Bộ môn Giải tích

30/01/2015

Seminar Bộ môn Giải tích: Nửa nhóm toán tử một tham số và ứng dụng

Filed under: Giải tích toán học, Toán học, Trao đổi — Thẻ: — bmgt @ 13:02

Bộ môn Giải tích, Khoa Toán – Cơ – Tin học, ĐH KHTN sẽ tổ chức một seminar đọc sách và nghiên cứu.
Nội dung: Lý thuyết nửa nhóm toán tử một tham số và ứng dụng
Người trình bày: TS. Trịnh Viết Dược, TS. Lê Huy Tiễn, TS. Ngô Quốc Anh
Thời gian: 9h00, thứ 6 hàng tuần,
Địa điểm: P409T3, ĐH KHTN.
Kế hoạch cụ thể:

Ngày 30/01 và 06/02: TS. Trịnh Viết Dược trình bày về: Lý thuyết nửa nhóm toán tử một tham số.
Tài liệu tham khảo:
http://www.fa.uni-tuebingen.de/research/publications/1999/one-parameter-semigroups-for-linear-evolution-equations/

http://en.bookfi.org/s/?q=Semigroups+of+linear+and+nonlinear+operations+and+applications&t=0

Nghỉ Tết từ ngày 13/02.

Kế hoạch sau Tết sẽ được thông báo tiếp theo.

Trân trọng thông báo và mời các bạn quan tâm đến tham gia.

31/01/2015

Mười năm sau

Filed under: Không toán học, Phim ảnh — Thẻ: — bmgt @ 22:01

1540478_10152144132879890_1362007144_oBa tấm hình, cách nhau 10 năm

Những người có mặt

Những người vắng mặt

Những người cũ và những người mới

Mái đầu xưa xanh giờ đã điểm bạc

Nhưng vẫn còn nguyên tiếng cười…

1559302_10152106824014890_978841281_oHanoi_002111

30/01/2015

Tân tiến sĩ Trịnh Viết Dược

Filed under: Không định dạng — bmgt @ 15:55

20150122_1512379[1]

Lâu lắm rồi BMGT mới lại có một TS bảo vệ luận án liên quan tới Nửa nhóm toán tử một tham số. Chúc mừng Trịnh Viết Dược.

04/06/2013

Bảo vệ khoá luận 2013

Filed under: Không định dạng — Thẻ:, , — doanchi @ 21:15

Hôm nay mình về Khoa để dự lễ bảo vệ khoá luận tốt nghiệp của sinh viên k54. Năm ngoái mình đã không được dự rồi, nên năm nay cũng cố gắng đến xem sao. Bộ môn Giải tích có 13 sinh viên đăng kí làm khoá luận. Tiếc là cán bộ hướng dẫn hơi tập trung (4 của thầy Châu, 3 của thầy Mậu, 3 của Chuẩn, 1 của Thu và 1 của thầy Sang). Đành rằng sinh viên tự chọn chủ đề và chọn thầy, nhưng khi mà trong bộ môn có những người không có ai làm việc cùng, lại có những người “thừa mứa” ra thì cũng nên xem lại chủ trương. Các vấn đề xoay quanh lý thuyết nửa nhóm, ứng dụng cho phương trình vi phân dưới dạng toán tử, phương trình tích phân các loại… Mình không ngồi đến cuối giờ (chắc phải 13h), nhưng chưa thấy một cái gì đó hay ho cả. Thật tiếc quá :-)

19/01/2013

Chúc mừng Quốc Anh

Filed under: Không định dạng — Thẻ:, — doanchi @ 12:13

Chúc mừng Ngô Quốc Anh đã bảo vệ thành công luận án Tiến sĩ (18/1/2013) tại NUS. Chúc mừng BMGT có thêm một Tiến sĩ. 

05/11/2012

Gần một năm

Filed under: Không định dạng — doanchi @ 16:11

Xem ra trang weblog này của BMGT không còn được mọi người quan tâm nữa. Cũng phải thôi, các bạn dều đã và đang có các mối quan tâm khác, cá nhân và tập thể, học thuật và đời sống. Đâu có thể dành thời gian cho cái hư vô này được…

03/01/2012

2011 in review

Filed under: Không toán học, Vui chơi — doanchi @ 06:16

The WordPress.com stats helper monkeys prepared a 2011 annual report for this blog.

