+y^{2}\right)^{3}(x+y)^{2} C$. 2775. $y=x \sqrt{1-\frac{3}{8} x}$. 2776. $(x+y-1)^{2}=C(x-y+3)$. 2777. $3 x+y+2 x$ $x \ln |x+y-1|=C . \quad$ 2778. $\quad \ln |4 x+8 y+5|+8 y-4 x=$ C. \quad 2779. $\quad x^{2}=1-2 y$.
2706. Paraboloid of revolution. Solution. By virtue of symmetry the soughtfor mirror is a surface of revolution. The coordinate origin is located in the source of light; the x-axis is the direction of the pencil of rays. If a tangent at any point $M(x, y)$ of the curve, generated by the desired surface being cut by the $x y$-plane, forms with the x-axis an angle φ, and the segment connecting the origin with the point $M(x, y)$ forms an angle α, then $\tan \alpha=\tan 2 \varphi=$ $=\frac{2 \tan \varphi}{1-\tan ^{2} \varphi}$. But $\tan \alpha=\frac{y}{x} ; \tan \varphi=y^{\prime}$. The desired differential equation is $y-y y^{\prime 2}=2 x y^{\prime}$ and its solution is $y^{2}=2 C x+C^{2}$. The plane section is a parabola. The desired surface is a paraboloid of revolution. 2781. $(x-y)^{2}-C y=0$. 2782. $x^{2}=C(2 y+C)$. 2783. $\left(2 y^{2}-x^{2}\right)^{3}=C x^{2}$. Hint. Use the fact that the area is equal to $\int_{a}^{x} y d x$. 2784. $y=C x-x \ln |x|$. 2785. $y=C x+x^{2}$. 2786. $y=$ $=\frac{1}{6} x^{4}+\frac{C}{x^{2}}$. 2787. $x \sqrt{1+y^{2}}+\cos y=C$. Hint. The equation is linear with respect is x and $\frac{d x}{d y}$. 2788. $x=C y^{2}-\frac{1}{y}$. 2789. $y=\frac{e^{x}}{x}+\frac{a b-e^{a}}{x}$. 2790. $y=$ $=\frac{1}{2}\left(x \sqrt{1-x^{2}}+\arcsin x\right) \sqrt{\frac{1+x}{1-x}} . \quad$ 2791. $y=\frac{x}{\cos x} . \quad$ 2792. $y\left(x^{2}+C x\right)=1$. 2793. $y^{2}=x \ln \frac{C}{x} .2794 . x^{2}=\frac{1}{y+C y^{2}} . \quad$ 2795. $\quad y^{s}\left(3+C e^{\cos x}\right)=x \quad$ 2797. $\quad x y=$ $=C y^{2}+a^{2}$. 2798. $y^{2}+x+a y=0$. 2799. $x=y \ln \frac{y}{a} .2800 . \quad \frac{a}{x}+\frac{b}{y}=1 . \quad 2801$. $x^{2}+y^{2}-C y+a^{2}=0.2802 . \frac{x^{2}}{2}+x y+y^{2}=C .2803 . \quad \frac{x^{3}}{3}+x y^{2}+x^{2}=C . \quad 2804$. $\frac{x^{4}}{4}-\frac{3}{2} x^{2} y^{2}+2 x+\frac{y^{3}}{3}=$ C. 2805. $x^{2}+y^{2}-2 \arctan \frac{y}{x}=$ C. 2806. $x^{2}-y^{2}=$ Cy y^{2}. 3807. $\frac{x^{2}}{2}+y e^{\frac{x}{y}}=2$ 2808. $\ln |x|-\frac{y^{2}}{x}=$ C. 2809. $\frac{x}{y}+\frac{x^{2}}{2}=$ C. 2810 . $\frac{1}{y} \ln x+$ $+\frac{1}{2} y^{2}=$ C. 2811. $\quad(x \sin y+y \cos y-\sin y) e^{x}=C . \quad$ 2812. $\quad\left(x^{2} C^{2}+1-2 C y\right) x$ $X\left(x^{2}+C^{2}-2 C y\right)=0$; singular integral $x^{2}-y^{2}=0$. 2813. General integral $(y+C)^{2}=x^{3}$; there is нo singular integral. 2814. General integral $\left(\frac{x^{2}}{2}-y+C\right) \times$ $\times\left(x-\frac{y^{2}}{2}+C\right)=0$; there is no singular integral. 2815. General integral $y^{2}+C^{2}=2 C x$; singular integral $x^{2}-y^{2}=0$. 2816. $y=\frac{1}{2} \cos x \pm \frac{\sqrt{3}}{2} \sin x$. 2817 . $\left\{\begin{array}{l}x=\sin p+\ln p, \\ y=p \sin p+\cos p+p+C .\end{array}\right.$ 2818. $\left\{\begin{array}{l}x=e^{p}+p e^{p}+C, \\ y=p^{2} e^{p} .\end{array}\right.$ 2819. $\left\{\begin{array}{l}x=2 p-\frac{2}{p}+C, \\ y=p^{2}+2 \ln p .\end{array}\right.$
Singular solution: $y=0 . \quad$ 2820. $\quad 4 y=x^{2}+p^{2}, \quad \ln |p-x|=C+\frac{x}{p-x}$.
2707. $\ln \sqrt{p^{2}+y^{2}}+\arctan \frac{p}{y}=C, x=\ln \frac{y^{2}+p^{2}}{2 p}$. Singular solution: $y=e^{x}$.
2708. $y=\frac{1}{2} C x^{2}+\frac{2}{C} ; \quad y= \pm 2 x . \quad$ 2824. $\quad\left\{\begin{array}{l}x=C e^{-p}-2 p+2, \\ y=C(1+p) e^{-p}-p^{2}+2 .\end{array}\right.$
2709. $\left\{\begin{array}{l}x=\ln |p|-\arcsin p+C, \\ y=p+\sqrt{1-p^{2}} .\end{array}\right.$ 2825. $\left\{\begin{array}{l}x=\frac{1}{3}\left(C_{p}^{-\frac{1}{2}}-p\right), \\ y=\frac{1}{6}\left(2 C p^{\frac{1}{2}}+p^{2}\right) .\end{array}\right.$ Hint. The differential equation from which x is defined as a function of p is homogeneous. 2826. $y=C x+C^{2} ; y=-\frac{x^{2}}{4}$. 2827. $y=C x+C$; no singular solution 2828. $y=C x+$ $+\sqrt{1+C^{2}} ; x^{2}+y^{2}=1$. 2829. $y=C x+\frac{1}{C} ; y^{2}=4 x .2830 . x y=C \quad$ 2831. A circle and the family of its tangents. 2832. The astroid $x^{2 / 3}+y^{2 / 3}=a^{2} j^{3}$. 2833. a) Homogeneous, $y=x u$; b) linear in $x ; x=u v$; c) linear in $y ; y=u v$; d) Bernoulli's equation; $y=u v$; e) with variables separable; f) Clairaut's equation; reduce to $y=x y^{\prime} \pm \sqrt{y^{\prime 3}}$ g) Lagrange's equation; differentiate with respect to $x ; h$) Bernoulli's equation; $y=u v$; i) leads to equation with variables separable; $u=x+y ;$ j) Lagrange's equation; differentiate with respect to $x ; \mathrm{k}$) Bernoulli's equation in $x ; x=u v ; 1$) exact differential equation; m) linear; $y=u v$; n) Bernoulli's equation; $y=u v$. 2834. a) $\sin \frac{y}{x}=-\ln |x|+C$; b) $x=y \cdot e^{c y+1}$. 2835. $x^{2}+y^{4}=C y^{2}$. 2836. $y=\frac{x}{x^{2}+C}$. 2837. $x y\left(C-\frac{1}{2} \ln ^{2} x\right)=1 . \quad$ 2838. $\quad y=$ $=C x+C \ln C$; singular solution, $y=e^{-(x+1)}$. 2839. $y=C x+\sqrt{-a C} ;$ singuiar solution, $\quad y=\frac{a}{4 x} . \quad$ 2840. $\quad 3 y+\ln \frac{\left|x^{2}-1\right|}{(y+1)^{6}}=$ C. 2841. $\frac{1}{2} e^{2 x}-e^{y}-\arctan y-$ $-\frac{1}{2} \ln \left(1+y^{2}\right)=$ C. 2842. $y=x^{2}\left(1+C e^{\frac{1}{x}}\right) . \quad$ 2843. $x=y^{2}\left(C-e^{-y}\right) . \quad$ 2844. $y=$ $=C e^{-\sin x}+\sin x-1.2845 . y=a x+C \sqrt{1-x^{2}} .2846 . y=\frac{x}{x+1}(x+\ln |x|+C)$. 2847. $x=C e^{\sin y}-2 a(1+\sin y)$. 2848. $\quad \frac{x^{2}}{2}+3 x+y+\ln \left[(x-3)^{10}|y-1|^{3}\right]=C$. 2849. $2 \arctan \frac{y-1}{2 x}=\ln C x$. 2850. $x^{2}=1-\frac{2}{y}+C e^{-\frac{2}{y}}$. 2851. $x^{3}=C e^{y}-y-2$ 2852. $\sqrt{\frac{y}{x}}+\ln |x|=C$. 2853. $y=x \arcsin (C x)$. 2854. $y^{2}=C e^{-2 x}+\frac{2}{5} \sin x+$ $+\frac{4}{5} \cos x$. 2855. $x y=C(y-1)$. 2856. $x=C e^{y}-\frac{1}{2}(\sin y+\cos y)$. 2857. $p y-$ $=C(p-1)$. 2858. $x^{4}=C e^{4 y}-y^{2}-\frac{3}{4} y^{2}-\frac{3}{8} y-\frac{3}{32} \quad$ 2859. $(x y+C)\left(x^{2} y+C\right)=0$. 2860. $\sqrt{x^{2}+y^{2}}-\frac{x}{y}=C .2861 . x e^{y}-y^{2}=C .2862 .\left\{\begin{array}{l}x=\frac{C}{p^{2}}-\frac{\sqrt{1+p^{2}}}{2 p}+\frac{1}{2 p^{2}} \ln (p+ \\ \left.+\sqrt{1+p^{2}}\right), \\ y=2 p x+\sqrt{1+p^{2}} .\end{array}\right.$
2710. $y=x e^{C x}$. 2864. $2 e^{x}-y^{4}=C y^{2}$. 2865. $\ln |y+2|+2 \arctan \frac{y+2}{x-3}=C .2866$.
$y^{2}+C e^{-\frac{y^{2}}{2}}+\frac{1}{x}-2=0 . \quad 2867 . \quad x^{2} \cdot y=C e^{\frac{y}{u}} . \quad 2868 . \quad x+\frac{x}{y}=C . \quad$ 2869. $\quad y=$ $=\frac{C-x^{4}}{4\left(x^{2}-1\right)^{3,2}} .2870 . y=C \sin x-a .2871 . y=\frac{a^{2} \ln \left(x+\sqrt{a^{2}+x^{2}}\right)+C}{x+\sqrt{a^{2}+x^{2}}} . \quad 2872$.
$(y-C x) \cdot\left(y^{2}-x^{2}+C\right)=0$. 2873. $y=C x+\frac{1}{C^{2}}, y=\frac{3}{2} \sqrt[3]{2 x^{2}} . \quad 2874 . \quad x^{3}+x^{2} y-$ $-y^{2} x-y^{3}=$ C. 2875. $p^{2}+4 y^{2}=C y^{3}$. 2876. $y=x-1$. 2877. $y=x$. 2878. $y=2$. 2879. $y=0$. 2880. $y=\frac{1}{2}(\sin x+\cos x)$. 2881. $y=\frac{1}{4}\left(2 x^{2}+2 x+1\right)$. 2882. $y=$ $==e^{-x}+2 x-2$. 2883. a) $y=x$; b) $y=C x$, where C is arbitrary; the poinf $(0,0)$ is a simular point of the differential equation. 2884. a) $y^{2}=x$; b) $y^{2}=2 p x$; $(0,0)$ is a singular point. 2885. a) $(x-C)^{2}+y^{2}=C^{2}$; b) no solution; c) $x^{2}+y^{2}=x$;