Here’s an excerpt:

The concert hall at the Syndey Opera House holds 2,700 people. This blog was viewed about 8 800 times in 2011. If it were a concert at Sydney Opera House, it would take about 3 sold-out performances for that many people to see it.

Click here to see the complete report.

29/12/2011

Seminar liên bộ môn GT – ĐS-HH-TP, buổi thứ 2

Seminar liên bộ môn GT – ĐS-HH-TP về Giải tích trên đa tạp đã bắt đầu được 1 buổi.

Trong buổi đầu tiên, GS. NHVHưng đã thuyết trình về phép tính vi phân trên đa tạp. Những khái niệm tưởng như quen thuộc với mỗi người học giải tích cơ sở như Định lý Schwartz, phép tính vi phân cấp cao,…, khi được trình bày đối với các hàm trong các không gian định chuẩn, đòi hỏi phải được nhìn nhận thích hợp.

Buổi thứ hai sẽ được diễn ra vào 8h30, ngày 30/12/2011.

Địa điểm: 409 T3, Trường ĐHKHTN, 334 Nguyễn Trãi, Thanh Xuân, Hà Nội

Mời các bạn quan tâm tới tham dự.

22/12/2011

Seminar liên bộ môn GT – ĐS-HH-TP về GT trên đa tạp

Trong thời gian tới, Bộ môn Giải tích và Bộ môn Đại số – Hình học- Tô pô phối hợp tổ chức một seminar về “Giải tích trên đa tạp”.

Seminar dự kiến được tổ chức vào các sáng Thứ Sáu tại phòng 409 nhà T3.

Kế hoạch buổi seminar tới như sau:

Tiêu đề báo cáo: Giải tích trên đa tạp
Người trình bày: GS. TSKH Nguyễn Hữu Việt Hưng (Bộ môn Đại số – Hình Học – Tô pô )

Thời gian: 09h00, Thứ 6, ngày 23/12/2011
Địa điểm: P409, nhà T3.
Sơ lược về nội dung:
Khái niệm đa tạp là một khái niệm trung tâm của nhiều lĩnh vực trong hình học và vật lý hiện đại bởi nó cho phép ta diễn đạt và hiểu những cấu trúc phức tạp bằng những tính chất đã biết của các không gian đơn giản hơn. Ví dụ đa tạp cùng với cấu trúc khả vi cho phép ta thực hiện các phép toán vi tích phân trên nó. Một cách đơn giản ta có thể xem đa tạp khả vi như là một sự mở rộng tự nhiên của đường cong và mặt cong (đường thẳng, đường tròn là các đa tạp một chiều, mặt phẳng, mặt cầu là các đa tạp hai chiều…). Khái niệm đa tạp khả vi được sử dụng lần đầu tiên (mà không có giải thích) trong các bài giảng của Riemann vào năm 1851 và phải mất hơn một nửa thế kỷ, người ta mới đưa ra một định nghĩa chính xác cho nó…

Seminar có mục tiêu giới thiệu một số kiến thức cơ bản về giải tích trên đa tạp, cũng như các kết quả đặc sắc của môn học này ((Đa tạp, Không gian tiếp xúc, Phân thớ tiếp xúc, Trường véctơ, Đạo hàm, Vi phân, Đạo hàm cấp cao, Không gian đối tiếp xúc, Phân thớ đối tiếp xúc, Tích phân các dạng vi phân, (Vì sao phải dùng dạng vi phân? Bỏ dạng vi phân đi mà cứ nghiên cứu tích phân của các hàm trên đa tạp thì có được không? Vì sao phải định hướng đa tạp), Công thức Stockes và những ứng dụng, Đối đồng điều De Rham, vài mối liên quan sơ khởi với các ngành lân cận như Đại số tuyến tính (định thức như là tỷ số giãn nở thể tích của đồng cấu, sự có mặt của Jacobien trong công thức đổi biến tích phân, đại số ngoài…), Tôpô Đại số, Hình học hoặc Tôpô Vi phân…). Đây là kiến thức cần thiết cho việc nghiên cứu nhiều ngành khác nhau của toán học và vật lý ví dụ như Hình học vi phân, Tô pô vi phân, Phương trình vi phân, Vật lý lý thuyết….
Tài liệu: “An Introduction to Manifolds” của Loring W. Tu, “Giải tích trên đa tạp” – M. Spivak, etc.
Kính mời các thầy cô và các anh chị nghiên cứu sinh, học viên cao học quan tâm tham dự !

16/09/2011

Seminar BMGT

Filed under: Không định dạng — bmgt @ 11:25

Beginning at 9h00
Room: 409T3

16/04/2011

Tin buồn

Filed under: Không toán học — doanchi @ 20:21

Giáo sư, Tiến sĩ, Nhà giáo Ưu tú Nguyễn Thế Hoàn

Nguyên Chủ nhiệm Bộ môn Giải tích, Khoa Toán-Cơ-Tin học, Trường Đại học Khoa học Tự nhiên Hà Nội;

đã từ trần hồi 01 giờ 30 phút, ngày 17/03/2011 (tức ngày 13/2 năm Tân Mão).

Lễ viếng được tổ chức từ 07h30 đến 9h00, ngày 23 tháng 03 năm 2011,
tại nhà tang lễ Bộ quốc phòng (số 5 Trần Thánh Tông, Hà Nội).
An táng tại công viên Vĩnh Hằng, Ba Vì, Hà Nội.

08/09/2010

QS World University Rankings Results 2010

Filed under: Không toán học, Không định dạng, Tra cứu, Trao đổi — Ngô Quốc Anh @ 21:11

Overall Rankings – Top 200

Rank 2010
Rank 2009
School Name
Country
Size
Research
Focus
Score 2010
1 2 University of Cambridge United Kingdom L VH FC 100.00
2 1 Harvard University United States L VH FC 99.18
3 3 Yale University United States M VH FC 98.68
4 4 UCL (University College London) United Kingdom L VH FC 98.54
5 9 Massachusetts Institute of Technology (MIT) United States M VH CO 98.19
6 5= University of Oxford United Kingdom L VH FC 98.16
7 5= Imperial College London United Kingdom L VH FC 97.78
8 7 University of Chicago United States M VH FC 97.52
9 10 California Institute of Technology (Caltech) United States S VH CO 96.46
10 8 Princeton University United States M VH CO 96.03
11 11 Columbia University United States L VH FC 95.99
12 12 University of Pennsylvania (UPenn) United States L VH FC 95.97
13 16 Stanford University United States L VH FC 93.62
14 14 Duke University United States L VH FC 92.29
15 19 University of Michigan United States XL VH FC 92.20
16 15 Cornell University United States L VH FC 90.44
17 13 Johns Hopkins University United States L VH FC 89.67
18 20= ETH Zurich (Swiss Federal Institute of Technology) Switzerland L VH FO 89.28
19 18 McGill University Canada L VH FC 89.25
20 17 Australian National University (ANU) Australia M VH CO 88.58
21 23 King’s College London (KCL) United Kingdom L VH FC 88.45
22 20= University of Edinburgh United Kingdom L VH FC 88.01
23 24 University of Hong Kong (HKU) Hong Kong L VH FC 87.28
24 22 University of Tokyo, The Japan L VH FC 86.74
25 25 Kyoto University Japan L VH FC 85.89
26 32= Northwestern University United States L VH FC 85.40
27 34 University of Bristol United Kingdom L VH FC 85.22
28 39 University of California, Berkeley (UCB) United States XL VH FC 85.18
29 29 University of Toronto Canada XL VH FC 84.29
30 26 University of Manchester United Kingdom XL VH FC 83.33
31 30 National University of Singapore (NUS) Singapore XL VH FC 82.78

Details: http://www.topuniversities.com/university-rankings/world-university-rankings/2010/results

20/08/2010

Chúc mừng anh Ngô Bảo Châu

Filed under: Toán học, Tra cứu, Trao đổi — Thẻ:, , , — doanchi @ 00:14

Anh Ngô Bảo Châu là người Việt Nam đầu tiên nhận Fields Medal tại ICM 2010 (19/08/2010). Anh là niềm tự hào của cả dân tộc Việt Nam, là tấm gương học tập nghiên cứu cho tuổi trẻ Việt Nam hướng tới.
Chúng em xin chúc mừng anh.
Trang wordpress blog của anh: http://thichhoctoan.wordpress.com

17/07/2010

Manifold Destiny: A legendary problem and the battle over who solved it

Filed under: Không toán học, Trao đổi — Ngô Quốc Anh @ 22:07

On the evening of June 20th, several hundred physicists, including a Nobel laureate, assembled in an auditorium at the Friendship Hotel in Beijing for a lecture by the Chinese mathematician Shing-Tung Yau. In the late nineteen-seventies, when Yau was in his twenties, he had made a series of breakthroughs that helped launch the string-theory revolution in physics and earned him, in addition to a Fields Medal—the most coveted award in mathematics—a reputation in both disciplines as a thinker of unrivalled technical power.