$(0,0)$ is a singular point. 2886. $y=e^{\frac{x}{4}}$. 2887. $y=(\sqrt{2 a} \pm \sqrt{x})^{2}$. 2888. $y^{2}=$ $\rightarrow 1-e^{-x}$. 2889. $r=C e^{a r}$. Hint. Pass to polar coordinates. 2890. $3 y^{2}-2 x=0$ 2891. $r=k \varphi$ 2892. $x^{2}+(y-b)^{2}=b^{2}$. 2893. $y^{2}+16 x=0$. 2894. Hyperbola $y^{2}-x^{2}-C$ or circle $x^{2}+y^{2}-C^{2}$. 2895. $y=\frac{1}{2}\left(e^{x}+e^{-x}\right)$. Hint. Use the fact that the area is equal to $\int_{0}^{x} y d x$ and the are length, to $\int_{0}^{x} 1 \overline{1+y^{2}}$ ir. 2896. $x=\frac{a^{2}}{y}+C y .2897 . y^{2}-4 C(C-a-x)$. 2898. Hint. Use the fact that the resultant of the force oi gravity and the centrifugal force is normal to the surface. Iaking the y-axis as the axis of rotation and denoting by ω the angular velocity of rotation, we set for the plane axial cross-section of the desired surface the differential equation $g \frac{d y}{d x}=\omega^{2} x$. 2899. $p-e^{-9.000167 h}$. Hint. The pressure at each level of a vertical colmm of ar may be considered as due solely to the pressute of the upper-lying layers Use the law of Boyle-Mar otte, accordmes to which the density is proportional to the pressure. The sought-for dilterential equation is $d p--k p d h .2900 . s \therefore \frac{1}{2} k l \omega$. Hint. Equation $d s=$ - $k w \frac{l-\lambda}{l} d x .2901 . \quad s=\left(p+\frac{1}{2} w\right) k l .2902 . \quad T=a+\left(T_{0}-a\right) e^{-k t}$. 2903. In one hour. 2904. $\omega=100\left(\frac{3}{5}\right)^{t}$ rpm. 2905. 42% of the initial quantity Q_{0} will decay in 100 years. Hint. Equation $\frac{d Q}{d t}=k Q . Q=Q_{0}\left(\frac{1}{2}\right)^{\frac{t}{1800}} . \quad$ 2906. $\quad t \approx$ $\approx 35.2 \mathrm{sec}$. Hint. Equation $\pi\left(h^{2}-2 h\right) d h=\pi\left(\frac{1}{10}\right)^{2} v d t$. 2907. $\frac{1}{1024}$. Hint. $d Q=-k Q$ dh. $Q=Q_{0}\left(\frac{1}{2}\right)^{\frac{h}{3}} \cdot 2908 . v \longrightarrow \sqrt{\frac{\overline{g m}}{k}}$ as $t \rightarrow \infty(k$ is a proportionality factor). Hint. Equation $m \frac{d v}{d t}=m g-k v^{2} ; v=\sqrt{\frac{g m}{k}} \tanh \left(t \sqrt{\frac{g k}{m}}\right)$. 2909. 18.1 kg . Hint. Equation $\frac{d x}{d t}=k\left(\frac{1}{3}-\frac{x}{300}\right) .2910 . \quad i=\frac{E}{R^{2}+L^{2} \omega^{2}}[(R \sin \omega t-$ 16-1900
$-L \omega \cos \omega t)+L \omega e^{-\frac{R}{L} t}{ }_{\mathrm{J}}$. Hint. Equation $R i+L \frac{d i}{d t}=E \sin \omega t . \quad$ 2911. $\quad y=$ $=x \ln |x|+C_{1} x+C_{2}$. $2912.1+C_{1} y^{2}=\left(C_{2}+\frac{C_{1} x}{\sqrt{2}}\right)^{2} .2913 . y=\ln \left|e^{2 x}+C_{1}\right|-$ $-x+C_{2}$. 2914. $y=C_{1}+C_{2} \ln |x|$. 2915. $y=C_{1} e^{C} x \quad$ 2916. $y= \pm \sqrt{C_{1} x+C_{2}}$. 2917. $y=\left(1+C_{1}^{2}\right) \ln \left|x+C_{1}\right|-C_{1} x+C_{2} . \quad$ 2918. $\quad\left(x-C_{1}\right)=a \ln \left|\sin \frac{y-C_{2}}{a}\right|$. 2919. $y=\frac{1}{2}(\ln |x|)^{2}+C_{1} \ln |x|+C_{2} .2920 . x=\frac{1}{C_{1}} \ln \left|\frac{y}{y+C_{1}}\right|+C_{2} ; y=C .2921 . y=$ $=C_{1} e^{C_{3}}+\frac{1}{C_{2}}$. 2922. $y= \pm \frac{1}{2}\left[x \sqrt{C_{1}^{2}-x^{2}}+C_{1}^{2} \arcsin \frac{x}{C_{1}}\right]+C_{2} \quad$ 2923. $y=$ $=\left(C_{1} e^{x}+1\right) x+C_{2}$.2924. $y=\left(C_{1} x-C_{1}^{2}\right) e^{\frac{x}{C_{1}}+1}+C_{2} ; y=\frac{e}{2} x^{2}+C$ (singular solution). 2925. $y=C_{1} x\left(x-C_{1}\right)+C_{2} ; y=\frac{x^{3}}{3}+C \quad$ (singular solution). 2926. $\quad y=$ $=\frac{x^{s}}{12}+\frac{x^{2}}{2}+C_{1} x \ln |x|+C_{2} x+C_{3}$. 2927. $y= \pm \sin \left(C_{1} \pm x\right)+C_{2} x+C_{3}$. 2928. $y=$ $=x^{8}+3 x$. 2929. $y=\frac{1}{2}\left(x^{2}+1\right)$. 2930. $y=x+1$. 2931. $y=C x^{2}$. 2932. $y=C_{1} x$ $\times \frac{1+C_{2} e^{x}}{1-C_{2} e^{x}} ; y=C . \quad$ 2933. $x=C_{1}+\ln \left|\frac{y-C_{2}}{y+C_{2}}\right| .2934 . \quad x=C_{1}-\frac{1}{C_{2}} \ln \left|\frac{y}{y+C_{2}}\right|$. 2935. $x=C_{1} y^{2}+y \ln y+C_{2}$. 2936. $2 y^{2}-4 x^{2}=1$. 2937. $y=x+1$. 2938. $y=$ $=\frac{x^{2}-1}{2\left(e^{2}-1\right)}-\frac{e^{2}-1}{4} \ln |x|$ or $y=\frac{1-x^{2}}{2\left(e^{2}+1\right)}+\frac{e^{2}+1}{4} \ln |x|$. 2939. $y-\frac{1}{2} x^{2}$. 2940. $y=\frac{1}{2} x^{2} . \quad$ 2941. $y=2 e^{x}$. \quad 2942. $x=-\frac{3}{2}(y+2)^{\frac{2}{8}} . \quad$ 2943. $y-e^{x}$. 2944. $\quad y^{2}=\frac{e}{e-1}+\frac{e^{-x}}{1-e} . \quad$ 2945. $\quad y=\frac{2 \sqrt{2}}{3} x^{\frac{3}{2}}-\frac{8}{3} . \quad 2946 . y==$ $=\frac{3 e^{3 x}}{2+e^{3 x}} . \quad$ 2947. $\quad y=\sec ^{2} x . \quad$ 2948. $\quad y=\sin x+1 \quad$ 2949. $\quad y=\frac{x^{2}}{4}-\frac{1}{2}$. 2950. $x=-\frac{1}{2} e^{-y^{2}}$. 2951. No solution. 2952. $y=e^{x}$. 2953. $y=-2 \ln |x|-\frac{2}{x}$. 2954. $y=\frac{\left(x+C_{1}^{2}+1\right)^{2}}{2}+\frac{4}{3} C_{1}(x+1)^{\frac{3}{2}}+C_{2}$. Singular solution, $y=C$. 2955. $y=$ $=C_{1} \frac{x^{2}}{2}+\left(C_{1}-C_{1}^{2}\right) x+C_{2}$. Singular solution, $y=\frac{(x+1)^{3}}{12}+C . \quad 2956 . \quad y=$ $=\frac{1}{12}\left(C_{1}+x\right)^{4}+C_{2} x+C_{3} . \quad$ 2957. $\quad y=C_{1}+C_{2} e^{C_{1} x} ; y=1-e^{x} ; y=-1+e^{-x} ;$ singular solution, $y=\frac{4}{C-x}$. 2958. Circles. 2959. $\left(x-C_{1}\right)^{2}-C_{2} y^{2}+k C_{2}^{2}=0$. 2960. Catenary, $y=a \cosh \frac{x-x_{0}}{2}$. Circle, $\left(x-x_{0}\right)^{2}+y^{2}=a^{2}$. 2961. Parabola, $\left(x-x_{0}\right)^{2}=2 a y-a^{2}$. Cycloid, $x-x_{0}=a(t-\sin t), y=a(1-\cos t) .2962 . e^{a y+}+C_{2}=$ $=\sec \left(a x+C_{1}\right)$. 2963. Parabola. 2964. $y=\frac{C_{1}}{2} \frac{H}{q} e^{\frac{q}{H} x}+\frac{1}{2 C_{1}} \frac{H}{q} e^{-\frac{q}{H} x}+C_{2}=a \times$
$\times \cosh \frac{x+C}{a}+C_{2}$, where H is a constant horizontal tension, and $\frac{H}{q}=a$. Hint. The differential equation $\frac{d^{2} y}{d x^{2}}=\frac{q}{H} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$. 2965. Equation of motion, $\frac{d^{2} s}{d t^{2}}=g(\sin \alpha-\mu \cos \alpha)$. Law of motion, $s=\frac{g t^{2}}{2}(\sin \alpha-\mu \cos \alpha)$ 2966. $s=\frac{m}{k} \quad \times$ $\times \ln \cosh \left(t \sqrt{g \frac{k}{m}}\right)$.Hint. Equation of motion, $m \frac{d^{2} s}{d t^{2}}=m g-k\left(\frac{d s}{d t}\right)^{2}$. 2967. In 6.45 seconds. Hint. Equation of motion, $\frac{300}{g} \frac{d^{2} x}{d t^{2}}=-10$ v. 2968. a) No, b) yes, c) yes, d) yes, e) no. f) no, g) no, h) yes 2969. a) $y^{\prime \prime}+y=0$; b) $y^{\prime \prime}-2 y^{\prime}+y=0$; c) $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$, d) $y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y^{\prime}-2 y-0$ 2970. $y=3 x-5 x^{2}+2 x^{3}$. 2971. $y=$ $=\frac{1}{x}\left(C_{1} \sin x+C_{2} \cos x\right)$. Hint. Use the substitution $y=y_{1} u$. 2972. $y=C_{1} x+$ $+C_{2} \ln x$. 2973. $y=A+B x^{2}+x^{3}$. 2974. $y=\frac{x^{2}}{3}+A x+\frac{B}{x}$. Hint. Particular so. lutions of the homogeneous equation $y_{1}=x, y_{2}=\frac{1}{x}$. By the method of the variation of parameters we find: $C_{1}=\frac{x}{2}+A, C_{2}=-\frac{x^{3}}{6}+B \quad$ 2975. $\quad y=A+$ $-B \sin x+C \cos x+\ln |\sec x+\tan x|+\sin x \ln |\cos x|-x \cos x .2976 . y=C_{1}{ }^{2 x}+$ $+C_{2} e^{3 x}$ 2977. $y=C_{1} e^{-3 \lambda}+C_{2} 2^{3 x} .2978 . y=C_{1}+C_{2} e^{\lambda}$ 2979. $y=C_{1} \cos x+C_{2} \sin x$. 2980. $y=e^{x}\left(C_{1} \cos x+C_{2} \sin x\right)$ 2981. $y=e^{-2 x}\left(C_{1} \cos 3 x \cdot-C_{2} \sin 3 x\right)$ 2982. $y=$ $-\left(C_{1}+C_{:} x\right) e^{-x}$. 2983. $y=-e^{2.2}\left(C_{2} e^{x^{1 / 2}}+C_{2} e^{-x 1^{-}}\right)$. 2984. If $k>0, y=$ $=C_{1} e^{x l^{1 /}}+C_{2} e^{-\lambda 1 \bar{k}} ; \quad$ if $k<0, \quad y=C_{1} \cos \sqrt{-k x}+C_{2} \sin \sqrt{-k x}$. $2985 . y=e^{-\frac{x}{2}}\left(C_{1} e^{\frac{1-5}{2} x}+C_{2} e^{-\frac{1-5}{2} x}\right) 2986 . y=e^{\frac{x}{6}}\left(C_{1} \cos \frac{\sqrt{11}}{6} x+C_{2} \sin \frac{\sqrt{11}}{6} x\right)$. 2987. $y=4 e^{x}+e^{1 x} .2988 . y=e^{-x} .2989 . y=\sin 2 x .2990 . y=1.2991 . y=a \cosh \frac{x}{a}$. 2992. \quad y $=0 \quad$ 2993. $y=C \sin \pi x \quad$ 2994. a) $\quad x e^{2 x}\left(A x^{2}+B x+C\right)$; b) $A \cos 2 x+$ $+B \sin 2 x ;$ c) $A \cos 2 x+B \sin 2 x+C x^{2} e^{2 x} ;$ d) $e^{x}(A \cos x+B \sin 2)$, e) $e^{x}<$ $x\left(A x^{2}+B x+C\right)+x e^{2 x}(D x+E)$; f) $x e^{x}\left[\left(A x^{2}+B x+C\right) \cos 2 x+\left(D x^{2}+E x+F\right) \times\right.$ $\times \sin 2 x\} \quad$ 2995. $y=\left(C_{1}+C_{2} x\right) e^{2 x}+\frac{1}{8}\left(2 x^{2}+4 x+3\right)$ 2996. $y=e^{\frac{x}{2}}\left(C_{1} \cos \frac{x \sqrt{3}}{2}+\right.$ $\left.+C_{2} \sin \frac{x \sqrt{3}}{2}\right)+x^{8}+3 x^{2}$. 2997. $y=\left(C_{1}+C_{2} x\right) e^{-x}+\frac{1}{9} \mathfrak{e}^{2 x}$.