Yau had since become a professor of mathematics at Harvard and the director of mathematics institutes in Beijing and Hong Kong, dividing his time between the United States and China. His lecture at the Friendship Hotel was part of an international conference on string theory, which he had organized with the support of the Chinese government, in part to promote the country’s recent advances in theoretical physics. (More than six thousand students attended the keynote address, which was delivered by Yau’s close friend Stephen Hawking, in the Great Hall of the People.) The subject of Yau’s talk was something that few in his audience knew much about: the Poincaré conjecture, a century-old conundrum about the characteristics of three-dimensional spheres, which, because it has important implications for mathematics and cosmology and because it has eluded all attempts at solution, is regarded by mathematicians as a holy grail.

Yau, a stocky man of fifty-seven, stood at a lectern in shirtsleeves and black-rimmed glasses and, with his hands in his pockets, described how two of his students, Xi-Ping Zhu and Huai-Dong Cao, had completed a proof of the Poincaré conjecture a few weeks earlier. “I’m very positive about Zhu and Cao’s work,” Yau said. “Chinese mathematicians should have every reason to be proud of such a big success in completely solving the puzzle.” He said that Zhu and Cao were indebted to his longtime American collaborator Richard Hamilton, who deserved most of the credit for solving the Poincaré. He also mentioned Grigory Perelman, a Russian mathematician who, he acknowledged, had made an important contribution. Nevertheless, Yau said, “in Perelman’s work, spectacular as it is, many key ideas of the proofs are sketched or outlined, and complete details are often missing.” He added, “We would like to get Perelman to make comments. But Perelman resides in St. Petersburg and refuses to communicate with other people.”

For ninety minutes, Yau discussed some of the technical details of his students’ proof. When he was finished, no one asked any questions. That night, however, a Brazilian physicist posted a report of the lecture on his blog. “Looks like China soon will take the lead also in mathematics,” he wrote.

Grigory Perelman is indeed reclusive. He left his job as a researcher at the Steklov Institute of Mathematics, in St. Petersburg, last December; he has few friends; and he lives with his mother in an apartment on the outskirts of the city. Although he had never granted an interview before, he was cordial and frank when we visited him, in late June, shortly after Yau’s conference in Beijing, taking us on a long walking tour of the city. “I’m looking for some friends, and they don’t have to be mathematicians,” he said. The week before the conference, Perelman had spent hours discussing the Poincaré conjecture with Sir John M. Ball, the fifty-eight-year-old president of the International Mathematical Union, the discipline’s influential professional association. The meeting, which took place at a conference center in a stately mansion overlooking the Neva River, was highly unusual. At the end of May, a committee of nine prominent mathematicians had voted to award Perelman a Fields Medal for his work on the Poincaré, and Ball had gone to St. Petersburg to persuade him to accept the prize in a public ceremony at the I.M.U.’s quadrennial congress, in Madrid, on August 22nd.

The Fields Medal, like the Nobel Prize, grew, in part, out of a desire to elevate science above national animosities. German mathematicians were excluded from the first I.M.U. congress, in 1924, and, though the ban was lifted before the next one, the trauma it caused led, in 1936, to the establishment of the Fields, a prize intended to be “as purely international and impersonal as possible.”

However, the Fields Medal, which is awarded every four years, to between two and four mathematicians, is supposed not only to reward past achievements but also to stimulate future research; for this reason, it is given only to mathematicians aged forty and younger. In recent decades, as the number of professional mathematicians has grown, the Fields Medal has become increasingly prestigious. Only forty-four medals have been awarded in nearly seventy years—including three for work closely related to the Poincaré conjecture—and no mathematician has ever refused the prize. Nevertheless, Perelman told Ball that he had no intention of accepting it. “I refuse,” he said simply.

Over a period of eight months, beginning in November, 2002, Perelman posted a proof of the Poincaré on the Internet in three installments. Like a sonnet or an aria, a mathematical proof has a distinct form and set of conventions. It begins with axioms, or accepted truths, and employs a series of logical statements to arrive at a conclusion. If the logic is deemed to be watertight, then the result is a theorem. Unlike proof in law or science, which is based on evidence and therefore subject to qualification and revision, a proof of a theorem is definitive. Judgments about the accuracy of a proof are mediated by peer-reviewed journals; to insure fairness, reviewers are supposed to be carefully chosen by journal editors, and the identity of a scholar whose pa-per is under consideration is kept secret. Publication implies that a proof is complete, correct, and original.

by Sylvia Nasar  and David Gruber

View all: http://www.newyorker.com/archive/2006/08/28/060828fa_fact2?currentPage=all

03/05/2010

Maple 14

Filed under: Không toán học, Không định dạng, Trao đổi — Ngô Quốc Anh @ 20:16
(more…)

31/12/2009

Chúc mừng năm mới 2010

Filed under: Không toán học, Trao đổi — doanchi @ 22:35

Năm 2010, khởi đầu của một cái “mười năm” nữa.

Chặng đường còn dài, mong rằng mọi người đều gắng sức.

Chúc anh em Bộ môn thật nhiều thành công.

29/10/2009

Mathematics Subject Classification: MSC2010

Filed under: Không toán học, Tra cứu, Trao đổi — Ngô Quốc Anh @ 16:53

Mathematical Reviews (MR) and Zentralblatt MATH (Z-MATH) collaborate in maintaining the Mathematics Subject Classification (MSC), which is used by these reviewing services and many others to categorize items in the mathematical sciences literature. The MSC has undergone a general revision, with some additions, changes, and corrections, to create MSC2010, the successor to MSC2000, the scheme for the past 10 years. MR and Z-MATH carefully considered input received from the community in recent years, especially since the announcement of the projected revision in December 2006, and used it in the preparation of their joint MSC revision. As anticipated, there are no changes at the two-digit level but refinements have been made at the three- and five-digit levels. With July 2009 MR and Z-MATH started to use MSC2010 as their classification scheme.

MR and Z-MATH welcome and encourage community adoption of MSC2010. Comments can be submitted through the Web form found at http://msc2010.org/feedback or by email to feedback@msc2010.org. All information about MSC2010 is jointly shared by MR and Z-MATH.

The Editors and their staffs wish to express their gratitude to the numerous members of the community for their assistance in this lengthy revision process.

Bernd Wegner, Editor-in-Chief, Z-MATH

Download MSC2010 (PDF)

More information: http://www.ams.org/mathscinet/msc/msc2010.html

Source: http://www.zentralblatt-math.org/msc/en/

20/09/2009

e*Calendar 4.0: Quyển lịch Bloc bỏ túi dành cho người Việt

Filed under: Không toán học, Tra cứu, Trao đổi, Vui chơi — Ngô Quốc Anh @ 14:52

Mùa Xuân sắp đến, đây cũng là lúc mọi người trang hoàng nhà cửa và mua cho mình một quyển lịch Bloc mới. Tuy nhiên, có một quyển lịch Bloc bạn có thể đem về dùng mà không cần phải trả bất cứ chi phí nào, đó là e*Calendar 4.0, một quyển lịch treo trên desktop với giao diện tiếng Việt thân thiện.

Những tính năng hấp dẫn của e*Calendar 4.0:

  • Tra cứu âm dương lịch từ năm 1901 đến 3001 (1100 năm).
  • Tờ lịch ngày (Bloc) thiết kế theo hình dáng của bloc treo tường thông dụng, có đủ tháng, ngày, giờ âm lịch theo can chi. Cửa sổ xem trăng cho biết chính xác mức độ tròn của mặt trăng hiện hành.
  • Cho phép chọn một ngày bất kỳ trong khoảng thời gian 1100 năm bằng vài thao tác chuột hoặc phím bấm.
  • Hiển thị các ngày lễ, tết, kỷ niệm, sinh nhật… Cho phép người sử dụng tự định nghĩa và sửa đổi những ngày đặc biệt.
  • Cài đặt hệ thống lịch hẹn với tính năng tự động báo giờ.
  • Sổ tay ghi chép.
  • Tùy biến ảnh nền của cuốn lịch.
  • Tùy biến các câu thơ, thành ngữ, tục ngữ… theo định dạng HTML để hiển thị trên Bloc…

Download:

Có 2 bản

Bản full (~70 MB): Đầy đủ các tính năng

Bản mini (~10 MB): Không có hình nền, cách ngôn…

→ Sau đó, tải về tính năng cộng thêm nào mình thích:
I. Các bước cài thêm hình nền cho bloc:

1. Download 1 hoặc nhiều bộ hình theo sở thích:

2. Thi hành file vừa download về (Ví dụ “Art.exe”)
3. Nhấp nút BROWSE, chỉ đến thư mục …\imgBloc (mặc định là C:\Program Files\Enter PVH\eCalendar 4.0\imgBloc)
4. Nhấp chuột phải lên biểu tượng “Calendar” trên Taskbar, chọn “Thiết lập cấu hình…”II. Các bước tùy biến dòng chữ (Cách ngôn, ngạn ngữ…) trên bloc:1. Download Text on bloc: RS / UL / FF
2. Xả nén vào thư mục …\HTML (mặc định là C:\Program Files\Enter PVH\eCalendar 4.0\HTML)
3. Dùng các phần mềm chuyên dụng (như FrontPage…) để chỉnh sửa các file *.htm theo ý thích.
—————————————————
(*) Do sơ suất trong đóng gói, khi gọi trợ giúp CT sẽ báo lỗi không tìm thấy file: eCalendar.chm
→ Cách khắc phục:
Sau khi cài đặt xong, vào thư mục trợ giúp (mặc định là: “C:\Program Files\Enter PVH\eCalendar 4.0\Help\“) đổi tên file Calendar.chm thành ECalendar.chm.
Theo Echip và PVH’s Weblog

10/09/2009

When is next Thursday?

Filed under: Không toán học, Trao đổi, Vui chơi — Ngô Quốc Anh @ 22:21

Yesterday one of my colleagues circulated an email about a future event, specifying the time as “just before the lab meeting next Thursday”. It set off a whole bundle of confusion (does she mean “The next Thursday we will experience”, or “Thursday of next week”?) and got me thinking about this kind of reference to time.

There are quite a few ways to express a future day of the week: my own variant of English makes a strong distinction between “This Thursday” and “Next Thursday”. The former refers to the next Thursday that will be experienced, while “Next Thursday” is the Thursday that follows “This Thursday”. This is in addition to the simple “Thursday” which is essentially synonymous with “This Thursday”. “This” and “Next” when used with days don’t seem to work the same as “This” and “Next” in other contexts (I would use “This bus” only if it can be seen, otherwise “The next bus” to refer to the bus-equivalent of “This Thursday”), and there are additional constraints. For example, if today is Wednesday (which it is not), it doesn’t sound correct to say “This Thursday” when “Tomorrow” is a possibility (unless I have lost track of which day it is [sadly this is a fairly common occurrence]). So in this circumstance “This Thursday” has been replaced by “Tomorrow” while “Next Thursday” remains “Thursday of next week”. And it also gets awkward once Thursday of a particular week has passed; if today is Friday, “this Thursday” used in a future tense then means “Thursday of next week” (“this Thursday” may also be used in the past tense in order to mean “The previous Thursday”; fortunately English verbs allow this ambiguity to be avoided), but “next Thursday” is much more ambiguous (it could mean “Thursday of next week”, although I still typically use it to mean “the second Thursday in the future”. But the use of “next” for a day 13 days in the future may be a bit much). My distinction between “This” and “Next” does not depend on the boundary between weeks; I would still use “This Monday” to refer to the upcoming Monday even if today is Thursday (which it is not), and “Next Monday” to refer to the following one.

However, other English speakers do not typically use “This Thursday” as I do (I also occasionally use “This coming Thursday” or “This past Thursday”, but this kind of disambiguation is not really necessary). Hence the confusion arising from my cow-orker’s email (She meant “Next Thursday” in the sense in which I use it, but other colleagues misinterpreted it as meaning “This Thursday”). This may be because British English uses “next” differently, thanks to the “week” expression. UK “Thursday week” apparently has the same meaning as my “Next Thursday”, and UK “Next Thursday” has the same meaning as my “This Thursday” (one of OED’s definitions of “week” is “Seven days after the day specified”). Here’s an instance of someone who ran into the next/week problem (The blogger’s user info suggests that this is also a US/UK translation difference); and here is a discussion related to learning English as a second language. It’s unclear to me whether such expressions also apply for a day that has just passed (if today is Wednesday [which it is not], is “Tuesday week” six or 13 days in the future?). Or expressions like “Next Tuesday week” which just make my head spin.

Source: http://newpics.org/david/WhenIsNextThursday.aspx

17/05/2009

Maple 13

Filed under: Không toán học, Tra cứu, Trao đổi — Ngô Quốc Anh @ 02:20

Older Posts »

The Shocking Blue Green Theme. Tạo một website miễn phí hoặc 1 blog với WordPress.com.

Theo dõi

Get every new post delivered to your Inbox.