2711. $y=C_{1} e^{x}+C_{2} e^{2 x}+2$ 2999. $y=C_{1} e^{x}+C_{2} e^{-x}+\frac{1}{2} x e^{x}$. 3000. $y=C_{1} \cos x+$ $+C_{2} \sin x+\frac{1}{2} x \sin x .3001 . y=C_{1} e^{x}+C_{2} e^{-2 x}-\frac{2}{5}(3 \sin 2 x+\cos 2 x) .3002 . y=$ $=C_{1} e^{2 x}+C_{2} e^{-3 x}+x\left(\frac{x}{10}-\frac{1}{25}\right) e^{2 x} . \quad$ 3003. $y=\left(C_{1}+C_{2} x\right) e^{x}+\frac{1}{2} \cos x+\frac{x^{2}}{4} e^{x}-$ $-\frac{1}{8} e^{-x} \quad$ 3004. $y=C_{1}+C_{2} e^{-x}+\frac{1}{2} x+\frac{1}{20}(2 \cos 2 x-\sin 2 x)$. 3005. $y=e^{x} \times$ $\times\left(C_{1} \cos 2 x+C_{2} \sin 2 x\right)+\frac{x}{4} e^{x} \sin 2 x . \quad 3006 . \quad y=\cos 2 x+\frac{1}{3}(\sin x+\sin 2 x)$.
2712. 2713) $x=C_{1} \cos \omega t+C_{2} \sin \omega t+\frac{A}{\omega^{2}-p^{2}} \sin p t ; \quad$ 2) $x=C_{1} \cos \omega t+C_{2} \sin \omega t-$ $-\frac{A}{2 \omega} t \cdot \cos \omega t$. 3008. $y=C_{1} e^{8 x}+C_{2} e^{\iota x}-x e^{\iota x} .3009 . y=C_{1}+C_{2} e^{2 x}+\frac{x}{4}-\frac{x^{2}}{4}-\frac{x^{2}}{6}$.
s010. $y=e^{x}\left(C_{1}+C_{2} x+x^{2}\right)$. 3011. $y=C_{1}+C_{2} e^{2 x}+\frac{1}{2} x e^{2 x}-\frac{5}{2} x . \quad$ 3012. $\quad y=$ $=C_{1} e^{-2 x}+C_{2} e^{4 x}-\frac{1}{9} e^{x}+\frac{1}{5}(3 \cos 2 x+\sin 2 x) . \quad 3013 . \quad y=C_{1}+C_{2} e^{-x}+e^{x}+$ $+\frac{5}{2} x^{2}-5 x$. 3014. $y=C_{1}+C_{2} e^{x}-3 x e^{x}-x-x^{2}$. 3015. $y=\left(C_{1}+C_{2} x+\frac{1}{2} x^{2}\right) \times$ $X e^{-x}+\frac{1}{4} e^{x} . \quad$ 3016. $y=\left(C_{1} \cos 3 x+C_{2} \sin 3 x\right) e^{x}+\frac{1}{37}(\sin 3 x+6 \cos 3 x)+\frac{e^{x}}{9}$
1. $y=\left(C_{1}+C_{2} x+x^{2}\right) e^{2 x}+\frac{x+1}{8}$. 3018. $y=C_{1}+C_{2} e^{3 x}-\frac{1}{10}(\cos x+3 \sin x)-$ $-\frac{x^{2}}{6}-\frac{x}{9}$. 3019. $y=\frac{1}{8} e^{2 x}(4 x+1)-\frac{x^{3}}{6}-\frac{x^{2}}{4}+\frac{x}{4} . \quad 3020$. $y=C_{1} e^{x}+C_{2} e^{-x}-$
$-x \sin x-\cos x$. 3021. $y=C_{1} e^{-2 x}+C_{2} e^{2 x}-\frac{e^{2 x}}{20}(\sin 2 x+2 \cos 2 x) . \quad$ 3022. $y=$
$=C_{1} \cos 2 x+C_{2} \sin 2 x-\frac{x}{4}(3 \sin 2 x+2 \cos 2 x)+\frac{1}{4} . \quad$ 3023. $\quad y=e^{x} \varepsilon_{1} \cos x+$
$+C_{2} \sin x-2 x \cos x$). 3024. $y=C_{1} e^{x}+C_{2} e^{-x}+\frac{1}{4}\left(x^{2}-x\right) e^{x} .3025 . y=C_{1} \cos 3 x+$
$+C_{2} \sin 3 x+\frac{1}{4} x \sin x-\frac{1}{16} \cos x+\frac{1}{54}(3 x-1) e^{3 x}$. 3026. $y=C_{1} e^{3 x}+C_{2} e^{-x}+\frac{1}{9} x$ $\times(2-3 x)+\frac{1}{16}\left(2 x^{2}-x\right) e^{3 x}$. 3027. $y=C_{1}+C_{2} 2^{2 x}-2 x e^{x}-\frac{3}{4} x-\frac{3}{4} x^{2} \quad 3028 . y=$
$=\left(C_{1}+C_{2} x+\frac{x^{2}}{6}\right) e^{2 x} . \quad$ 3029. $\quad y=C_{1} e^{-3 x}+C_{2} e^{x}-\frac{1}{8}\left(2 x^{2}+x\right) e^{-8 x}+\frac{1}{16} \times$
$\times\left(2 x^{2}+3 x\right) e^{x}$. 8030. $\quad y=C_{1} \cos x+C_{2} \sin x+\frac{x}{4} \cos x+\frac{x^{2}}{4} \sin x-\frac{x}{8} \cos 3 x+$
$+\frac{3}{32} \sin 3 x$. Hint. Transform the product of cosines to the sum of cosines. 8031. $y=C_{1} e^{-x \sqrt{2}}+C_{2} e^{x \sqrt{2}}+x e^{x} \sin x+e^{x} \cos x .3032 . y=C_{1} \cos x+C_{2} \sin x+$ $+\left.\cos x \ln \left|\cot \left(\frac{x}{2}+\frac{\pi}{4}\right)\right|\right|_{x} \quad$ 3033. $y=C_{1} \cos x+C_{2} \sin x+\sin x \cdot \ln \left|\tan \frac{x}{2}\right|$.
2. $y=\left(C_{1}+C_{2} x\right) e^{x}+x e^{x} \ln |x| . \quad$ 3035. $\quad y=\left(C_{1}+C_{2} x\right) e^{-x}+x e^{-x} \ln |x|$.
3. $y=C_{1} \cos x+C_{2} \sin x+x \sin x+\cos x \ln |\cos x| \quad 3037$. $y=C_{1} \cos x+$ $+C_{2} \sin x-x \cos x+\sin x \ln |\sin x|$. 3038. a) $y=C_{1} e^{x}+C_{2} e^{-x}+\left(e^{x}+e^{-x}\right) \times$ $\times \arctan e^{x}$; b) $y=C_{1} e^{x \sqrt{2}}+C_{2} e^{-x \sqrt{2}}+e^{x 2}$. 3040. Equation of motion, $\frac{2}{g}\left(\frac{d^{2} x}{d t^{2}}\right)=2-k(x+2) ; \quad(k=1) ; \quad T=2 \pi \quad \sqrt{\frac{2}{g}} \sec . \quad 3041 . \quad x=$ $=\frac{2 g \sin 30 t-60 \sqrt{g} \sin \sqrt{g t}}{g-900} \mathrm{~cm}$. Hint. If x is reckoned from the position of resf of the load, then $\frac{4}{g} x^{\prime \prime}=4-k\left(x_{0}+x-y-l\right)$, where x_{0} is the distance of the point of rest of the load from the initial point of suspension of the spring, l is the length of the spring at rest; therefore, $k\left(x_{0}-l\right)=4$, hence, $\frac{4}{g} \frac{d^{1} x}{d t^{2}}=$
$=-k(x-y)$, where $k=4, g=981 \mathrm{~cm} / \mathrm{sec}^{2}$. 8042. $m \frac{d^{2} x}{d t^{2}}=k(b-x)-k(b+x)$
and $\left.x=c \cos \left(t \sqrt{\frac{2 k}{m}}\right) \cdot 3043.6 \frac{d^{2} s}{d t^{2}}=g s ; t=\sqrt{\frac{6}{g}} \ln (6+\sqrt{35}) .3044 . \mathrm{a}\right) r=$ $=\frac{a}{2}\left(e^{(\omega t}+e^{-\omega t}\right)$; b) $r=\frac{v_{0}}{2 \omega}\left(e^{(\omega) t}-e^{-\omega t}\right)$ Hint. The differential equation of motion
is $\frac{d^{2} r}{d t^{2}}=\omega^{2} r$. 3045. $y=C_{1}+C_{2} e^{x}+C_{3} e^{12 x}$. 3046. $y=C_{1}+C_{2} e^{-x}+C_{3} e^{x}$.
4. $y=C_{1} e^{-x}+e^{\frac{x}{2}}\left(C_{2} \cos \frac{\sqrt{3}}{2} x+C_{3} \sin \frac{\sqrt{3}}{2} x\right)$
5. $y=C_{1}+C_{2} x+C_{3} e^{x \sqrt{2}}+C_{4} e^{-x} V_{2} \quad$ 3049. $y=e^{x}\left(C_{1}+C_{2} x+C_{3} x^{2}\right)$.
6. $y=e^{x}\left(C_{1} \cos x+C_{2} \sin x\right)+e^{-x}\left(C_{3} \cos x+C_{4} \sin x\right)$
7. $y=\left(C_{1}+C_{2} x\right) \cos 2 x+\left(C_{3}+C_{4} x\right) \sin 2 x$
8. $y=C_{1}+C_{:} e^{-x}+e^{\frac{x}{2}}\left(C_{3} \cos \frac{\sqrt{3}}{2} x+C_{4} \sin \frac{\sqrt{3}}{2} x\right)$.
9. $y=\left(C_{1}+C_{2} x\right) e^{-x}+\left(C_{3}+C_{4} x\right) e^{x}$.
10. $y=C_{1} e^{a x}+C_{2} e^{-a x}+C_{3} \cos a x+\dot{C}_{4} \sin a x$
11. $y=\left(C_{1}+C_{2} x\right) e^{l^{\prime} x}+\left(C_{3}+C_{4} x\right) e^{-1 / 5 x}$. 3056. $\quad y=C_{1}+C_{2} x+$ $+C_{3} \cos =3+C_{4} \sin \alpha x$. 3057. $y=C_{1}+C_{2} x+\left(C_{3}+C_{4} x\right) e^{-x} . \quad$ 3058. $y==\left(C_{1}+\right.$ $\left.+C_{2} x\right) \cos x+\left(C_{3}+C_{1} x\right) \sin x . \quad$ 3059. $y-e^{-x}\left(C_{1}+C_{2} x+\ldots+C_{n} x^{n-1}\right)$. 3060. $y=C_{1}+C_{2} x+\left(C_{3}+C_{4} x+\frac{x^{2}}{2}\right) e^{x}$.
12. $y=C_{1}+C_{2} x+12 x^{2}+3 x^{3}+\frac{1}{2} x^{4}+\frac{1}{20} x^{5} ;\left(C_{3}+C_{2} x\right) e^{x}$.
13. $y=C_{2} e^{x}+e^{-\frac{x}{2}}\left(C_{2} \cos \frac{\sqrt{3}}{2} x+C_{3} \sin \frac{\sqrt{3}}{2} x\right)-x^{3}-5$.
14. $y=C_{1}+C_{2} x+C_{3} x^{2}+C_{3} e^{-x}+\frac{1}{1088}(4 \cos 4 x-\sin 4 x)$
15. $y=C_{1} e^{-x}+C_{2}+C_{3} x+\frac{3}{2} x^{2}-\frac{1}{3} x^{3}+\frac{1}{12} x^{4}+e^{x}\left(\frac{3}{2} x-\frac{15}{4}\right)$.
16. $y=-C_{1} e^{-x}+C_{2} \cos x+C_{3} \sin x+e^{x}\left(\frac{x}{4}-\frac{3}{8}\right)$.
17. $y=C_{1}+C_{2} \cos x+C_{3} \sin x+\sec x+\cos x \ln |\cos x|-\tan x \sin x+x \sin x$.
18. $y=e^{-x}+e^{-\frac{x}{2}}\left(\cos \frac{\sqrt{3}}{2} x+\frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} x\right)+x-2$.
19. $y=-\left(C_{1}+C_{2} \ln x\right) \cdot \frac{1}{x}$. 3069. $y=C_{1} x^{3}+\frac{C_{2}}{x}$.
20. $y=C_{1} \cos (2 \ln x)+C_{2} \sin (2 \ln x)$.
21. $y=C_{1} x+C_{2} x^{2}+C_{8} x^{3}$. 3072. $y=C_{1}-C_{2}(3 x+2)^{-1 / 3}$.
22. $y=C_{1} x^{2}+\frac{C_{2}}{x} . \quad 3074 . y=C_{1} \cos (\ln x)+C_{2} \sin (\ln x)$.
23. $y=C_{1} x^{3}+C_{2} x^{2}+\frac{1}{2} x . \quad$ 3076. $\quad y=(x+1)^{2}\left[C_{1}+C_{2} \ln (x+1)\right]+(x+1)^{3}$.
24. $y=x\left(\ln x+\ln ^{2} x\right)$ 3078. $y=C_{1} \cos x+C_{2} \sin x, z=C_{2} \cos x-C_{1} \sin x$.
25. $y=e^{-x}\left(C_{1} \cos x+C_{2} \sin x\right), \quad z=\frac{1}{5} e^{-x}\left[\left(C_{2}-2 C_{1}\right) \cos x-\left(C_{1}+2 C_{2}\right) \sin x\right]$.
26. $y=\left(C_{1}-C_{2}-C_{1} x\right) e^{-2 x}, \quad z=\left(C_{1} x+C_{2}\right) e^{-2 x}$.
27. $x=C_{1} e^{t}+e^{-\frac{t}{2}}\left(C_{2} \cos \frac{\sqrt{3}}{2} t+C_{3} \sin \frac{\sqrt{3}}{2} t\right)$.

$$
y=C_{1} e^{t}+e^{-\frac{t}{2}}\left(\frac{C_{3} \sqrt{3}-C_{2}}{2} \cos \frac{\sqrt{3}}{2} t-\frac{C_{2} \sqrt{3}+C_{3}}{2} \sin \frac{\sqrt{3}}{2} t\right),
$$

$$
z=C_{2} e^{t}+e^{-\frac{t}{2}}\left(\frac{-C_{3} \sqrt{3}-C_{2}}{2} \cos \frac{\sqrt{3}}{2} t+\frac{C_{2} \sqrt{3}-C_{3}}{2} \sin \frac{\sqrt{3}}{2} t\right) .
$$

3082. $x=C_{1} e^{-t}+C_{2} e^{2 t}, y=C_{3} e^{-t}+C_{2} e^{e^{2 t}}, z=-\left(C_{1}+C_{3}\right) e^{-t}+C_{2} e^{2 t}$.
3083. $y=C_{1}+C_{2} e^{2 x}-\frac{1}{4}\left(x^{2}+x\right), z=C_{2} e^{2 x}-C_{1}+\frac{1}{4}\left(x^{2}-x-1\right)$.
3084. $y=C_{1}+C_{2} x+2 \sin x, \quad z=-2 C_{1}-C_{2}(2 x+1)-3 \sin x-2 \cos x$.
3085. $y=\left(C_{2}-2 C_{1}-2 C_{2} x\right) e^{-x}-6 x+14, z=\left(C_{1}+C_{2} x\right) e^{-x}+5 x-9$;

$$
C_{1}=9, C_{2}=4,
$$

$$
y=14\left(1-e^{-x}\right)-2 x\left(3+4 e^{-x}\right), \quad z=-9\left(1-e^{-x}\right)+x\left(5+4 e^{-x}\right) .
$$

3086. $x=10 e^{2 t}-8 e^{3 t}-e^{t}+6 t-1 ; \quad y=-20 e^{2 t}+8 e^{s t}+3 e^{t}+12 t+10$.
3087. $y=\frac{2 C_{1}}{\left(C_{2}-x\right)^{2}}, \quad z=\frac{C_{1}}{C_{2}-x} . \quad 3088^{*}$. a) $\frac{\left(x^{2}+y^{2}\right) y}{x}=C_{1}, \quad \quad \quad \frac{z}{y}=C_{2}$;
b) $\ln \sqrt{x^{2}+y^{2}}=\operatorname{arc} \tan \frac{y}{x}+C_{1}, \frac{z}{\sqrt{x^{2}+y^{2}}}=C_{2}$. Hint. Integrating the homogeneous equation $\frac{d x}{x-y}=\frac{d x}{x+y}$, we find the first integral $\ln \sqrt{x^{2}+p^{2}}==$ $=\operatorname{arc} \times \tan \frac{y}{x}+C_{1}$. Then, using the properties of derivative proportions, we have $\frac{d z}{z}=\frac{x d x}{x(x-y)}=\frac{y d y}{y(x+y)}=\frac{x d x+y d y}{x^{2}+y^{2}} \quad$ Whence $\ln z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)+\ln C_{2}$ and. hence, $\frac{z}{\sqrt{x^{2}+y^{2}}}=C_{2}$; c) $x+y+z=0, x^{2}+y^{2}+z^{2}=6$. Hint. Applying the properties of derivative proportions, we have $\frac{d x}{y-z}=\frac{d y}{z-x}=\frac{d z}{x-y}=\frac{d x+d y+d z}{0}$; whence $d x+d y+d z=0$ and, consequently, $x+y+z=C_{1}$. Similarly, $\frac{x d x}{x(y-z)}=$ $=\frac{y d y}{y(z-x)}=\frac{z d z}{z(x-y)}=\frac{x d x+y d y+z d z}{0} ; \quad x d x+y d y+z d z=-0$ and $x^{2}+y^{2}+$ $+z^{2}=C_{2}$. Thus, the integral curves are the cırcles $x+y+z-C_{1}, x^{2}+y^{2}+z^{2}-C_{n}$ From the initial conditions, $x=1, y=1, z=-2$, we will have $C_{1}=0, C_{2}=6$. 3089. $y=C_{1} x^{2}+\frac{C_{2}}{x}-\frac{x^{2}}{18}\left(3 \ln ^{2} x-2 \ln x\right)$,

$$
z=1-2 C_{1} x+\frac{C_{2}}{x^{2}}+\frac{x}{9}\left(3 \ln ^{2} x+\ln x-1\right) .
$$

3090. $y=C_{1} e^{x V_{2}^{-}}+C_{2} e^{-x V_{2}^{-}}+C_{3} \cos x+C_{4} \sin x+e^{x}-2 x$,
$z=-C_{1} e^{x \sqrt{2}}-C_{2} e^{-x \sqrt{2}}-\frac{C_{3}}{4} \cos x-\frac{C_{4}}{4} \sin x-\frac{1}{2} e^{x}+x$.
3091. $x=\frac{v_{0} m \cos \alpha}{k}\left(1-e^{-\frac{k}{m} t}\right), y=\frac{m}{k^{2}}\left(k v_{0} \sin \alpha+m g\right)\left(1-e^{-\frac{k}{m} t}\right)-\frac{m g t}{k}$.

Solution. $m \frac{d v_{x}}{d t}=-k v_{x} ; m \frac{d v_{y}}{d t}=-k v_{y}-m g$ for the initial conditions: when
$t=0, \quad x_{0}=y_{0}=0, \quad v_{x_{0}}=v_{0} \cos \alpha, v_{v_{0}}=v_{0} \sin \alpha$. Integrating, we obtain $v_{x}=$ $=v_{0} \cos \alpha e^{-\frac{k}{m} t}, k v_{y}+m g=\left(k v_{0} \sin \alpha+m g\right) e^{-\frac{k}{m} t} .3092 . x=a \cos \frac{k}{\sqrt{m}} t, \quad y=$ $=\frac{v_{0} \sqrt{m}}{k} \sin \frac{k}{\sqrt{m}} t, \frac{x^{2}}{a^{2}}+\frac{k^{2} y^{2}}{m v_{0}^{2}}=1$. Hint. The differential equations of motion: $m \frac{d^{2} x}{d t^{2}}=-k^{2} x, m \frac{d^{2} y}{d t^{2}}=-k^{2} y$.
3093. $y=-2-2 x-x^{2}$. 3094. $y=\left(y_{0}+\frac{1}{4}\right) e^{2(x-1)}-\frac{1}{2} x+\frac{1}{4}$.
3095. $y=\frac{1}{2}+\frac{1}{4} x+\frac{1}{8} x^{2}+\frac{1}{16} x^{3}+\frac{9}{32} x^{4}+\frac{21}{320} x^{5}+\ldots$
3096. $y=\frac{1}{3} x^{3}-\frac{1}{7.9} x^{7}+\frac{2}{7 \cdot 11 \cdot 27} x^{11}-\ldots$
3097. $y=x+\frac{x^{2}}{1 \cdot 2}+\frac{x^{3}}{2 \cdot 3}+\frac{x^{4}}{3 \cdot 4}+\ldots$; the series converges for $-1 \leqslant x \leqslant 1$.
3098. $y-x-\frac{x^{2}}{(1!)^{2} \cdot 2}+\frac{x^{3}}{(2!)^{2} \cdot 3}-\frac{x^{4}}{(3!)^{2} \cdot 4}+\ldots$; the series converges for $-\infty<$ $<x<+\infty$. Hint. Use the method of undetermaned coefficients.
3099. $y-1-\frac{1}{3!} x^{5}+\frac{1 \cdot 4}{6!} x^{6}-\frac{1 \cdot 4 \cdot 7}{9!} x^{-9} \ldots$; the series converges for $-\infty<x<+\infty$. 3100. $y=\frac{\sin x}{x}$. Hint. Use the method of undetermined coeffictents.
3101. $y=1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\ldots$; the sertes converges for $|x|<\infty$.

Hint. Use the method of undetermined coefficients. 3102. $x-a\left(1-\frac{1}{2!} t^{2}+\right.$ $\left.+\frac{2}{4!} t^{4}-\frac{9}{6!} t^{8}+\frac{55}{8!} t^{8}-\ldots\right)$. 3103. $u=A \cos \frac{a \pi t}{l} \sin \frac{\pi x}{l}$. Hint. Use the conditions: $u(0, t)=0, u(l, t)=-0, u(x, 0)=A \sin \frac{\pi x}{l}, \frac{\partial u(x, 0)}{\partial t}=0$.
3104. $u=\frac{2 l}{\pi^{2} a} \sum_{n=1}^{\infty} \frac{1}{n^{2}}(1-\cos n \pi) \sin \frac{n \pi a t}{l} \sin \frac{n \pi x}{l}$. Hint. Use the conditions: $u(0, t)=0, u(l, t)=0, u(x, 0)=0, \frac{\partial u(x, 0)}{\partial t}=1$.
3105. $u=\frac{8 h}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \frac{n \pi}{2} \cos \frac{n \pi a t}{l} \sin \frac{n \pi x}{l}$. Hint. Use the conditions:
$\frac{\partial u(x, 0)}{\partial t}=0, u(0, t)=0, u(l, t)=0, u(x, 0)= \begin{cases}\frac{2 h x}{l} & \text { for } 0<x \leq \frac{l}{2}, \\ 2 h\left(1-\frac{x}{l}\right) & \text { for } \frac{l}{2}<x<l .\end{cases}$
3106. $u=\sum_{n=0}^{\infty} A_{n} \cos \frac{(2 n+1) a \pi t}{2 l} \sin \frac{(2 n+1) \pi x}{2 t}$, where the coefficients $\Lambda_{n}=$
$=\frac{2}{l} \int_{0}^{l} \frac{x}{l} \sin \frac{(2 n+1) \pi x}{2 l} d x$. Hint. Use the conditions

$$
u(0, t)=0, \frac{\partial u(l, t)}{\partial x}=0, u(x, 0) \frac{x}{l}, \frac{\partial u(x, 0)}{\partial t}=0 .
$$

3107. $u=\frac{400}{\pi^{3}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}(1-\cos n \pi) \sin \frac{n \pi x}{100} \cdot e^{-\frac{a^{3} n^{2} \pi^{2 t}}{100^{2}}}$.

Hint. Use the conditions: $u(0, t)=0, u(100, t)=0, u(x, 0)=0.01 \times(100-x)$.

Chapter X

3108. a) $\leqslant 1^{\prime \prime} ; \leqslant 0.0023^{\circ} \% ;$ b) $\leqslant 1 \mathrm{~mm} ; \leqslant 0.26^{\circ} \% ; \quad$ c) $\leqslant 1 \mathrm{gm} ; \leqslant 0.0016^{\circ} \%$. 3109. a) $\leqslant 0.05 ; \leqslant 0.021^{\circ} \% ;$ b) $\leqslant 0.0005 ; \leqslant 1.45 \% ;$ c) $\leqslant 0.005 ; \leqslant 0.16 \%$. 3110. a) two decimals; $48 \cdot 10^{3}$ or $49 \cdot 10^{3}$, since the number lies between 47,877 and 48,845 ; b) two decimals; 15; c) one decimal; $6 \cdot 10^{2}$. For practica' ${ }^{1}$ purnoses there is sense in writing the result in the form $(5.9 \pm 0.1) \cdot 10^{2}$. 3111. a) 29.5 ; b) $1.6 .10^{2}$; c) 43.2 . 3112 . a) 84.2 ; b) 18.5 or 1847 ± 0.01; c) the result of subtraction does not have any correct decimals, since the difference is equal to one hundredth with a possible absolute error of one hundredth. $3113^{*} .1 .8 \pm 0.3 \mathrm{~cm}^{2}$. Hint. Use the formula for increase in area of a square. 3114. a) 30.0 ± 0.2; b) $43.7 \pm 0.1 ;$ c) 0.3 ± 0.1. 3115. $19.9 \pm 0.1 \mathrm{~m}^{2}$. 3116. a) 1.1295 ± 0.0002; b) 0.120 ± 0.006; c) the quotient may vary between 48 and 62 . Hence, not a single decimal place in the quotient may be considered certain. 3117. 0.480 . The last digit may vary by unity. 3118. a) 0.1729 ; b) $277 \cdot 10^{3}$; c) 2 . $3119 .(2.05 \pm 0.01) \cdot 10^{3} \mathrm{~cm}^{2} .3120$. а) 1.648 ; b) 4.025 ± 0.001; c) 9.006 ± 0.003. $3121.4 .01 \cdot 10^{3} \mathrm{~cm}^{2}$. Absolute error, $65 \mathrm{~cm}^{2}$. Relative error, $0.16^{\circ} \%$. 3122. The side is equal to $13.8+0.2 \mathrm{~cm} ; \sin \alpha=0.44 \pm 0.01, a=26^{\circ} 15^{\prime} \pm$ $\pm 35^{\prime}$. 3123. 27 ± 0.1. 3124. 0.27 ampere 3125. The length of the pendulum should be measured to within 0.3 cm ; take the numbers π and q to three decimals (on the principle of equal effects). 3126. Measure the radii and the generatrix with relative error $1 / 300$. Take the number π to three decimal places (on the principle of equal effects). 3127. Measure the quantity l to withn 0.2%, and s to within 0.7% (on the principle of equal effects).
3109.

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$
1	3	7	-2	-6	14	-23
2	10	5	-8	8	-9	
3	15	-3	0	-1		
4	12	-3	-1			
5	9	-4				
6	5					

3129.

x	y	Δy	$\Delta^{2} y$	$\Delta^{s} y$
1	-4	-12	32	48
3	-16	20	80	48
5	4	100	128	48
7	104	228	176	
9	332	404		
11	736			
\bullet				

3130.

λ	$!$	$\Delta!$	$s^{2}!$	$3^{3} 11$	$3^{4}!$
0	0	-4	-42	-2i	24
1	-1	-46	-63	0	21
2	-50	-112	--63	21	21
3	-163	-178	-42	10	24
1	-310	-29.9	6	72	\because
\%	--in)	-214	78	93	21
t	-711	-136	174	120	24
-	\cdots	38	29.4	141	
-		32	43 K		
4	-54,	770			
10	230				

Hint. Compute the first live values of y and, after obtaining $\Delta^{4} y_{0}=24$, repeat the number 24 throughout the column of fourth differences. After this the remaining part of the table is tilled in by the operation of additio.1 (moving from right to left).
3131. а) $0.211 ; 0.389 ; 0.490 ; 0.660 ;$ b) $0.229 ; 0.399 ; 0.491 ; 0.664 .3132 .01822$; $0.1993 ; 0.2165 ; 0.2334 ; 0.2503 .3133 .1+x+x^{2}+x^{3} .3134 . y=\frac{1}{96} x^{4}-\frac{11}{48} x^{3}+$ $+\frac{65}{24} x^{2}-\frac{85}{12} x+8 ; y \approx 22$ for $x=5.5 ; y=20$ for $x \approx 5.2$. Hint. When computing x for $y=20$ take $y_{0}=11$. 3135. The interpolating polynomial is $y=x^{2}-10 x+1$; $y=1$ when $x=0$. 3136 . 158 kgi (approximately). 3137. a) $y(0.5)=-1$, $y(2)=11$; b) $y(0.5)=-\frac{15}{16}, \quad y(2)=-3 . \quad 3138 . \quad-1.325 \quad 3139 . \quad 1.01$. 3140. $-1.86 ;-0.25 ; 2.11$. 3141. 2.09. 3142. 245 and 0019 . 3143. 0.31 and 4 3144. 2.506. 3145. 0.02. 3146. 024 . 3147. 127 3148. - 1.88 ; 035 ; 153 3149. 1.84. 3150. 1.31 and -0.67 . 3151. 7.13. 3152. 0.165 .3153 .1 .73 and 0. 3154. 1.72. 3155. 138 3156. $x=0.83 ; y=056 ; x=-0.83 ; y=-0.56$ 3157. $x=1.67 ; y=122$. 3158. 4 493. 3159. ± 11997 3160. By the trapezoidal formula, 11.625: by Simpson's formula, 11 417. 3161. - 0995 ; -1 ; 0.005 ; $0.5 \% ; \Delta=0.005$. 3162. $0.3068 ; \Delta=1.3 \cdot 10^{-5} . \quad 3163.069 \quad 3164 . \quad 0.79$. 3165. 0.84 . 3166. 0.28 . 3167. 0.10. 3168. 161. 3169. 1.85 3170. 0.09 . 3171. 0.67 . 3172. 0.75. 3173. 0.79. 3174. 4.93. 3175. 1 29. Hint. Make use of the parametric equation of the ellipse $x-\cos t, y=0.6222$ sin t aind transform the formula of the arc length to the form $\int_{0}^{\frac{\pi}{2}} \sqrt{1-\varepsilon^{2} \cos ^{2} t} \cdot d t$, where ε is the eccentricity of the ellipse. 3176. $y_{1}(x)=\frac{x^{3}}{3}, y_{2}(x)=\frac{x^{3}}{3}+\frac{x^{7}}{63}, y_{3}(x)=\frac{x^{3}}{3}+$ $+\frac{x^{7}}{63}+\frac{2 x^{11}}{2079}+\frac{x^{15}}{59535} .3177 . y_{1}(x)=\frac{x^{2}}{2}-x+1, y_{2}(x)=\frac{x^{3}}{6}+\frac{3 x^{2}}{2}-x+1, y_{3}(x)=-\frac{x^{4}}{12}-$ $-\frac{x^{3}}{6}+\frac{3 x^{2}}{2}-x+1 ; \quad z_{1}(x)=3 x-2, \quad z_{2}(x)=\frac{x^{3}}{6}-2 x^{2}+3 x-2, \quad z_{3}(x)=\frac{7 x^{3}}{6}-$ $-2 x^{2}+3 x-2$. 3178. $y_{1}(x)=x, \quad y_{2}(x)=x-\frac{x^{3}}{6}, \quad y_{3}(x)=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}$.
3179. $y(1)=3.36$. 3180. $y(2)=0.80$. 3181. $y(1)=3.72 ; \quad z(1)=2.72$ 3182. $y=1.80$. 3183. 3.15. 3184. 0.14. 3185. $y(0.5) \cdots 315 ; z(05) \ldots-315$. 3186. $y(0.5)=0.55 ; z(05)=-0.18$. 3187.1.16.3188. 0 87.3189. $x(\pi)-3.58$; $x^{\prime}(\pi)=0.79 . \quad 3190 . \quad 429+1739 \cos x-1037 \sin x-6321 \cos 2 x+1263 \sin 2 x-$ $-1242 \cos 3 x-33 \sin 3 x . \quad 3191 . \quad 649-196 \cos x+2.14 \sin x-1.68 \cos 2 x+$ $+0.53 \sin 2 x-1.13 \cos 3 x+0.04 \sin 3 x .3192 .0 .960+0.851 \cos x+0.915 \sin x-1$. $+0.542 \cos 2 x+0.620 \sin 2 x+0.271 \cos 3 x+0.100 \sin 3 x .3193$ a) a) $608 \sin x+$ $+0.076 \sin 2 x+0.022 \sin 3 x$; b) $0.338+0.414 \cos x+0.111 \cos 2 x+0.056 \cos 3 x$.

APPENDIX

I. Greek Alphabet

Alpha-A	Iota-It	Rho-Po
Beta-B β	Kappa-K\%	Sigma-Ė
Gamma - $\Gamma \gamma$	Lambda- $\Lambda \lambda$	Tau-Tr
Delta- $\Delta \delta$	$\mathrm{Mu}-\mathrm{M} \mu$	Upsilon-rv
Epsilon-Ee	$\mathrm{Nu}-\mathrm{Nv}$	Phi-D ${ }^{\text {P }}$
Zeta-Zち	Xi-E¢	$\mathrm{Ch}-\mathrm{XX}$
Eta- $\mathrm{H} \eta$	Omicron-Oo	Psi - Ψ 中
Theta- $\boldsymbol{\theta} 0$	$\mathrm{Pi}-\mathrm{Il} \pi$	Omega - $\mathbf{Q u}_{0}$

II. Some Constants

Quantity	x	$\log x$	Quantits	x	$\log x$
π	314159	0.49715	1	0.36788	i 56571
$2 . \pi$	6.28318	0.79818	e^{2}	7.38906	0.86859
π	1.57080	0.19612	\sqrt{e}	1.64872	0.21715
$\frac{\pi}{4}$	0.78540	1.89509	$\sqrt[3]{e}$	139561	0.14476
1	0.31831	1.50285	$\cdots=\log e$	$0.4342)$	1.65778
π^{2}	9.86960	0.99130	$\frac{1}{M}=\ln 10$	2.30258	0.36222
$\sqrt{\pi}$	1.77245	0.24857	1 radian	$57^{\circ} 17^{\prime} 45^{\prime \prime}$	
$\sqrt[3]{\pi}$	1.46459	0.16572	arc 1°	0.01745	$\overline{2} .24188$
	2.71828	0.43429	g	9.81	0.99167

III. Inverse Quantities, Powers, Roots, Logarithms

x	$\frac{1}{x}$	x^{2}	x^{3}	V^{-}	$\sqrt{10 x}$	$\sqrt[3]{ }$	10x	$\sqrt[3]{100 x}$	$\left\lvert\, \begin{array}{\|l\|} \hline \left.\begin{array}{l} \log x \\ \text { (man- } \\ \text { (issas) } \end{array} \right\rvert\, \end{array}\right.$	$\ln x$
1.0	1.000	1.000	1.000	1.000	3.162	1.000	2.154	4.642	0000	0.0000
1.1	0.909	1.210	1.331	1.049	3.317	1.032	2224	4.791	0414	0.0953
1.2	0.833	1.440	1.728	1.095	3.464	1.063	2.289	4.932	0792	0.1823
1.3	0.769	1.690	2.197	1.140	3.606	1.091	2.351	5.066	1139	0.2624
1.4	0.714	1.960	2.744	1.183	3.742	1.119	2.410	5.192	1461	0.3365
1.5	0.667	2.250	3.375	1.225	3.873	1.145	2.466	5.313	1761	0.4055
1.6	0.625	2.560	4.096	1.265	4.000	1.170	2.520	5.429	2041	0.4700
1.7	0.58	2.890	4.913	1.304	4.123	1193	2.571	5.540	2304	0.5
1.8	0.55	3.240	5.832	1.342	4.243	1.216	2.621	5.646	2553	0587
1.9	0.526	3.610	6.859	1378	4.359	1.239	2.668	5.749	278	19
2.0	0.500	4.000	8.000	1.414	4.472	1.260	2.714	5.848	30\%	0.69
2.	0.476	4.410	9.261	1.449	4.583	1.281	2.759	5.944	3222	0.74
2.2	0.454	4.840	10.65	1.483	4.690	1.301	2802	6.037	3424	0.78
2.3	0.435	5.290	12.17	1.517	4.796	1.320	2.844	6.127	3617	0.83
2.4	0.417	5.760	13.82	1.549	4.899	1.339	2.884	6.214	3802	. 8755
2.	0.40	6.2	15.62	1.5	5.000	1.357	2.824	6.300	3979	0.9163
2.6	0.385	6.760	17.58	1.612	5.099	1.375	2.962	6.383	4150	0.95
2.7	0.370	7.290	19.68	1.643	5.196	1.392	3.000	6.463	4314	0.99
2.8	0.357	7.840	21.95	1.673	5.292	1.409	3.037	6.542	4472	1.02
2.9	0.345	8.410	24.39	1.703	5.385	1.426	3.072	6.6	4624	0
3.0	0.333	9.000	27.00	1.732	5.477	1.442	3.107	6.694	4771	,
	0.323	9.610	29.79	1.761	5.568	1.458	3.141	6.768	4914	1.13
3.2	0.312	10.24	32.77	1.789	5.657	1.474	3.175	6.840	5051	1.1632
3.3	0.303	10.89	35.94	1.817	5.745	1.489	3.208	6.910	5185	
3.4	0.29	11.56	-39.30	1.844	5.831	1.5	3.240	6.980	5315	1.2
3.5	0.286	12.25	42	1.871	5.916	1.518	3.271	7.047	5441	1.2528
3.6	0.278	12.96	46.66	1.897	6.000	1.533	3.302	7.114	5563	1.,
3.7	0.270	13.69	50.65	1.924	6.083	1.547	3.332	7.179	5682	1.3083
3.8	0.263	14.44	54.87	1.949	6.164	1.560	3.362	7.243	5798	1.3350
3.9	0.256	15.21	59.32	1.975	6.245	1.574	3.391	7.306	59	1.3610
4.0	0.250	16.00	64.00	2.00	6.325	1.587	3.420	7.368	6021	1.3863
4.1	0.244	16.81	68.92	2.025	6.403	1.601	3.448	7.429	6128	1.4110
4.2	0.238	17.64	74.09	2.049	6.481	1.613	3.476	7.489	6232	14351
,	0.23	18.49	79.51	2.074	6.557	1.626	3.503	7.548	6335	1.4586
4.4	0.22	19.36	85.18	2.09	6.633	1.639	3.530	7.606	6435	1.4816
5	0.222	20.25	91.12	2.121	6.708	1.651	3.557	7.663	6532	1.5041
4.6	0.217	21.16	97.34	2.145	6.782	1.663	3.583	7.719	6678	1.
,	0.213	22.09	103.8	2.168	6.856	1.675	3.609	7.775	6721	1.5
4.8	0.208	23.04	110.6	2.191	6. 928	1.687	3.634	7.830 7884	6812	1.5
4.9	0.204	24.01	117.6	2.214	7.000	1.698	3.6	7.8	6902	1.5
.	0.200	25.00	125.0	2.236	7.071	1.710	3.684	7.937 7	6990	1.609
	0.196	26.01	132.7	2.258	7.141	1.721	3.708 3	7.990 8.041	7076 7160	1.629
	0.192 0.189	27.04	140.6	2.280 2		1.732	3.733 3.756	8.041 8.093	7160 7243	1.648
5.4	0.185	29.16	157.5	2.324	7.348	1.754	3.780	8.143	7324	1.685

Continued

x	$\frac{1}{x}$	${ }^{1}$	${ }^{3}$	$\sqrt{ } \bar{x}$	$\sqrt{10 x}$	$\sqrt[3]{x}$	$\sqrt[3]{10 x}$	100x	$\left\|\begin{array}{c} \log x \\ \text { (man } \\ \text { tissas } \end{array}\right\|$	$\ln x$
5.5	0.182	3025	1664	2.345	7.416	1.765	3.803	8. 193	204	
56	0.179	3136	175.6	2366	7483	1776	3.826	8.243	7482	7228
5.7	0.175	3249	1852	2387	7550	1.786	3.849	8.291	7559	. 7405
5.8	0.172	33.64	195.1	2408	7616	1.797	3.871	8.340	7634	1.7579
5.9	0169	3481	205.4	2429	7.681	1.807	3893	8387	7709	1.7750
6.0	0.167	36.00	216.0	2.449	7746	1.817	3.915	8.434	7782	1.7918
6.1	0.164	3721	227.0	2.470	7.810	1827	3.936	8481	7853	1.8083
6.2	0161	38.44	2383	2490	7874	1.837	3.958	8527	7924	1.8245
6.3	0159	39.69	2500	2.510	7.937	1.847	3.979	8573	7993	1.8405
64	0.156	4096	262.1	2.530	8.000	1.857	4.000	8618	8062	1.8563
6.5	-ip154	42.25	2746	2.550	8.062	1.866	4021	8.662	8129	1.8718
66	0.151	43.56	2875	2569	8.124	1876	4.041	8.707	8195	1.8871
67	0.149	4489	3008	2588	8.185	1885	4062	8750	8261	19021
68	0.147	4624	3144	2608	8.246	1.895	4.082	8794	8325	9169
69	0145	4761	3285	2.627	8307	1.904	4.102	8.837	8388	9315
7.0	0.143	49.00	3430	2.646	8.367	1.913	4.121	8879	8451	19459
7.1	0.141	50.41	357.9	2665	8426	1.922	4.141	8921	8513	1.9601
7.2	0.139	51.84	373.2	2.683	8.485	1.931	4.160	8.963	8573	1.9741
7.3	0137	53.29	389.0	2.702	8.544	1.940	4.179	9.004	8633	1.9879
7.4	0.135	5476	405.2	2.720	8602	1.949	4.198	9.045	8692	2.0015
7.5	0.133	56.25	421.9	2.739	8.660	1.957	4.217	9.086	8751	2.0149
7.6	0.132	57.76	4390	2757	8.718	1.966	4.236	9.126	8808	2.0281
7.7	0130	5929	4565	2775	8.775	1.975	4.254	3.166	8865	2.0412
7.8	0128	60.84	4746	2.793	8.832	1.983	4273	9.205	8921	2.0541
7.9	$0 \quad 127$	62.41	493.0	2.811	8.888	1992	4291	9.244	8976	2.06
9.0	0125	64.00	5120	2.828	8.944	2.000	4.309	9.283	9031	2.0794
8.1	0123	65.61	531.4	2846	9.000	2008	4.327	9.322	9085	2.0919
8.2	0.122	67.24	551.4	2.864	9055	2017	4.344	9360	9138	2. 1041
8.3	0.120	68.89	571.8	2.881	9.110	2025	4.362	9.398	9191	
84	0119	70.56	592.7	2.89	9.165	2.03	438	9.43	9243	2.1
8.5	0.118	72.25	614.1	2.915	9.220	2.041	4.397	9.473	9294	2. 1401
8.6	0.116	73.96	636.1	2933	9.274	2049	4.414	9510	9345	2. 1518
8.7	0.115	75.69	658.5	2.950	9.327	2.057	4.431	9.546	9395	2. 1633
8.8	0.114	77.44	681.5	2.966	9.381	2.065	4.448	9.583	9445	2. 1748
89	0112	7921	705.0	2983	9.434	2072	4.465	9619	949	2.1861
9.0	0.111	81.00	729.0	3.000	9.487	2.080	4.481	9.655	9542	21972
9.1	0.110	82.81	753.6	3.017	9.539	2.088	4.498	9.691	9590	2.2083
9.2	0.109	84.64	778.7	3.033	9.592	2.095	4.514	9.726	96.38	2.2192
9.3	0.108	86.49	804.4	3.050	9.644	2.103	4.531	9.761	9685	2.2300
9.4	0.106	88.36	8306	3066	9.695	2.110	4.547	9.796	9731	22407
9.5	0.105	90.25	857.4	3.082	9.747	2.118	4.563	9.830	9777	2.2513
9.6	0.104	92.18	884.7	3.098	9.798	2.125	4.579	9865	9823	2. 2618
9.7	0.103	94.09	9127	3.114	9.849	2.133	4.595	9899	9868	22721
9.8	0.102	96.04	941.2	3.130	9.899	2.140	4.610	9.933	9912	2.2824
9.9	0.101	98.01	970.3	3.146	9.950	2.147	4.626	9.967	9956	2. 2925
10.0	0.100	100.00	1000.0	3.162	10.000	2.154	4.642	10.000	0000	2.3026

IV. Trigonometric Functions

${ }^{0}$	$\stackrel{x}{\text { (radians) }}$	$\cdots \mathrm{n}$ x	$\tan x$	$\cot x$	$\cos x$		
0	0.0000	0.0000	0.0000	∞	1.0000	1.5708	90
1	0.0175	0.0175	0.0175	5729	0.9998	1.5533	89
2	0.0349	0.0349	0.0349	28.64	0.9994	15359	88
3	0.0524	0.0523	0.0524	19.08	0.9986	1.5184	87
4	0.0698	0.0698	0.0693	1430	0.9976	1.5010	86
5	0.0873	0.0872	0.0875	11.43	0.9962	1.4835	85
6	0.1047	0.1045	0.1051	9.514	0.9945	1.4661	84
7	0.1222	0.1219	0.1228	8.144	0.9925	1.4486	83
8	0.1396	0.1392	0.1405	7.115	0.9903	14312	82
	0.1571	0.1564	01584	6314	0.9877	14137	81
10	0.1745	0.1736	0.1763	5.671	0.9848	13963	80
11	0.1920	0.1908	0.1944	5.145	0.9816	1.3788	79
12	0.2094	0.2079	0.2126	4.705	09781	13617	78
13	0.2269	0.2250	0.2309	4.331	0.9744	1.3439	77
14	0.2443	0.2419	0.2493	4.011	0.9703	1.3265	76
15	0.2618	0.2588	0.2679	3.732	0.9659	1.3090	75
16	0.2793	0.2756	0.2867	3.487	0.9613	1.2915	74
17	0.2967	0.2924	0.3057	3.271	0.9563	1.2741	73
18	0.3142	0.3090	0.3249	3.078	0.9511	12566	72
19	0.3316	0.3256	0.3443	2.904	0.9455	12392 1	71
20	0.3491	0.3420	0.3640	2.747	09397	12217	70
21	0.3665	0.3584	0.3839	2.605	0.9336	1.2043	69
22	0.3840	0.3746	0.4040	2.475	0.9272	1.1868	68
23	0.4014	0.3907	0.4245	2.356	0.9205	1.1694	67
24	0.4189	0.4067	0.4452	2.246	0.9135	1.1519	66
25	0.4363	0.4226	0.4663	2.145	0.9063	11345	65
26	0.4538	04384	04877	2.050	0.8988	1.1170	64
27	0.4712	0.4540	0.5095	1.963	0.8910	1.0996	63
28	0.4887	0.4695	0.5317	1.881	0.8829	1.0821	62
29	0.5061	04848	0.5543	1.804	0.8716	1.0647	61
30	0.5236	0.5000	0.5774	1732	0.8660	1.0472	60
31	0.5411	0.5150	0.6009	1.6643	0.8572	1.0297	59
32	0.5585	0.5299	0.6249	1.6003	0.8480	1.0123	58
33	0.5760	0.5446	0)6494	1.5399	0.8387	0.9948	57
34	0.5934	0.5592	0.6745	1.4826	08290	0.9774	56
35	0.6109	0.5736	0.7002	1.4281	0.8192	0.9599	55
36	0.6283	0.5878	0.7265	1.3764	0.8090	0.9425	54
37	0.6458	0.6018	0.7536	1.3270	0.7986	0.9250	53
38	0.6632	0.6157	0.7813	1.2799	0.7880	0.9076	52
39	0.6807	0.6293	0.8098	1.2349	0.7771	0.8901	51
40	0.6981	0.6428	0.8391	1.1918	0.7660	0.8727	50
41	0.7156	0.6561	0.8693	1.1504	0.7547	0.8552	49
42	0.7330	0.6691	0.9004	1.1106	0.7431	0.8378	48
43	0.7505	0.6820	09325	1.0724	0.7314	0.8203	47
44	0.7679	0.6947	0.9657	1.0355	0.7193	0.8029	46
45	0.7854	0.7071	1.0000	1.0000	0.7071	0.7854	45
		$\cos x$	$\cot x$	$\tan x$	$\sin x$	$\underset{\text { (radiatis) }}{x}$	${ }^{\circ}$

V. Exponential, Hyperbolic and Trigonometric Functions

x	e^{0}	e^{-x}	$\operatorname{sunh} x$	$\cosh \boldsymbol{x}$	$\tan h x$	$\sin x$	$\cos \boldsymbol{x}$
00	1.0000	10000	0.0000	1.0000	0.0000	0.0000	1.0000
0.1	1.1052	09048	0.1002	1.0050	0.0997	0.0998	0.9950
0.2	12214	08187	0.2013	10201	0.1974	0.1987	0.9801
03	1.3499	0.7408	0.3045	1.0453	0.2913	0.2955	0.9553
0.4	14918	0.6703	0.4108	1.0811	0.3799	0.3894	0.9211
05	16487	0.6065	05211	1.1276	0.4621	0.4794	0.8776
06	1.8221	0.5488	06367	1.1855	0.5370	0.5646	0.8253
07	2.0138	0.4966	07586	1.2552	0.6044	0.6442	0.7648
0.8	2.22 .5	04493	08881	1.3374	0.6640	0.7174	0.6967
09	24596	0.4066	1.0265	1.4331	0.7163	0.7833	0.6216
10	2.7183	0.3679	1.1752	1.5431	07616	08415	0.5403
1.1	3.0042	03329	1.3356	1.6685	0.8005	08912	0.4536
12	33201	0.3012	1.5095	1.8107	08337	0.9320	0.3624
13	3663	02725	1.6981	1.9709	0.8617	09636	0.2675
14	40.55	02466	1.9043	2.1509	08854	0.9854	0.1700
15	44817	() 2231	2.1293	2.3524	0.9051	0.9975	0.0707
1.6	4.9530	() 2019	23756	25775	09217	0.9996	-0.0292
17	5.4739	0) 1827	2.6456	28283	0.9354	0.9917	-0.1288
18	6.0496	() 1653	2.9422	3.1075	0.9468	0.9738	-0 2272
19	6.6859	011496	3.2682	34177	09.562	0) 9463	-0.3233
20	73891	0 1353	36269	37622	0.9640	0.9093	-0.4161
21	81662	01225	40219	4.1443	0.9704	0.8633^{\prime}	-0 5048
22	90.550	01108	44571	45679	0.9757	08085	-0.5885
23	99742	01003	4.9370	5.0372	0.9801	07457	-0.6663
24	110232	() 0907	5.4662	5.5569	0.9837	0675.5	-6 7374
25	121825	0.0821	6.0502	6.1323	0.9866	0.5985	-0.8011
26	13.46 .37	00743	66947	6.7690	09890	0.5155	-0.8569
27	11.8797	00672	7.4063	7.4735	0.9910	0.4274	-0.9041
2.8	164446	000608	8.1919	82527	0.9926	0.3350	-0.9422
29	18.1741	0.0550	9.0596	9.1146	0.9940	0.2392	-0.9710
3.0	20.0855	0.0498	10.0179	10.0677	0.9950	0.1411	-0.9900
3.1	22.1979	0.0450	11.0764	11.1215	0.9959	0.0416	-0.9991
3.2	24.5325	0.0408	12.2459	12.2366	0.9967	-0.0584	-0.9983
3.3	27.1126	0.0369	13.5379	13.5748	0.9973	-0 1577	-0.9875
34	29.9641	0.0334	14.9654	14.9087	0.9978	-0.2555	-0.9668
3.5	33.1154	0.0302	16.5426	16.5728	0.9982	-0.3508	-0.9365

VI. Some Curves (for Reference)

1. Parabola, $y=x^{2}$.

2. Cubic parabola, $y=x^{3}$.

3. Rectangular hyperbola,

$$
y=-\frac{9}{x}
$$

4. Graph of a fractional function,

$$
y=\frac{1}{x^{2}}
$$

6. Parabola (upper branch), $y=\sqrt{x}$.

5. The witch of Agnesi,

$$
y=\frac{1}{1+x^{2}} .
$$

7. Cubic parabola, $y=\sqrt[3]{x}$

9. Sine curve and cosine curve,
$y=\sin x$ and $y=\cos x$.

10. Tangent curve and colangent curve, $y=\tan x$ and $y=\cot x$.

11. Graphs of the functions $y=\sec x$ and $y=\operatorname{cosec} x$.

12. Graphs of the inverse trigonometric functions $y=\arcsin x$ and $y=\arccos x$.

13. Graphs of the inverse trigonometric functions $y=\arctan x$ and $y=\operatorname{arccot} x$.

14. Graphs of the exponential functions $y=e^{x}$ and $y=e^{-x}$.

24. Strophoid,
$y^{2}=x^{2} \frac{a+x}{a-x}$.

25. Bernoulli's lemniscate, $\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)$ or $r^{2}=a^{2} \cos 2 \varphi$.

27. Hypocyclord (astroid), $\left\{\begin{array}{l}x=a \cos ^{3} t, \\ y=a \sin ^{3} t\end{array}\right.$
or $a^{\frac{2}{3}}+u^{\frac{2}{3}}=a^{-\frac{3}{3}}$.

28. Cardioid,
$r=a(1+\cos \varphi)$.

29. Evolvent (involute) of the circle $\left\{\begin{array}{l}x=a(\cos t+t \sin t), \\ y=a(\sin t-t \cos t) .\end{array}\right.$

30. Spiral of Archimedes, $r=a \varphi$.

31. Hyperbolic spiral,

$$
r=\frac{a}{\varphi} .
$$

32. Logarithmic spiral, $t=e^{a_{\psi}}$.

33. Three-leafed rose, $r=a \sin 3 \varphi$.

34. Four-leafed rose,
$r=a \sin 2 \varphi$.

INDEX

A

B

Absolute error 367
Absolute value
of a real number 11
Absolutely convergent series 296, 297
Acceleration vector 236
Λ dams' formula 390
Adams' method 389, 390, 392
Agnesi
Witch of $18,156,480$
Algebraic functions 48
Angle between two surfaces, 219
Angle of contingence 102, 243
Angle of contingence of second kind 243
Antiderivative 140, 141
generalized 143
Approximate numbers 367
addition of 368
division of 368
multiplication of 368
powers of 368
roots of 368
subtraction of 368
Approximation
successive 377, 385
Arc length of a curve 158-161
Arc length of a space curve 234
Archimedes
spiral of $20,65,66,105,487$
Area in polar coordinates 155, 256
Area in rectangular coordinates 153 , 256
Area of a plane region 256
Area of a surface 166-168, 259
Argument 11
Astroid 20, 63, 105, 486
Asymptote 93
left horizontal 94
left inclined 94
right horizontal 93
right inclined 93
vertical 93

Bending point 84
Bernoulli's equation 333
Bernoulli's lemniscate 155, 486
Beta-function 146, 150
Binormal 238
Boundary conditions 363 - -
Branch of a hyperbola 20,480
Broken-line method
Euler's 326

C

Cardioid 20, 105, 486
Catenary 104, 105, 484
Catenoid 168
Cauchy's integral test 295
Cauchy's test 293, 295
Cauchy's theorem 75, 326
Cavalieri's "lemon" 165
Centre of curvature 103
Change of variable 211-217
in a definite integral 146
in a double integral 252-254
in an indefinite integral 113
Characteristic equation 356
Characteristic points 96
Chebyshev's conditions 127
Chord method 376
Circle 20, 104
of convergence 306
of curvature 103
osculating 103
Circulation of a vector 289
Cissoid 232
of Diocles 18, 485
Clairaut's equation 339
Closed interval 11
Coefficients
Fourier 318, 393, 394
Comparison test 143, 293, 294
Composite function 12, 49

Coneave down 91
Concave up 91
Concavity
direction of 91
Conchoid 232
Condition
Lipschitz. 385
Conditions
boundary 363
Chebyshev's 127
Dirichlet 318,319
initial 323, 363
Conditional extremum 223-225
Conditionally (not absolutely)
convergent series 296
Contingence
angle of 102, 243
Continuity of functions 36
Continuous function 36
properties of 38
Convergence
circle of 306
interval of 305
radius of 305
region of 304
uniform 306
Convergent improper integral 143, 270
Convergent series 293
Coordinates
of centre of gravity 170
generalized polar 255
Correct decimal places in a broad sense 367
Correct decimal places in
a narrow sense 367
Cosine curve 481
Cotangent curve 481
Coupling equation 223
Critical point of the second kind 92
Critical points 84
Cuhic parabola $17,105,234,480$
Curl of a vector field 288
Curvature
centre of 103
circle of 103
of a curve 102, 242
radius of 102
second 243
Curve
cosine 481
cotangent 481
discriminant 232, 234
Gaussian 92
integral 322
logarithmic 484
probability 19, 484
sine 481
tangent 48
Cusp 230
Cycloid 105, 106, 486

D

D'Alembert's test 295
Decreasing function 83
Definite integral 138
Del 288
Dependent variable 11
Derivative 43
left-hand 44
logarithmic 55
nth 67
right-hand 44
second 66
Derivative of a function
in a given direction 193
Derivative of functions
represented parametrically 57
Derivative of an implicit function 57
Derivative of an inverse function 57
Derivative of the second order 66
Derivatives
of higher orders 66-69
one-sided 43
table of 47
Descartes
folium of 20, 21, 232, 485
Determinant
functional 264
Determining coefficients
first method of 122
second method of 122
Diagonal table 389
Difference of two convergent series 298
Differential
of an arc 101, 234
first-order 71
higher-order 198
principal properties of 72
second 198
second-order 72
total, integration of 202-204
Differential equation 322
homogencous linear 349
inhomogeneous linear 349
Differential equations
first-order 324
forming 329
higher-order 345
linear 349, 351

Differential equations of higher powers first-order 337
Differentials method of 343 of third and higher orders 72
Differentiating a composite function 47
Differentiation 43
of implicit functions 205-208
tabular 46
Diocles
cissoid of 18,485
Direction of concavity 91
Direction field 325
Dirichlet
conditions 318, 319
function 40
series 295, 296
theorem 318
Discontinuity 37
of the first kind 37
infinite 38
removable 37
of the second kind 38
Discontinuous function 270
Discriminant 222
Dicriminant curve 232, 234
Divergence of a vector field 288
Divergent improper integral 143, 270
Divergent series 293, 294
Domain 11
Domain of definition 11
Double integral 246
in curvilinear coordinates 253
in polar coordinates 252
in rectangular coordinates 246
Double point 230
coupling 223
differential 322
Euler's 357
exact differential 335
first-order differential 324
homogeneous 330, 351, 356
homogeneous linear differential 332,
349
inhomogeneous 349, 351, 356
Lagrange's 339
Laplace's 289, 291
linear 332
of a normal 60,218
of a tangent 60
of a tangent plane 218
with variables separable 327, 328
Equivalent functions 33
Error
absolute 367
limiting absolute 367
limiting relative 367
relative 367
Euler integral 146
Euler-Poisson integral 272
Euler's broken-lirie method 326
Euler's equation 357
Even function 13
Evolute of a curve 103
Evolvent of a circle 486
Evolvent of a curve 104
Exact differential equation 335
Exponential functions 49, 55, 483
Extremal point 84
Extremum
conditional 223 -225
of a function $83,83,222$

F

Factor
integrating 335
Ficld
direction field 325
nonstationary scalar or vector 288
potential vector 289
scalar 288
solenoidal vector 289
Field (cont)
stationary scalar or vector 288
vector 288
Field theory 288-292
First-order differential 71
First-order differential equations 324
Flow lines 288
Flux of a vector field 288
Folium of Descartes 20, 21, 232, 485

Force lines 288
Form
Lagrange's 311
Formula
Adams' 390
Green's 276, 281, 282
Lagrange's 145
Lagrange's interpolation 374
Leibniz 67
Maclaurin's 77, 220
Newton-Leibniz 140, 141, 275
Newton's interpolation 372
Ostrogradsky-Gauss 286-288
parabolic 382
Simpson's 382-384
Stokes' 285, 286, 289
Taylor's 77, 220
trapezoidal 382
Formulas
reduction 130, 135
Fourier cheffictents 318, 393, 394
Fourier series 318,319
Four-leafed rose 487
Fraction
proper rational 121
rianction 11
composite 12. 49
continuous 36
continuous, properties of 38
decreasing 83
Dirichlet 40
discontinuous 270
even 13
of a function 12
impliet 12
increasing 83
lagrange 223,224
multiple-valued 11
periodic 14
single-valued 11
vector 235
Functional determinant 264
Functional series 304
Functions
algebraic 48
equivalent 33
exponential 49, 55, 483
lyperbolic 49, 484
liyperbolic, integration of 133
inverse 12
Functions (cont)
inverse circular 48
inverse hyperbolic 49
inverse trigonometric 482, 483
linearly dependent 349
linearly independent 349
logarithmic 49
transcendental, integration of 135
trigonometric 48
trigonometric, integrating 128, 129
Fundamental system of solutions 349

G

Gamma-function 146, 150
Gaussian curve 92
General integral 322
General solution 359
General solution (of an equation) 323
General term 294
Generalized antiderivative 143
Generalized polar coordinates 255
Geometric progression 293, 294
Gradient of a field 288
Gradient of a function 194, 195
Graph of a function 12
Greatest value 85, 225, 227
Green's formula 276, 281, 282
Guldin's theorems 171

H

Hamiltonian operator 288
Harmonic series 294, 296. 297
Higher-order differential 198
Higher-order differential equations 345
Hıgher-order partial derivative 197
Hodograph of a vector 235
Homogeneous equations $330,351,356$
Homogeneous linear differental
equation 332, 349
Hyperbola 17, 18, 20, 485
rectangular 480
Hyperbolic functions 49, 484
integration of 133
Hyperbolic spiral 20, 105, 487
Hyperbolic substıtutions 114, 116, 133
Hypocycloid 283, 486

Implicit function 12
Improper integral convergent 270
divergent 270
Improper multiple integrals 269, 270
Incomplete Fourier series 318, 319
Increasing function 83
Increment of an argument 42
Increment of a function 42
Independent variable 11
Indeterminate forms
evaluating 78, 79

Infinite discontinuities 38
Infinitely large quantities 33
Infinitely small quantities 33
Infinites 33
Infinitesimals 33
of higher order 33
of order $n 33$
of the same order 33
Inflection
points of 91
Inhomogeneous equation 349, 351, 356
Inhomogeneous linear differential equation 349
Initial conditions 323, 363
Integral 322
convergent improper 143
definite 138
divergent improper 143
double 246
Euler 146
Euler-Poisson 272
general 322
improper multiple 269, 270
line 273-278
particular 322
probability 144
singular 337
surface 284-286
triple 262
Integral curve 322
Integral sum 138
Integrating factor 335
Integration
basic rules of 107
under the differential sign 109
direct 107 -
by parts $116,117,149$
path of $273,274,280$
region of 246-248
by substitution 113
Integration of differential equation
by means of power series 361,362
Integration of functions
numerical 382, 383
Integration of ordinary differential equation numerical 384-393
Integration of total differentials 202 . 204
Integration of transcendental functions 135
Interpolation of functions 372-374
inverse 373
linear 13, 372
quadratic 372

Interpolation formula
Lagrange's 374
Newton's 372
Interval
of calculations 382
closed 11
of convergence 305
of monotonicity 83
Interval (cont)
open 11
table interval 372
Inverse circular functions 48
Inverse functions 12
Inverse hyperbolic functions 49
Inverse interpolation 373
Inverse trigonometric functions 482 , 483
Involute of a circle $20,106,486$
Involute of a curve 104
Isoclines 325
Isolated point 230 . •
Iterative method 377, 378, 380

Jacobian 253, 264
K
Kinetic energy 174

Lagrange's equation 339
Lagrange's form 311
Lagrange's formula 145
Lagrange's function 223, 224
Lagrange's interpolation formula 374
Lagrange's theorem 75
Laplace equation 289, 291
Laplace transformation 271
Laplacian operator 289
Lamina
coordinates of the centre of gravity of a, 261
mass and static moments of a 260
moments of inertia of a 26
Least value 85
Left-hand derivative 44
Left horizontal asymptote 94
Left inclined asymptote 94
Leibniz rule 67, 269
Leibniz test 296, 297
Lemniscate 20, 105, 232
Bernoulli's 155, 486
Level surfaces 288
L'Hospital-Bernoulli rule $78 \cdot 82$

Limaçon of successive approximation 384,

Pascal's 158
Limit of a function 22
Limit on the left 22
Limit on the right 22
Limit of a sequence 22
Limiting absolute error 367
Limiting relative error 367
Limits
one-sided 22
Line
straight 17, 20
Line integral
application of $276,28:$
of the first type 273, 274, 277, 278
Line integral of the second type 274 , 275, 278-281
Linear differential equations 349, 351
Linear equation 332
Linear interpolation 372
of a fanction 13
Linearly dependent functions 349
Linearly independent functions 349
Lines
flow 288
force 288
vector 288
Lipschitz condition 385
Logarithmic curve 484
Logarithmic derivative 55
Logarithmic functions 49
Logarithmic spiral $20,21,105,106$. 487

M

Maclaurin's formula 77, 220
Maclaurin's series 311,313
Maximunl of a function 84, 222
Maximum point
Mean value of a function 151
Mean-value theorems 75, 150
Mean rate of change 42
Method
Adams' 389, 390, 392
chord method 376
of differentials 343
of elimination 359
Method (cont)
Euler's broken-line 326
iterative $377,378,380$
Milne's 386, 387, 390
Newton's 377, 379
Ostrogradsky 123, 125
Picard's 384, 385
reduction 123
Runge-Kutta 385-387, 390

385, 389
of tangents 377
of undetermined coef ficients 121,351
of variation of parameters 332, 349, 352
Minimum of a function 84, 222
Minimum point 84
Mixed partial derivative 197
Moment
of inertia 169
static 168
Monotonicity
intervals of 83
Multiple-valued function 11
Multiplicities
root 121

N

nth derivative 67
Nabla 288
Napier's number 28
Natural trihedron 238
Necessary condition for convergence 293
Necessary condition for an extremum 222
Newton
trident of 18
Newton-Leibniz formula 140, 141, 275
Newton's interpolation formula 372
Newton's method 377, 379
Newton's serpentine 18
Niele's parabola 18, 234. 481
Node 230
Nonstationary scalar or vector field 288
Normal 217
to a curve 60
equations of 218
principal 238
Normal plane 238
Number
Napier's 28
real 11
Number series 293
Numerical integration of functions 382, 383
Numerical integration of ordinary differential equations 384-393

0

One-sided derivatives 43
One-sided limits 22
Open interval 11

Operator
Hamiltonian 288
Laplacian 289
Order of smallness 35
Orthagonal surfaces 219
Orthagonal trajectories 328
Osculating circle 103
Osculating plane 238
Ostrogradsky-Gauss formula 286-288
Ostrogradsky-Gauss theorem 291
Ostrogradsky method 123, 125

P

Parabola 17, 20, 104, 105, 480, 485
cubic 17, 105, 234
Niele's 18, 234, 481
safety 234
semicubical $18,20,234,481$
Parabolic formula 382
Parameters
variation of $332,349,352$
Parametric representation of
a function 207
Partial derivative
hirheg-order 197
"mixed" 197
second 197
Partial sum 293
Particular integral 322
Particular solution 339
Pascal's limaçon 158
Path of integration 273, 274, 280
Period of a function 14
Periodic function 14
Picard's method 384,385
Plane
normal 238
osculating 238
rectifying 238
tangent 217
Point
bending 84
critical (of the second kind) 92
of discontinuity 37
double 230
extremal 84
of inflection 91
isolated 230
maximum 84
minimum 84
singular 230
stationary 196
of tangency 217
Points
characteristic 96
critical 84
stationary 222, 225
Polar subnormal 61
Polar subtangent 61
Potential (of a field) 289
Potential vector field 289
Power series 305
Principal normal 238
Principle
of equal effects 369
Runge 383, 386
of superposition of solutions 353
Probability curve 19,484
Probability integral 144
Product of two convergent series 298
Progression
geometric 293, 294
Proper rational fraction 12
Proportionate parts
rule of 376

Q

Quadratic interpolation 372
Quadratic trinomial $118,119,123$
Quantity
infinitely large 33
infinitely small 33

R

Radius of convergence 305
Radius of curvature 102, 243
Radius of second curvature 243
Radius of torsion 243
Rate of change
of a function 43
mean 42
Ratio (of a geometric progression) 294
Real numbers 11
Rectangular hyperbola 480
Rectifying plane 238
Reduction formulas $130,135,150$
Reduction method 123
Region of convergence 304
Region of integration 246-248
Relative error 367
Remainder 311
Remainder of a series 293, 304
Remainder term 311
Removab!e discontinuity 37
Right-hand derivative 44
Right horizontal asymptote 93
Right inclined asymptote 93
Rolle's theorem 75
Root multiplicities 121

Rose
four-leafed 487
three-leafed 20, 487
Rotation (of a vector field) 288
Rule
Leibniz 67, 269
1'Hospital-Bernoulli 78-82
of proportionate parts 376
Runge-Kutta method 385-387, 390
Runge principle 383, 386

S

Safety parabola 234
Scalar field 288
Scheme
twelve-ordinate 393-395
Second curvature 243
Second derivative 66
Second differential 198
Second-ordef differential 72
Second partial derivative 197
Segment of the normal 61
Segment of the polar normal 61
Segment of the polar tangent 61
Segment of a straight line 20
Segment of the tangent 61
Semicircle 20
Semicubical parabola 18, 20, 234, 481
Series
absolutely convergent 296. 297
with complex terms 297
conditionally (not absolutely)
convergent 296
convergent 293
Series (cont)
Dirichlet 295, 296
divergent 293, 294
Fourier 318, 319
functional 304
harmonic 294, 296, 297
incomplete Fourier 318, 319
Maclaurin's 311, 313
number series 293
operations on 297
power 305
Taylor's 311, 313
Serpentine
Newton's 18
Simpson's formula 382-384
Sine curve 481
Single-valued function 11
Singular integral 337
Singular point 230
Slope (of a tangent) 43
Smallest value 225, 227

Solenoidal vector field 289
Solution (of an equation) 322
general 323, 359
particular 339
Spira!
of Archimedes 20, 65, 66, 105, 487
hyperbolic $20,105,487$
logarithmic $20,21,105,106,487$
Static moment 168
Stationary point $196,222,225$
Stationary scalar or vector field 288
Stokes' formula 285, 286, 289
Straight line 17, 20
Strophoid 157, 232, 234, 486
Subnormal 61
polar 61
Substitutions
hyperbolic 114, 116, 133
trigonometric 114, 115, 133
Subtangent 61 polar 61
Successive approximation 377, 385 method of 384, 385, 389
Sufficient conditions (for an extremum) 222
Suml
integral I38
partial 293
of a series 293, 304
of two convergent series 298
Superposition of solutions
principle of 353
Surface interral of the first type 284
Surface integral of the second type 284
Surface integrals 284-286
Surfaces
level 288
orthogonal 219

T

Table
diagonal table 389
of standard integrals 107
Table interval 372
Tabular differentiation 46
Tacnode 230
Tangency point of 217
Tangent 238
Tangent curve 481
Tangent plane 217
equation of 218
Tangents
method of 377
Taylor's formula 77, 220

Taylor's series 311, 313 Term
general 294
remainder 311
Test
d'Alembert's 295
Cauchy's 293, 295
Cauchy's integral 295
comparison 143, 293, 294
Leibniz 296, 297
Weierstrass' 306
Theorem
Cauchy's 75, 326
Dirichlet's 318
Theorem (cont)
Lagrange's 75
Ostrogradsky-Gauss 291
Rolle's 75
Theorems
Guldin's 171
mean-value 75, 150
Theory
field 288-292
Three-leafed rose 20, 487
Torsion 243
Tractrix 161
Trajectories orthogonal 328
Transcendental functions integration of 135
Transformation
Laplace 271
Trapezoidal formula 382
Trident of Newton 18
Trigonometric functions 48
integrating 128, 129
Trigonometric substitutions 114,115 , 133
Trihedron
natural 238
'Trinomial
quadratic 118, 119, 123
Triple integral 262
applications of 265, 268
change of variables in 263
computing volumes by means of 268
evaluating a 265
in rectangular coordinates 262
Trochoid 157
Twelve-ordinate scheme $393-395$

U

Undetermined coefficients
method of 121, 351
Uniform convergence 306

v

Value
greatest 85, 225, 227
least 85
mean (of a function) 151, 252
smallest 225, 227
Variable
dependent 11 independent 11
Variables separable
an equation with 327,328
Variation of parameters 332, 349, 352
Vector
acceleration 236
of binormal 238
of principal normal 238
of tangent line 238
velocity 236
Vector field 288
Vector function 235
Vector lines 288
Velocity vector 236
Vertex of a curve 104
Vertical asymptote 93
Vertices of a curve 104
Volume of a cylindroid 258
Volume of colids 161-166

w

Weierstrass' test 306
Witch of Agnesi 18, 156, 480
Work of a force $174,276,277$

[^0]: *) Hencelorth all v alues will be considered as real, if not otherwise stated.

[^1]: ${ }^{*}$) The solid is formed by the revolution, about the y-axis, of a curvilinear trapezoid bounded by the curve $y=f(x)$ and the straight lines $x=a, x=b$, and $y=0$. For a volume element we take the volume of that part of the solid formed by revolving about the y-axis a rectangle with sides y and $d x$ at a distance x from the y-axis. Then the volume element $d V_{\gamma}=2 \pi x y d x$, whence $V_{Y}=2 \pi \int_{a}^{b} x y d x$.

[^2]: *) Henceforward, in similar cases we shall sometimes give an answer that is good for only a part of the domain of the integrand.

